Linear Statistical Models
for Causation: A Critical
Review

Introduction

Regression models are often used to infer causation
from association. For instance, Yule [79] showed — or
tried to show — that welfare was a cause of poverty.
Path models and structural equation models are later
refinements of the technique. Besides Yule, exam-
ples to be discussed here include Blau and Dun-
can [12] on stratification, as well as Gibson [28] on
the causes of McCarthyism. Strong assumptions are
required to infer causation from association by mod-
eling. The assumptions are of two kinds: (a) causal,
and (b) statistical. These assumptions will be formu-
lated explicitly, with the help of response schedules
in hypothetical experiments. In particular, parameters
and error distributions must be stable under interven-
tion. That will be hard to demonstrate in observational
settings. Statistical conditions (like independence) are
also problematic, and latent variables create further
complexities. Causal modeling with path diagrams
will be the primary topic. The issues are not simple,
so examining them from several perspectives may be
helpful. The article ends with a review of the litera-
ture and a summary.

Regression Models in Social Science

Legendre [49] and Gauss [27] developed regression
to fit data on orbits of astronomical objects. The rele-
vant variables were known from Newtonian mechan-
ics, and so were the functional forms of the equa-
tions connecting them. Measurement could be done
with great precision, and much was known about the
nature of errors in the measurements and in the equa-
tions. Furthermore, there was ample opportunity for
comparing predictions to reality. By the turn of the
century, investigators were using regression on social
science data where such conditions did not hold,
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even to a rough approximation. Yule [79] was a pio-
neer. At the time, paupers in England were supported
either inside grim Victorian institutions called poor-
houses or outside, according to decisions made by
local authorities. Did policy choices affect the num-
ber of paupers? To study this question, Yule proposed
a regression equation,

APaup =a + b x AOut 4 ¢ x AOId
+ d x APop + error. (D)

In this equation,

A is percentage change over time,
Paup is the number of Paupers
Out is the out-relief ratio N/D,
N = number on welfare outside the poor-
house,
D = number inside,
Old is the population over 65,
Pop is the population.

Data are from the English Censuses of 1871,
1881, and 1891. There are two A’s, one each for
1871-1881 and 1881-1891.

Relief policy was determined separately in each
‘union’, a small geographical area like a parish. At
the time, there were about 600 unions, and Yule
divides them into four kinds: rural, mixed, urban,
metropolitan. There are 4 x 2 = 8 equations, one
for each type of union and time period. Yule fits
each equation to data by least squares. That is, he
determines a, b, ¢, and d by minimizing the sum of
squared errors,

> " (APaup —a — b x AOut — ¢ x AOl
—d x APop)z.

The sum is taken over all unions of a given type
in a given time period — which assumes, in essence,
that coefficients are constant within each combination
of geography and time. For example, consider the
metropolitan unions. Fitting the equation to the data
for 1871-1881, Yule gets

APaup = 13.19 4+ 0.755A0ut — 0.022A0l1d
— 0.322APop + error. 2)
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For 1881-1891, his equation is

APaup = 1.36 + 0.324A0ut + 1.37A01d
— 0.369APop + error. 3)

The coefficient of AOut being relatively large and
positive, Yule concludes that outrelief causes poverty.

Table 1 has the ratio of 1881 data to 1871 data
for Pauperism, Out-relief ratio, Proportion of Old,
and Population. If we subtract 100 from each entry,
column 1 gives APaup in equation (2). Columns 2,
3, 4 give the other variables. For Kensington (the first
union in the table),

AOut =5 — 100 = —95, AOIld = 104 — 100 = 4,
APop = 136 — 100 = 36.

The predicted value for APaup from (2) is therefore

13.19 + 0.755 x (=95) — 0.022 x 4
—0.322 x 36 = —70.

The actual value for APaup is —73, so the error is —3.
Other lines in the table are handled in a similar way.
As noted above, coefficients were chosen to minimize
the sum of the squared errors.

Quetelet [67] wanted to uncover ‘social physics’ —
the laws of human behavior — by using statistical
technique:

‘In giving my work the title of Social Physics, I have
had no other aim than to collect, in a uniform order,
the phenomena affecting man, nearly as physical
science brings together the phenomena appertaining
to the material world. ... in a given state of society,
resting under the influence of certain causes, regular
effects are produced, which oscillate, as it were,
around a fixed mean point, without undergoing any
sensible alterations.’. . .

“This study...has too many attractions — it is
connected on too many sides with every branch of
science, and all the most interesting questions in
philosophy — to be long without zealous observers,
who will endeavor to carry it further and further,
and bring it more and more to the appearance of a
science.’

Yule is using regression to infer the social physics
of poverty. But this is not so easily to be done.
Confounding is one issue. According to Pigou (a lead-
ing welfare economist of Yule’s era), parishes with

Table 1 Pauperism, out-relief ratio, proportion of old,
population. Ratio of 1881 data to 1871 data, times 100.
Metropolitan Unions, England. Yule (79, Table XIX)

Paup Out Old Pop

Kensington 27 5 104 136
Paddington 47 12 115 111
Fulham 31 21 85 174
Chelsea 64 21 81 124
St. George’s 46 18 113 96
Westminster 52 27 105 91
Marylebone 81 36 100 97
St. John, Hampstead 61 39 103 141
St. Pancras 61 35 101 107
Islington 59 35 101 132
Hackney 33 22 91 150
St. Giles’ 76 30 103 85
Strand 64 27 97 81
Holborn 79 33 95 93
City 79 64 113 68
Shoreditch 52 21 108 100
Bethnal Green 46 19 102 106
Whitechapel 35 6 93 93
St. George’s East 37 6 98 98
Stepney 34 10 87 101
Mile End 43 15 102 113
Poplar 37 20 102 135
St. Saviour’s 52 22 100 111
St. Olave’s 57 32 102 110
Lambeth 57 38 99 122
Wandsworth 23 18 91 168
Camberwell 30 14 83 168
Greenwich 55 37 94 131
Lewisham 41 24 100 142
Woolwich 76 20 119 110
Croydon 38 29 101 142
West Ham 38 49 86 203

more efficient administrations were building poor-
houses and reducing poverty. Efficiency of admin-
istration is then a confounder, influencing both the
presumed cause and its effect. Economics may be
another confounder. Yule occasionally tries to con-
trol for this, using the rate of population change as
a proxy for economic growth. Generally, however,
he pays little attention to economics. The explana-
tion: ‘A good deal of time and labour was spent in
making trial of this idea, but the results proved unsat-
isfactory, and finally the measure was abandoned
altogether. [p. 253)

The form of Yule’s equation is somewhat arbitrary,
and the coefficients are not consistent over time and
space. This is not necessarily fatal. However, unless
the coefficients have some existence apart from the
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data, how can they predict the results of interventions
that would change the data? The distinction between
parameters and estimates runs throughout statistical
theory; the discussion of response schedules, below,
may sharpen the point.

There are other interpretive problems. At best,
Yule has established association. Conditional on the
covariates, there is a positive association between
APaup and AOut. Is this association causal? If
so, which way do the causal arrows point? For
instance, a parish may choose not to build poor-
houses in response to a short-term increase in the
number of paupers. Then pauperism is the cause and
outrelief the effect. Likewise, the number of paupers
in one area may well be affected by relief policy
in neighboring areas. Such issues are not resolved
by the data analysis. Instead, answers are assumed a
priori. Although he was busily parceling out changes
in pauperism — so much is due to changes in out-relief
ratios, so much to changes in other variables, so much
to random effects — Yule was aware of the difficulties.
With one deft footnote (number 25), he withdrew all
causal claims: ‘Strictly speaking, for “due to” read
“associated with”.’

Yule’s approach is strikingly modern, except there
is no causal diagram with stars indicating statisti-
cal significance. Figure 1 brings him up to date. The
arrow from AOut to APaup indicates that AOut
is included in the regression equation that explains
APaup. Three asterisks mark a high degree of sta-
tistical significance. The idea is that a statistically
significant coefficient must differ from zero. Thus,
AOut has a causal influence on APaup. By contrast, a
coefficient that lacks statistical significance is thought
to be zero. If so, AOld would not exert a causal influ-
ence on APaup.

The reasoning is seldom made explicit, and diffi-
culties are frequently overlooked. Statistical assump-
tions are needed to determine significance from the

AOut AOId APop

APaup

Figure 1 Yule’s model. Metropolitan unions, 1871-1881

data. Even if significance can be determined and
the null hypothesis rejected or accepted, there is a
deeper problem. To make causal inferences, it must
be assumed that equations are stable under proposed
interventions. Verifying such assumptions — without
making the interventions — is problematic. On the
other hand, if the coefficients and error terms change
when variables are manipulated, the equation has only
a limited utility for predicting the results of interven-
tions.

Social Stratification

Blau and Duncan [12] are thinking about the strat-
ification process in the United States. According to
Marxists of the time, the United States is a highly
stratified society. Status is determined by family
background, and transmitted through the school sys-
tem. Blau and Duncan present cross-tabs (in their
Chapter 2) to show that the system is far from deter-
ministic, although family background variables do
influence status. The United States has a permeable
social structure, with many opportunities to succeed
or fail. Blau and Duncan go on to develop the path
model shown in Figure 2, in order to answer ques-
tions like these:

‘how and to what degree do the circumstances of
birth condition subsequent status? how does status
attained (whether by ascription or achievement) at
one stage of the life cycle affect the prospects for a
subsequent stage?’

The five variables in the diagram are father’s edu-
cation and occupation, son’s education, son’s first
job, and son’s occupation. Data come from a special
supplement to the March 1962 Current Population
Survey. The respondents are the sons (age 20—64),
who answer questions about current jobs, first jobs,
and parents. There are 20 000 respondents. Education
is measured on a scale from O to 8, where 0 means no
schooling, 1 means 1-4 years of schooling, and so
forth; 8 means some postgraduate education. Occu-
pation is measured on Duncan’s prestige scale from
0 to 96. The scale takes into account income, educa-
tion, and raters’ opinions of job prestige. Hucksters
are at the bottom of the ladder, with clergy in the
middle, and judges at the top.

How is Figure 2 to be read? The diagram unpacks
to three regression equations:

U=aV +bX +34, “)
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Figure 2 Path model. Stratification, US, 1962

W =cU+dX +e,
Y=cU + fX+gW+n.

®)
(6)

Parameters are estimated by least squares. Before
regressions are run, variables are standardized to have
mean 0 and variance 1. That is why no intercepts are
needed, and why estimates can be computed from the
correlations in Table 2.

In Figure 2, the arrow from V to U indicates
a causal link, and V is entered on the right-hand
side in the regression equation (4) that explains U.
The path coefficient .310 next to the arrow is the
estimated coefficient a of V. The number .859 on
the ‘free arrow’ that points into U is the estimated
standard deviation of the error term & in (4). The
other arrows are interpreted in a similar way. The
curved line joining V and X indicates association
rather than causation: V and X influence each other

or are influenced by some common causes, not further
analyzed in the diagram. The number on the curved
line is just the correlation between V and X (Table 2).
There are three equations because three variables in
the diagram (U, W, Y) have arrows pointing into
them.

The large standard deviations in Figure 2 show the
permeability of the social structure. (Since variables
are standardized, it is a little theorem that the
standard deviations cannot exceed 1.) Even if father’s
education and occupation are given, as well as
respondent’s education and first job, the variation in
status of current job is still large. As social physics,
however, the diagram leaves something to be desired.
Why linearity? Why are the coefficients the same for
everybody? What about variables like intelligence or
motivation? And where are the mothers?

The choice of variables and arrows is up to the
analyst, as are the directions in which the arrows
point. Of course, some choices may fit the data less
well, and some may be illogical. If the graph is
‘complete’ — every pair of nodes joined by an arrow —
the direction of the arrows is not constrained by the
data [[22] pp. 138, 142]. Ordering the variables in
time may reduce the number of options.

If we are trying to find laws of nature that are sta-
ble under intervention, standardizing may be a bad
idea, because estimated parameters would depend on
irrelevant details of the study design (see below).
Generally, the intervention idea gets muddier with
standardization. Are means and standard deviations
held constant even though individual values are
manipulated? On the other hand, standardizing might
be sensible if units are meaningful only in compara-
tive terms (e.g., prestige points). Standardizing may
also be helpful if the meaning of units changes over
time (e.g., years of education), while correlations are
stable. With descriptive statistics for one data set, it
is really a matter of taste: do you like pounds, kilo-
grams, or standard units? Moreover, all variables are

Table 2 Correlation matrix for variables in Blau and Duncan’s path model

Y w U X 1%
Sons’occ Sons’1*' job Sons’ed Dads’occ Dads’ed
Y Sons’occ 1.000 541 .596 405 322
w Sons’1*'job 541 1.000 .538 417 332
U Sons’ed .596 538 1.000 438 453
X Dads’occ 405 417 438 1.000 516
14 Dads’ed 322 332 453 516 1.000
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on the same scale after standardization, which makes
it easier to compare regression coefficients.

Hooke’s Law

According to Hooke’s law, stretch is proportional to
weight. If weight x is hung on a spring, the length
of the spring is a + bx + €, provided x is not too
large. (Near the elastic limit of the spring, the physics
will be more complicated.) In this equation, a and b
are physical constants that depend on the spring not
the weights. The parameter a is the length of the
spring with no load. The parameter b is the length
added to the spring by each additional unit of weight.
The € is random measurement error, with the usual
assumptions. Experimental verification is a classroom
staple.

If we were to standardize, the crucial slope param-
eter would depend on the weights and the accuracy
of the measurements. Let v be the variance of the
weights used in the experiment, let o2 be the variance
of €, and let s be the mean square of the devia-
tions from the fitted regression line. The standardized
regression coefficient is

b2v N b%v o
Fore \Pvier

as can be verified by examining the sample covari-
ance matrix. Therefore, the standardized coefficient
depends on v and o2, which are features of our mea-
surement procedure not the spring.

Hooke’s law is an example where regression is
a very useful tool. But the parameter to estimate is
b, the unstandardized regression coefficient. It is the
unstandardized coefficient that says how the spring
will respond when the load is manipulated. If a
regression coefficient is stable under interventions,
standardizing it is probably not a good idea, because
stability gets lost in the shuffle. That is what (7)
shows. Also see [4], ([11], p. 451).

Political Repression During the McCarthy
Era

Gibson [28] tries to determine the causes of
McCarthyism in the United States. Was repression
due to the masses or the elites? He argues that

elite intolerance is the root cause, the chief piece
of evidence being a path model (Figure 3, redrawn
from the paper). The dependent variable is a
measure of repressive legislation in each state. The
independent variables are mean tolerance scores for
each state, derived from the Stouffer survey of
masses and elites. The ‘masses’ are just respondents
in a probability sample of the population. ‘Elites’
include school board presidents, commanders of the
American Legion, bar association presidents, labor
union leaders. Data on masses were available for
36 states; on elites, for 26 states. The two straight
arrows in Figure 3 represent causal links: mass and
elite tolerance affect repression. The curved double-
headed arrow in Figure 3 represents an association
between mass and elite tolerance scores. Each one can
influence the other, or both can have some common
cause. The association is not analyzed in the diagram.

Gibson computes correlations from the available
data, then estimates a standardized regression equa-
tion,

Repression = B;Mass tolerance

+ B,Elite tolerance + §. ®)

He says, ‘Generally, it seems that elites, not masses,
were responsible for the repression of the era. ... The
beta for mass opinion is —.06; for elite opinion, it is
—.35 (significant beyond .01)’.

The paper asks an interesting question, and the
data analysis has some charm too. However, as social
physics, the path model is not convincing. What
hypothetical intervention is contemplated? If none,

Mass
tolerance
[ )
-.06
e Repression
-.35"
[ )
Elite
tolerance

Figure 3 Path model. The causes of McCarthyism
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how are regressions going to uncover causal rela-
tionships? Why are relationships among the variables
supposed to be linear? Signs apart, for example, why
does a unit increase in tolerance have the same effect
on repression as a unit decrease? Are there other vari-
ables in the system? Why are the states statistically
independent? Such questions are not addressed in the
paper.

McCarthy became a force in national politics
around 1950. The turning point came in 1954,
with public humiliation in the Army-McCarthy hear-
ings. Censure by the Senate followed in 1957. Gib-
son scores repressive legislation over the period
1945-1965, long before McCarthy mattered, and
long after. The Stouffer survey was done in 1954,
when the McCarthy era was ending. The timetable is
puzzling.

Even if such issues are set aside, and we grant the
statistical model, the difference in path coefficients
fails to achieve significance. Gibson finds that B
is significant and ,32 is insignificant, but that does
not impose much of a constraint on l§1 — ,32. (The
standard error for this difference can be computed
from data generously provided in the paper.) Since
B1 = B, is a viable hypothesis, the data are not strong
enough to distinguish masses from elites.

Inferring Causation by Regression

Path models are often thought to be rigorous sta-
tistical engines for inferring causation from associ-
ation. Statistical techniques can be rigorous, given
their assumptions. But the assumptions are usually
imposed on the data by the analyst. This is not
a rigorous process, and it is rarely made explicit.
The assumptions have a causal component as well
as a statistical component. It will be easier to pro-
ceed in terms of a specific example. In Figure 4, a
hypothesized causal relationship between Y and Z is
confounded by X. The free arrows leading into Y and
Z are omitted.

The diagram describes two hypothetical experi-
ments, and an observational study where the data
are collected. The two experiments help to define the
assumptions. Furthermore, the usual statistical analy-
sis can be understood as an effort to determine what
would happen under those assumptions if the experi-
ments were done. Other interpretations of the analysis
are not easily to be found. The experiments will now
be described.

° °
Y V4

Figure 4 Path model. The relationship between Y and Z
is confounded by X. Free arrows leading into Y and Z are
not shown

1. First hypothetical experiment. Treatment is app-
lied to a subject, at level x. A response Y is observed,
corresponding to the level of treatment. There are two
parameters, a and b, that describe the response. With
no treatment, the response level for each subject will
be a, up to random error. All subjects are assumed
to have the same value for a. Each additional unit
of treatment adds b to the response. Again, b is the
same for all subjects, at all levels of x, by assumption.
Thus, if treatment is applied at level x, the response
Y is assumed to be

a + bx + random error. 9)

For Hooke’s law, x is weight and Y is length of a
spring under load x. For evaluation of job training
programs, x might be hours spent in training and Y
might be income during a follow-up period.

2. Second hypothetical experiment. In the second
experiment, there are two treatments and a response
variable Z. There are two treatments because there
are two arrows leading into Z; the treatments are
labeled X and Y (Figure 4). Both treatments may be
applied to a subject. There are three parameters, c,
d, and e. With no treatment, the response level for
each subject is taken to be ¢, up to random error. Each
additional unit of treatment #1 adds d to the response.
Likewise, each additional unit of treatment #2 adds e
to the response. The constancy of parameters across
subjects and levels of treatment is an assumption.
If the treatments are applied at levels x and y, the
response Z is assumed to be

¢ + dx + ey + random error. (10)
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Three parameters are needed because it takes three
parameters to specify the linear relationship (10),
namely, an intercept and two slopes. Random errors
in (9) and (10) are assumed to be independent
from subject to subject, with a distribution that is
constant across subjects; expectations are zero and
variances are finite. The errors in (9) are assumed to
be independent of the errors in (10).

The observational study. When using the path
model in Figure 4 to analyze data from an obser-
vational study, we assume that levels for the variable
X are independent of the random errors in the two
hypothetical experiments (‘exogeneity’). In effect, we
pretend that Nature randomized subjects to levels of
X for us, which obviates the need for experimental
manipulation. The exogeneity of X has a graphical
representation: arrows come out of X, but no arrows
lead into X.

We take the descriptions of the two experiments,
including the assumptions about the response sched-
ules and the random errors, as background informa-
tion. In particular, we take it that Nature generates Y
as if by substituting X into (9). Nature proceeds to
generate Z as if by substituting X and Y — the same
Y that has just been generated from X — into (10). In
short, (9) and (10) are assumed to be the causal mech-
anisms that generate the observational data, namely,
X, Y, and Z for each subject. The system is ‘recur-
sive’, in the sense that output from (9) is used as
input to (10) but there is no feedback from (9) to (8).

Under these assumptions, the parameters a, b can
be estimated by regression of ¥ on X. Likewise, c,
d, e can be estimated by regression of Z on X and
Y. Moreover, these regression estimates have legiti-
mate causal interpretations. This is because causation
is built into the background assumptions, via the
response schedules (9) and (10). If causation were
not assumed, causation would not be demonstrated
by running the regressions.

One point of running the regressions is usually to
separate out direct and indirect effects of X on Z.
The direct effect is d in (10). If X is increased by
one unit with Y held fast, then Z is expected to go
up by d units. But this is shorthand for the assumed
mechanism in the second experiment. Without the
thought experiments described by (9) and (10), how
can Y be held constant when X is manipulated? At
a more basic level, how would manipulation get into
the picture?

Another path-analytic objective is to determine the
effect e of Y on Z. If Y is increased by one unit with
X held fast, then Z is expected to go up by e units. (If
e = 0, then manipulating ¥ would not affect Z, and Y
does not cause Z after all.) Again, the interpretation
depends on the thought experiments. Otherwise, how
could Y be manipulated and X held fast?

To state the model more carefully, we would index
the subjects by a subscript i in the range from 1 to
n, the number of subjects. In this notation, X; is the
value of X for subject i. Similarly, ¥; and Z; are
the values of ¥ and Z for subject i. The level of
treatment #1 is denoted by x, and Y; , is the response
for variable Y if treatment at level x is applied to
subject i. Similarly, Z; , , is the response for variable
Z if treatment #1 at level x and treatment #2 at level
y are applied to subject i. The response schedules are
to be interpreted causally:

e Y, is what Y¥; would be if X; were set to x by
intervention.

e Z; . yis what Z; would be if X; were set to x and
Y; were set to y by intervention.

Counterfactual statements are even licensed about the
past: Y; , is what Y; would have been, if X; had been
set to x. Similar comments apply to Z; .

The diagram unpacks into two equations, which
are more precise versions of (9) and (10), with a
subscript i for subjects. Greek letters are used for
the random error terms.

Y,-,x:a—f—bx—l—é,». (11)
Zicxy=c+dx+ey+e. (12)

The parameters a, b, ¢, d, e and the error terms &;,
€; are not observed. The parameters are assumed to
be the same for all subjects.

Additional assumptions, which define the statisti-
cal component of the model, are imposed on the error
terms:

1. §; and ¢; are independent of each other within
each subject i.

2. §; and ¢; are independent across subjects.

3. The distribution of §; is constant across subjects;
so is the distribution of ¢;. (However, §; and ¢;
need not have the same distribution.)

4. §; and ¢; have expectation zero and finite vari-
ance.

5. The &’s and €’s are independent of the X’s.
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The last is ‘exogeneity’.
According to the model, Nature determines the
response Y; for subject i by substituting X; into (10):

Y=Y, x, =a+bX; +4. (13)

Here, X; is the value of X for subject i, chosen
for us by Nature, as if by randomization. The rest
of the response schedule — the Y; , for other x — is
not observed, and therefore stays in the realm of
counterfactual hypotheticals. After all, even in an
experiment, subject i would be assigned to one level
of treatment, foreclosing the possibility of observing
the response at other levels.

Similarly, we observe Z; . , only for x = X; and
y = Y;. The response for subject i is determined by
Nature, as if by substituting X; and Y; into (12):

Z,’ =Z,',X“y[ =C+Xm'+€Y,' + €. (14)

The rest of the response schedule, Z; , , for other
x and y, remains unobserved. Economists call the
unobserved Y; , and Z; , , ‘potential outcomes’. The
model specifies unobservable response schedules, not
just regression equations. Notice too that a subject’s
responses are determined by levels of treatment for
that subject only. Treatments applied to subject j are
not relevant to subject i. The response schedules (11)
and (12) represent the causal assumptions behind the
path diagram.

The conditional expectation of ¥ given X = x is
the average of Y for subjects with X = x. The formal-
ism connects two very different ideas of conditional
expectation: (a) finding subjects with X = x, versus
(b) an intervention that sets X to x. The first is some-
thing you can actually do with observational data.
The second would require manipulation. The model
is a compact way of stating the assumptions that
are needed to go from observational data to causal
inferences.

In econometrics and cognate fields, ‘structural’
equations describe causal relationships. The model
gives a clearer meaning to this idea, and to the
idea of ‘stability under intervention’. The parame-
ters in Figure 4, for instance, are defined through the
response schedules (9) and (10), separately from the
data. These parameters are constant across subjects
and levels of treatment (by assumption, of course).
Parameters are the same in a regime of passive obser-
vation and in a regime of active manipulation. Similar
assumptions of stability are imposed on the error

distributions. In summary, regression equations are
structural, with parameters that are stable under inter-
vention, when the equations derive from response
schedules like (11) and (12).

Path models do not infer causation from associa-
tion. Instead, path models assume causation through
response schedules, and — using additional statistical
assumptions — estimate causal effects from obser-
vational data. The statistical assumptions (indepen-
dence, expectation zero, constant variance) justify
estimation by ordinary least squares. With large sam-
ples, confidence intervals and significance tests would
follow. With small samples, the errors would have to
follow a normal distribution in order to justify ¢ Tests.

The box model in Figure 5 illustrates the statistical
assumptions. Independent errors with constant dis-
tributions are represented as draws made at random
with replacement from a box of potential errors [26].
Since the box remains the same from one draw to
another, the probability distribution of one draw is
the same as the distribution of any other. The distri-
bution is constant. Furthermore, the outcome of one
draw cannot affect the distribution of another. That is
independence. Verifying the causal assumptions (11)
and (12), which are about potential outcomes, is a
daunting task. The statistical assumptions present dif-
ficulties of their own. Assessing the degree to which
the modeling assumptions hold is therefore prob-
lematic. The difficulties noted earlier — in Yule on
poverty, Blau and Duncan on stratification, Gibson
on McCarthyism — are systemic.

Embedded in the formalism is the conditional dis-
tribution of Y, if we were to intervene and set the
value of X. This conditional distribution is a counter-
factual, at least when the study is observational. The
conditional distribution answers the question, what
would have happened if we had intervened and set
X to x, rather than letting Nature take its course?

Figure 5 The path diagram as a box model
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The idea is best suited to experiments or hypothetical
experiments.

There are also nonmanipulationist ideas of causa-
tion: the moon causes the tides, earthquakes cause
property values to go down, time heals all wounds.
Time is not manipulable; neither are earthquakes or
the moon. Investigators may hope that regression
equations are like laws of motion in classical physics.
(If position and momentum are given, you can deter-
mine the future of the system and discover what
would happen with different initial conditions.) Some
other formalism may be needed to make this nonma-
nipulationist account more precise.

Latent Variables

There is yet another layer of complexity when the
variables in the path model remain ‘latent’ — unob-
served. It is usually supposed that the manifest vari-
ables are related to the latent variables by a series
of regression-like equations (‘measurement models’).
There are numerous assumptions about error terms,
especially when likelihood techniques are used. In
effect, latent variables are reconstructed by some ver-
sion of factor analysis and the path model is fitted to
the results. The scale of the latent variables is not usu-
ally identifiable, so variables are standardized to have
mean 0 and variance 1. Some algorithms will infer
the path diagram as well as the latents from the data,
but there are additional assumptions that come into
play. Anderson [7] provides a rigorous discussion of
statistical inference for models with latent variables,
given the requisite statistical assumptions. He does
not address the connection between the models and
the phenomena. Kline [46] is a well-known text. Ull-
man and Bentler [78] survey recent developments.

A possible conflict in terminology should be men-
tioned. In psychometrics and cognate fields, ‘struc-
tural equation modeling’ (typically, path modeling
with latent variables) is sometimes used for causal
inference and sometimes to get parsimonious descrip-
tions of covariance matrices. For causal inference,
questions of stability are central. If no causal infer-
ences are made, stability under intervention is hardly
relevant; nor are underlying equations ‘structural’ in
the econometric sense described earlier. The statisti-
cal assumptions (independence, distributions of error
terms constant across subjects, parametric models for
error distributions) would remain on the table.

Literature Review

There is by now an extended critical literature on
statistical models, starting perhaps with the exchange
between Keynes [44, 45] and Tinbergen [77]. Other
familiar citations in the economics literature include
Liu [52], Lucas [53], and Sims [71]. Manski [54]
returns to the under-identification problem that was
posed so sharply by Liu and Sims. In brief, a pri-
ori exclusion of variables from causal equations can
seldom be justified, so there will typically be more
parameters than data. Manski suggests methods for
bounding quantities that cannot be estimated. Sims’
idea was to use simple, low-dimensional models for
policy analysis, instead of complex-high dimensional
ones. Leamer [48] discusses the issues created by
specification searches, as does Hendry [35]. Heck-
man [33] traces the development of econometric
thought from Haavelmo and Frisch onwards, stress-
ing the role of ‘structural’ or ‘invariant’ parameters,
and ‘potential outcomes’. Lucas too was concerned
about parameters that changed under intervention.
Engle, Hendry, and Richard [17] distinguish sev-
eral kinds of exogeneity, with different implications
for causal inference. Recently, some econometricians
have turned to natural experiments for the evaluation
of causal theories. These investigators stress the value
of careful data collection and data analysis. Angrist
and Krueger [8] have a useful survey.

One of the drivers for modeling in economics
and other fields is rational choice theory. Therefore,
any discussion of empirical foundations must take
into account a remarkable series of papers, initiated
by Kahneman and Tversky [41], that explores the
limits of rational choice theory. These papers are
collected in Kahneman, Slovic, and Tversky [40], and
in Kahneman and Tversky [43]. The heuristics and
biases program has attracted its own critics [29]. That
critique is interesting and has some merit. But in the
end, the experimental evidence demonstrates severe
limits to the power of rational choice theory [42].
If people are trying to maximize expected utility,
they generally do not do it very well. Errors are
large and repetitive, go in predictable directions, and
fall into recognizable categories. Rather than making
decisions by optimization — or bounded rationality, or
satisficing — people seem to use plausible heuristics
that can be identified. If so, rational choice theory
is generally not a good basis for justifying empirical
models of behavior. Drawing in part on the work
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of Kahneman and Tversky, Sen [69] gives a far-
reaching critique of rational choice theory. This
theory has its place, but also leads to ‘serious
descriptive and predictive problems’.

Almost from the beginning, there were cri-
tiques of modeling in other social sciences too [64].
Bernert [10] reviews the historical development of
causal ideas in sociology. Recently, modeling issues
have been much canvassed in sociology. Abbott [2]
finds that variables like income and education
are too abstract to have much explanatory power,
with a broader examination of causal modeling in
Abbott [3]. He finds that ‘an unthinking causalism
today pervades our journals’; he recommends more
emphasis on descriptive work and on middle-range
theories. Berk [9] is skeptical about the possibility
of inferring causation by modeling, absent a strong
theoretical base. Clogg and Haritou [14] review diffi-
culties with regression, noting that you can too easily
include endogenous variables as regressors.

Goldthorpe [30, 31, 32] describes several ideas
of causation and corresponding methods of statisti-
cal proof, with different strengths and weaknesses.
Although skeptical of regression, he finds rational
choice theory to be promising. He favors use of
descriptive statistics to determine social regularities,
and statistical models that reflect generative pro-
cesses. In his view, the manipulationist account of
causation is generally inadequate for the social sci-
ences. Hedstrom and Swedberg [34] present a lively
collection of essays by sociologists who are quite
skeptical about regression models; rational choice
theory also takes its share of criticism. There is an
influential book by Lieberson [50], with a follow-
up by Lieberson and Lynn [51]. Ni Bhrolchdin [60]
has some particularly forceful examples to illustrate
the limits of modeling. Sobel [72] reviews the litera-
ture on social stratification, concluding that ‘the usual
modeling strategies are in need of serious change’.
Also see Sobel [73].

Meehl [57] reports the views of an empirical psy-
chologist. Also see Meehl [56], with data showing the
advantage of using regression to make predictions,
rather than experts. Meehl and Waller [58] discuss the
choice between two similar path models, viewed as
reasonable approximations to some underlying causal
structure, but do not reach the critical question —
how to assess the adequacy of the approximation.
Steiger [75] has a critical review of structural equa-
tion models. Larzalere and Kuhn [47] offer a more

general discussion of difficulties with causal infer-
ence by purely statistical methods. Abelson [1] has
an interesting viewpoint on the use of statistics in
psychology.

There is a well-known book on the logic of causal
inference, by Cook and Campbell [15]. Also see
Shadish, Cook, and Campbell [70], which has among
other things a useful discussion of manipulationist
versus nonmanipulationist ideas of causation. In polit-
ical science, Duncan [16] is far more skeptical about
modeling than Blau and Duncan [12]. Achen [5, 6]
provides a spirited and reasoned defense of the mod-
els. Brady and Collier [13] compare regression meth-
ods with case studies; invariance is discussed under
the rubric of causal homogeneity.

Recently, strong claims have been made for non-
linear methods that elicit the model from the data and
control for unobserved confounders [63, 74]. How-
ever, the track record is not encouraging [22, 24, 25,
39]. Cites from other perspectives include [55, 61,
62], as well as [18, 19, 20, 21, 23].

The statistical model for causation was proposed
by Neyman [59]. It has been rediscovered many times
since: see, for instance, [36, Section 9.4]. The setup
is often called ‘Rubin’s model’, but that simply mis-
takes the history. See the comments by Dabrowska
and Speed on their translation of Neyman [59], with a
response by Rubin; compare to Rubin [68] and Hol-
land [37]. Holland [37, 38] explains the setup with a
super-population model to account for the random-
ness, rather than individualized error terms. Error
terms are often described as the overall effects of fac-
tors omitted from the equation. But this description
introduces difficulties of its own, as shown by Pratt
and Schlaifer [65, 66]. Stone [76] presents a super-
population model with some observed covariates and
some unobserved. Formal extensions to observational
studies — in effect, assuming these studies are exper-
iments after suitable controls have been introduced —
are discussed by Holland and Rubin among others.

Conclusion

Causal inferences can be drawn from nonexperimen-
tal data. However, no mechanical rules can be laid
down for the activity. Since Hume, that is almost a
truism. Instead, causal inference seems to require an
enormous investment of skill, intelligence, and hard
work. Many convergent lines of evidence must be
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developed. Natural variation needs to be identified
and exploited. Data must be collected. Confounders
need to be considered. Alternative explanations have
to be exhaustively tested. Before anything else, the
right question needs to be framed. Naturally, there is a
desire to substitute intellectual capital for labor. That
is why investigators try to base causal inference on
statistical models. The technology is relatively easy
to use, and promises to open a wide variety of ques-
tions to the research effort. However, the appearance
of methodological rigor can be deceptive. The models
themselves demand critical scrutiny. Mathematical
equations are used to adjust for confounding and
other sources of bias. These equations may appear
formidably precise, but they typically derive from
many somewhat arbitrary choices. Which variables
to enter in the regression? What functional form to
use? What assumptions to make about parameters and
error terms? These choices are seldom dictated either
by data or prior scientific knowledge. That is why
judgment is so critical, the opportunity for error so
large, and the number of successful applications so
limited.

Author’s footnote

Richard Berk, Persi Diaconis, Michael Finkelstein,
Paul Humphreys, Roger Purves, and Philip Stark
made useful comments. This paper draws on Freed-
man [19, 20, 22-24]. Figure 1 appeared in Freed-
man [21, 24]; figure 2 is redrawn from Blau and
Duncan [12]; figure 3, from Gibson [28], also see
Freedman [20].
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