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What 1s .
Mathematics?

NAIVE DEFINITION, adequate for the dictio-

nary and for an initial understanding, is that

mathematics is the science of quantity and space. Ex-

panding this definition a bit, one might add that
mathematics also deals with the symbolism relating to
quantity and to space.

This definition certainly has a historical basis and will
serve us for a start, but it is one of the purposes of this
work to modify and amplify it in a way that refects the
growth of the subject over the past several centuries and
indicates the visions of various schools of mathematics as to
what the subject ought to be.

The sciences of quantity and of space in their simpler
forms are known as arithmetic and geometry. Arithmetic, as
taught in grade school, is concerned with numbers of vari-
ous sorts, and the rules for operations with numbers—ad-
dition, subtraction, and so forth. And it deals with situa-
tions in daily life where these operations are used.

Geometry is taught in the later grades. It is concerned in
part with questions of spatial measurements. If I draw such
a line and another such line, how far apart will their end
points be? How many square inches are there in a rectan-
gle 4 inches long and 8 inches wide? Geometry is also con-
cerned with aspects of space that have a strong aesthetic
appeal or a surprise element. For example, it tells us that in
any parallelogram whatsoever, the diagonals bisect one an-
other; in any triangle whatsoever, the three medians inter-
sect in a common point. It teaches us that a floor can be
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tiled with equilateral triangles or hexagons, but not with
regular pentagons.

But geometry, if taught according to the arrangement
laid out by Euclid in 300 B.c., has another vitally significant
aspect. This is its presentation as a deductive science. Be-
ginning with a number of elementary ideas which are as-
sumed to be self-evident, and on the basis of a few definite
rules of mathematical and logical manipulation, Euclidean
geometry builds up a fabric of deductions of increasing
complexity.

What is stressed in the teaching of elementary geometry
1s not only the spatial or visual aspect of the subject but the
methodology wherein hypothesis leads to conclusion. This
deductive process is known as proof. Euclidean geometry is
the first example of a formalized deductive system and has
become the model for all such systems. Geometry has been
the great practice field for logical thinking, and the study
of geometry has been held (rightly or wrongly) to provide
the student with a basic training in such thinking.

Although the deductive aspects of arithmetic were clear
to ancient mathematicians, these were not stressed either
in teaching or in the creation of new mathematics until the
1800s. Indeed, as late as the 1950s one heard statements
from secondary school teachers, reeling under the impact
of the “new math,” to the effect that they had always
thought geometry had “proof” while arithmetic and alge-
bra did not.

With the increased emphasis placed on the deductive as-
pects of all branches of mathematics, C. S. Peirce in the
middle of the nineteenth century, announced that “mathe-
matics is the science of making necessary conclusions.”
Conclusions about what? About quantity? About space?
The content of mathematics is not defined by this defini-
tion; mathematics could be “about™ anything as long as it is
a subject that exhibits the pattern of assumption-deduc-
tion-conclusion. Sherlock Holmes remarks to Watson in
The Sign of Four that “Detection is, or ought to be, an exact
science and should be treated in the same cold and unemo-
tional manner. You have attempted to tinge it with roman-
ticism, which produces much the same effect as if you
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worked a love-story or an elopement into the fifth proposi-
tion of Euclid.” Here Conan Doyle, with tongue in cheek, is
asserting that criminal detection might very well be consid-
ered a branch of mathematics. Peirce would agree.

The definition of mathematics changes. Each generation
and each thoughtful mathematician within a generation
formulates a definition according to his lights. We shall ex-
amine a number of alternate formulations before we write
Finis to this volume.

Further Readings. See Bibliography

A. Alexandroff; A. Kolmogoroff and M. Lawrentieff; R. Courant and
H. Robbins; T. Danzig [1959]; H. Eves and C. Newsom; M. Gaffney
and L. Steen; N. Goodman; E. Kasner and J. Newman; R. Kershner
and L. Wilcox; M. Kline [1972]; A. Kolmogoroff; J. Newman [1956];
E. Snapper; E. Stabler; L. Steen [1978]

Where 1s .
Mathematics?

HERE IS THE PLACE of mathematics?

Where does it exist? On the printed page, of

course, and prior to printing, on tablets or on

papyri. Here is a mathematical book—take it
in your hand; you have a palpable record of mathematics
as an Intellectual endeavor. But first it must exist in
people’s minds, for a shelf of books doesn’t create mathe-
matics. Mathematics exists on taped lectures, in computer
memories and printed circuits. Should we say also that it
resides in mathematical machines such as slide rules and
cash registers and, as some believe, in the arrangement of
the stones at Stonehenge? Should we say that it resides in
the genes of the sunfower plant if that plant brings forth
seeds arranged in Bernoullian spirals and transmits
mathematical information from generation to generation?
Should we say that mathematics exists on a wall if a lamp-
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shade casts a parabolic shadow on that wall? Or do we be-
lieve that all these are mere shadow manifestations of the
real mathematics which, as some philosophers have as-
serted, exists eternally and independently of this actualized
universe, independently of all possible actualizations of a
universe?

What is knowledge, mathematical or otherwise? In a cor-
respondence with the writer, Sir Alfred Ayer suggests that
one of the leading dreams of philosophy has been “to
agree on a criterion for deciding what there is,” to which
we might add, “and for deciding where it is to be found.”

The Mathematical
Community

HERE IS HARDLY a culture, however primi-

tive, which does not exhibit some rudimentary

kind of mathematics. The mainstream of west-

ern mathematics as a systematic pursuit has its
origin in Egypt and Mesopotamia. It spread to Greece and
to the Graeco-Roman world. For some 500 years following
the fall of Rome, the fire of mathematical creativeness was
all but extinguished in Europe; it is thought to have been
preserved in Persia. After some centuries of inactivity, the
Hame appeared again in the Islamic world and from there
mathematical knowledge and enthusiasm spread through
Sicily and Ttaly to the whole of Europe.

A rough timetable would be

Egyptian: 3000 B.c. to 1600 B.c.
Babylonian: 1700 B.c. to 300 B.C.
Greek: 600 B.c. to 200 B.C.
Graeco-Roman: 150 A.p. to 525 a.p.
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Islamic: 750 A.p. to 1450 aA.p.
Western: 1100 A.p. to 1600 a.p.
Modern: 1600 A.p. to present.

Other streams of mathematical activity are the Chinese,
the Japanese, the Hindu, and the Inca-Aztec. The inter-
action between western and eastern mathematics is a sub-
ject of scholarly investigation and conjecture.

At the present time, there is hardly a country in the
world which is not creating new mathematics. Even the
emerging nations, so called, all wish to establish up-to-date
university programs in mathematics, and the hallmark of
excellence is taken to be the research activity of their staffs.

In contrast to the relative isolation of early oriental and
western mathematics from each other, the mathematics of
today is unified. It is worked and transmitted in full and
open knowledge. Personal secrecy like that practiced by
the Renaissance and Baroque mathematicians hardly
exists. There is a vast international network of publica-
tions; there are national and international open meetings
and exchanges of scholars and students.

In all honesty, though, it should be admitted that restric-
tion of information has occurred during wartime. There is
also considerable literature on mathematical cryptography,
as practiced by the professional cryptographers, which is
not, for obvious reasons, generally available.

In the past mathematics has been pursued by people in
various walks of life. Thomas Bradwardine (1325) was
Archbishop of Canterbury. Ulugh Beg with his trigono-
metric tables was the grandson of Tamerlane. Luca Pacioli
(1470) was a monk. Ferrari (1548) was a tax assessor. Car-
dano (1550) was professor of medicine. Viete (1580) was a
lawyer in the royal privy council. Van Ceulen (1610) was a
fencing master. Fermat (1635) was a lawyer. Many mathe-
maticians carned part of their living as protegés of the
Crown: John Dee, Kepler, Descartes, Euler; some even
had the title of “Mathematicus.” Up to about 1600, a math-
ematician could earn a few pounds by casting horoscopes
or writing amulets for the wealthy.
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Explanation: The drawing is a contemporary version of
the symbols on the clay tablet. A line by line translation of
the first twelve lines is given The notation 3;3,45 used in
the translation means 3 + & + 3855 = 3.0625. In modern
terms, the problem posed by this tablet is: given x + y and

xy, find x and y. Solution:

it § [{x+3)
c)' i\j( 9 ) >

These days there is nothing to prevent a wealthy person
from pursuing mathematics full or part time in isolation, as
in the era when science was an aristocrat’s hobby. But this
kind of activity is now not at a sufficiently high voltage to
sustain invention of good quality. Nor does the church (or
the monarchy) support mathematics as it once did.

For the past century, universities have been our princi-
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pal sponsors. By releasing part of his time, the university
encourages a lecturer to engage in mathematical research.
At present, most mathematicians are supported directly or
indirectly by the university, by corporations such as IBM,
or by the federal government, which in 1977 spent about
$130,000,000 on mathematics of all sorts.

To the extent that all children learn some mathematics,
and that a certain small fraction of mathematics is in the
common language, the mathematics community and the
community at large are identical. At the higher levels of
practice, at the levels where new mathematics is created
and transmitted, we are a tairly small community. The
combined membership list of the American Mathematical
Society, the Mathematical Association of America, and the
Society for Industrial and Applied Mathematics for the
year 1978 lists about 30,000 names. It is by no means nec-
essary for one to think of oneself as a mathematician to op-
erate at the highest mathematical levels; one might be a
physicist, an engineer, a computer scientist, an economist,
a geographer, a statistician or a psychologist. Perhaps the
American mathematical community should be reckoned at
60 or 90 thousand with corresponding numbers in all the
developed or developing countries.

Numerous regional, national, and international meet-
ings are held periodically. There is lively activity in the
writing and publishing of books at all levels, and there are
more than 1600 individual technical journals to which it is
appropriate to submit mathematical material.

These activities make up an international forum in
which mathematics is perpetuated and innovated; in which
discrepancies in practice and meaning are thrashed out.

Further Readings. See Bibliography

R. Archibald; E. Bell; B. Boos and M. Niss; C. Boyer; F. Cajori; J. S.
Frame; R. Gillings; E. Husserl; M. Kline [1972]; U. Libbrecht;
Y. Mikami; J. Needham; O. Neugebauer; O. Neugebauer and
A. Sachs; D. Struik; B. Van der Waerden
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of the Trade

HAT AUXILIARY TOOLS or equipment

are necessary for the pursuit of mathematics?

There is a famous picture showing Archi-

medes poring over a problem drawn in the
sand while Roman soldiers lurk menacingly in the back-
ground. This picture has penetrated the psyche of the pro-
fession and has helped to shape its external image. It tells
us that mathematics is done with a minimum of tools—a
bit of sand, perhaps, and an awful lot of brains.

Some mathematicians like to think that it could even be
done in a dark closet by a solitary man drawing on the
resources of a brilliant platonic intellect. It is true that
mathematics does not require vast amounts of laboratory
equipment, that “Gedankenexperimente” (thought-ex-
periments) are largely what is needed. But it is by no means
fair to say that mathematics is done totally in the head.

Perhaps, in very ancient days, primitive mathematics,
like the great epics and like ancient religions, was transmit-
ted by oral tradition. But it soon became clear that to do
mathematics one must have, at the very least, instruments
of writing or recording and of duplication. Before the in-
vention of printing, there were “scribe factories” for the
wholesale replication of documents.

The ruler and compass are built into the axioms at the
foundation of Euclidean geometry. Euclidean geometry
can be defined as the science of ruler-and-compass con-
structions.

Arithmetic has been aided by many instruments and de-
vices. Three of the most successful have been the abacus,
the slide rule, and the modern electronic computer. And,
the logical capabilities of the computer have already rele-
gated its arithmetic skills to secondary importance.

In the beginning, we used to count computers. There
were four: one in Philadelphia, one in Aberdeen, one in
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Cambridge, and one in Washington. Then there were ten.
Then, suddenly, there were two hundred. The last figure
heard was thirty—five thousand. The computers prolifer-
ated, and generation followed generation, until now the
fifty dollar hand-held job packs more computing power
than the hippopotamian hulks rusting in the Smithsonian:
the ENIACS, the MARKS, the SEACS, and the GOLEMS.
Perhaps tomorrow the $1.98 computer will Hood the drug-
stores and become a throwaway object like a plastic razor
or a piece of Kleenex.

Legend has it that in the late 1940s when old Tom Wat-
son of the IBM corporation learned of the potentialities of
the computer he estimated that two or three of them
would take care of the needs of the nation. Neither he nor
anyone else foresaw how the mathematical needs of the na-
tion would rise up miraculously to hll the available comput-
ing power.
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The relationship of computers to mathematics has been
far more complex than laymen might suspect. Most people
assume that anyone who calls himself a professional math-
ematician uses computing machines. In truth, compared to
engineers, physicists, chemists, and economists, most
mathematicians have been indifferent to and ignorant of
the use of computers. Indeed, the notion that creative
mathematical work could ever be mechanized seems, to
many mathematicians, demeaning to their professional
self-esteem. Of course, to the applied mathematician,
working along with scientists and engineers to get numeri-
cal answers to practical questions, the computer has been
an indispensable assistant for many years.

When programmed appropriately, the computer also
has the ability to perform many symbolic mathematical op-
erations. For example, it can do formal algebra, formal cal-
culus, formal power series expansions and formal work in
differential equations. It has been thought that a program
like FORMAC or MACSYMA would be an invaluable aid
to the applied mathematician. But this has not yet been the
case, for reasons which are not clear.

In geometry, the computer is a drawing instrument of
much greater power than any of the linkages and tem-
plates of the traditional drafting room. Computer graphics
show beautifully shaded and colored pictures of “objects”
which are only mathematically or programatically defined.
The viewer would swear that these images are projected
photographs of real objects. But he would be wrong; the
“objects” depicted have no “real world” existence. In some
cases, they could not possibly have such existence. -

On the other hand, it is still sometimes more efficient to
use a physical model rather than attempting a computer
graphics display. A chemical engineering firm, with whose
practice the writer is familiar, designs plants for the petro-
chemical industry. These plants often have reticulated pip-
ing arrangements of a very complicated nature. It is stan-
dard company practice to build a scaled, color-coded
model from little plastic Tinker Toy parts and to work in a
significant way with this physical model.

The computer served to intensify the study of numerical
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analysis and to wake matrix theory from a fifty-year slum-

ber. It called attention to the importance of logic and of

the theory of discrete abstract structures. It led to the
creation of new disciplines such as linear programming
and the study of computational complexity.

Occasionally, as with the four-color problem (see Chapter
8.), it lent a substantial assist to a classical unsolved prob-
lem, as a helicopter might rescue a Conestoga wagon from
sinking in the mud of the Pecos River. But all these effects
were marginal. Most mathematical research continued to
go on just as it would have if the computing machine did
not exist.

Within the last few years, however, computers have had
a noticeable impact in the field of pure mathematics. This
may be the result of the arrival of a generation of mathe-
maticians who learned computer programming in high
school and to whom a computer terminal is as familiar as a
telephone or a bicycle. One begins to see a change in math-
ematical research. There is greater interest in constructive
and algorithmic results, and decreasing interest in purely
existential or dialectical results that have little or no com-
putational meaning. (See Chapter 4 for further discussion
of these issues.) The fact that computers are available af-
fects mathematics by luring mathematicians to move in di-

I
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rections where the computer can play a part. Nevertheless,
it is true, even today, that most mathematical research is
carried on without any actual or potential use of com-
puters.

Further Readings. See Bibliography

D. Hartree; W. Meyer zur Capellen; F. J. Murray [1961]; G. R. Stibitz:
M. L. Dertouzos and J. Moses; H. H. Goldstine [1972] [1977];
L. Taviss; P. Henrici [1974]; J. Traub

How Muc}}
Mathematics
Is Now Known?

HE MATHEMATICS BOOKS at Brown Uni-

versity are housed on the fifth floor of the Sci-

ences Library. In the trade, this is commonly re-

garded as a fine mathematical collection, and a
rough calculation shows that this floor contains the equiva-
lent of 60,000 average-sized volumes. Now there is a cer-
tain redundancy in the contents of these volumes and a
certain deficiency in the Brown holdings, so let us say these
balance out. To this figure we should add, perhaps, an
equal quantity of mathematical material in adjacent areas
such as engineering, physics, astronomy, cartography, or
in new applied areas such as economics. In this way, we ar-
rive at a total of, say, 100,000 volumes.

One hundred thousand volumes. This amount of knowl-
edge and information is far beyond the comprehension of
any one person. Yet it is small compared to other collec-
tions, such as physics, medicine, law, or literature. Within
the lifetime of a man living today, the whole of mathematics
was considered to be essentially within the grasp of a de-
voted student. The Russian-Swiss mathematician Alex-
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ander Ostrowski once said that when he came up for his
qualifying examination at the University of Marburg
(around 1915) it was expected that he would be prepared
to deal with any question in any branch of mathematics.

The same assertion would not be made today. In the late
1940s, John von Neumann estimated that a skilled mathe-
matician might know, in essence, ten percent of what was
available. There is a popular saying that knowledge always
adds, never subtracts. This saying persists despite such
shocking assessments as that of A. N. Whitehead who ob-
served that Europe in 1500 knew less than Greece knew
at the time of Archimedes. Mathematics builds on itself:
it is aggregative. Algebra builds on arithmetic. Geometry
builds on arithmetic and on algebra. Calculus builds on all
three. Topology is an offshoot of geometry, set theory, and
algebra. Differential equations builds on calculus, topol-
ogy, and algebra. Mathematics is often depicted as a
mighty tree with its roots, trunk, branches, and twigs la-
belled according to certain subdisciplines. It is a tree that
grows in time.

Constructs are enlarged and filled in. New theories are
created. New mathematical objects are delineated and put
under the spotlight. New relations and interconnections
are found, thereby expressing new unities. New applica-
tions are sought and devised.

As this occurs, what is old and true is retained —at least
in principle. Everything that once was mathematics re-
mains mathematics—at least in principle. And so it would
appear that the subject is a vast, increasing organism, with
branch upon branch of theory and practice. The prior
branch is prerequisite for the understanding of the subse-
quent branch. Thus, the student knows that in order to
study and understand the theory of differential equations,
he should have had courses in elementary calculus and in
linear algebra. This serial dependence is in contrast to
other disciplines, such as art or music. One can like or
“understand” modern art without being familiar with
baroque art; one can create jazz without any grounding
in seventeenth century madrigals.
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But while there is much truth in the view of mathematics
as a cumulative science, this view as presented is somewhat
naive. As mathematical textures are built up, there are con-
comitantly other processes at work which tend to break
them down. Individual facts are found to be erroneous or
incomplete. Theories become unpopular and are ne-
glected. Work passes into obscurity and becomes grist for
the mill of antiquarians (as with, say, prosthaphaeresic
multiplication*®). Other theories become saturated and are
not pursued further. Older work is seen from modern per-
spectives and is recast, reformulated, while the older for-
mulations may even become unintelligible (Newton’s orig-
inal writings can now be interpreted only by specialists).
Applications become irrelevant and forgotten (the aerody-
namics of Zeppelins). Superior methods are discovered
and replace inferior ones (vast tables of special functions
for computation are replaced by the wired-in approxima-
tions of the digital computer). All this contributes to a dim-
inution of the material that must be held in the forefront
of the mathematical consciousness.

There is also a loss of knowledge due to destruction or
deterioration of the physical record. Libraries have been
destroyed in wars and in social upheavals. And what is not
accomplished by wars may be done by chemistry. The
paper used in the carly days of printing was much finer
than what is used today. Around 1850 cheap, wood-pulp
paper with acid-forming coatings was introduced, and the
self-destructive qualities of this combination, together with
our polluted atmosphere. can lead to the crumbling of
pages as a book is read.

How many mathematics books should the Ph.D. candl-
date in mathematics know? The average candidate will
take about fourteen to eighteen semester courses of under-
graduate mathematics and sixteen graduate courses. At
one book per course, and then doubling the answer for
collateral and exploratory reading, we arrive at a figure of

* Le., multiplication carried out by the addition of trigonometric
functions.
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about sixty to eighty volumes. In other words, two shelves
of books will do the trick. This is a figure well within the
range of human comprehension; it has to be.

Thus we can think of our 60,000 books as an ocean of
knowledge, with an average depth of SIXty or seventy
books. At different locations within this ocean —that 1s, at
different subspecialties within mathematics—we can take a
depth sample, the two-foot bookshelf that would represent
the basic education of a specialist in that area. Dividing
60,000 books by sixty, we find there should be at least
1,000 distinct subspecialties. But this is an underestimate,
for many books would appear on more than one subspe-
cialty’s basic booklist. The coarse subdivision of mathemat-
ics, according to the AMS (MOS) Classification Scheme of
1980, is given in Appendix B. The fine structure would
show mathematical writing broken down into more than
3,000 categories.

In most of these 3,000 categories, new mathematics is
being created at a constantly increasing rate. The ocean is
expanding, both in depth and in breadth.

Further Readings. See Bibliography

J. von Neumann; C. S. Fisher

Ulam’s Dilemma

E CAN USE THE TERM “Ulam’s dilemma”
for the situation which Stanislaw Ulam has
described vividly in his autobiography, Ad-
ventures of a Mathematician.

“At a talk which 1 gave at a celebration of the twenty-
fifth anniversary of the construction of von Neumann's
corlnpuler in Princeton a few years ago, I suddenly started
estimating silently in my mind how many theorems are
published yearly in mathematical journals. I made a quick
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mental calculation and came to a number like one hundred
thousand theorems per year. I mentioned this and my au-
dience gasped. The next day two of the younger mathema-
ticians in the audience came to tell me that, impressed by
this enormous figure, they undertook a more systematic
and detailed search in the Institute library. By multiplying
the number of journals by the number of yearly issues, by
the number of papers per issue and the average number of
theorems per paper, their estimate came to nearly two
hundred thousand theorems a year. If the number of theo-
rems is larger than one can possibly survey, who can be
trusted to judge what is ‘important’? One cannot have sur-
vival of the fittest if there is no interaction. It is actually im-
possible to keep abreast of even the more outstanding and
exciting results. How can one reconcile this with the view
that mathematics will survive as a single science? In mathe-
matics one becomes married to one’s own little field. Be-
cause of this, the judgment of value in mathematical re-
search is becoming more and more difficult, and most of
us are becoming mainly technicians. The variety of objects
worked on by young scientists is growing exponentially.
Perhaps one should not call it a pollution of thought; it is
possibly a mirror of the prodigality of nature which pro-
duces a million species of different insects.”

All mathematicians recognize the situation that Ulam de-
scribes. Only within the narrow perspective of a particular
specialty can one see a coherent pattern of development.
What are the leading problems? What are the most impor-
tant recent developments? It is possible to answer such
questions within a narrow specialty such as, for example,
“nonlinear second-order elliptic partial differential equa-
tions.”

But to ask the same question in a broader context is al-
most useless, for two distinct reasons. First of all, there will
rarely be any single person who is in command of recent
work in more than two or three areas. An overall evalua-
tion demands a synthesis of the judgments of many differ-
ent people and some will be more critical, some more sym-
pathetic. But even if this difficulty were not present, even if
we had judges who knew and understood current research
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in all of mathematics, we would encounter a second diffi-
culty: we have no stated criteria that would permit us to
evaluate work in widely separated fields of mathematics.
Consider, say, the two fields of nonlinear wave propaga-
tion and category-theoretic logic. From the viewpoint of
those working in each of these areas, discoveries of great
importance are being made. But it is doubtful if any one
person knows what is going on in both of these fields. Cer-
tainly ninety-five percent of all professional mathemati-
cians understand neither one nor the other.

Under these conditions, accurate judgment and rational
planning are hardly possible. And, in fact, no one attempts
to decide (in a global sense, inclusive of all mathematics)
what is important, what is ephemeral.

Richard Courant wrote, many years ago, that the river of
mathematics, if separated from physics, might break up
into many separate little rivulets and finally dry up alto-
gether. What has happened is rather different. It is as if
the various streams of mathematics have overflowed their
banks, run together, and flooded a vast plain, so that we
see countless currents, separating and merging, some of
them quite shallow and aimless. Those channels that are
still deep and swift-flowing are easy to lose in the general
chaos.

Spokesmen for federal funding agencies are very ex-
plicit in denying any attempt to evaluate or choose between
one area of mathematics and another. If more research
proposals are made in area x and are favorably refereed,
then more will be funded. In the absence of anyone who
feels he has the right or the qualification to make value
Judgments, decisions are made “by the market” or “by pub-
lic opinion.” But democratic decision-making is supposed
to be carried out with controversy and debate to create an
informed electorate. In mathematical value judgments,
however, we have virtually no debate or discussion, and the
vote is more like the economic vote of the consumer who
decides to buy or not to buy some commodity. Perhaps
classical market economics and modern merchandising
theory could shed some light on what will happen. There is
no assurance of survival of the fittest, except in the tauto-
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logical sense that whatever does in fact survive has thereby
proved itself fittest—by definition!

Can we try to establish some rational principles by which
one could sort through 200,000 theorems a year? Or
should we simply accept that there is no more need to
choose among theorems than to choose among species of
insects? Neither course is entirely satisfactory. Nonetheless
decisions are made every day as to what should be pub-
lished and what should be funded. No one outside the pro-
fession is competent to make these decisions; within the
profession, almost no one is competent to make them in
any context broader than a narrow specialty. There are
some exceptional mthematicians whose range of expertise
includes several major specialties (for example, probability,
combinatorics, and linear operator theory). By forming a
committee of such people as these, one can constitute an
editorial board for a major journal, or an advisory panel
for a federal funding agency. How does such a committee
reach its decision? Certainly not by debating and agreeing
on fundamental choices of what is most valuable and im-
portant in mathematics today.

We find that our judgment of what is valuable in mathe-
matics is based on our notion of the nature and purpose of
mathematics itself. What is it to know something in mathe-
matics? What sort of meaning is conveyed by mathematical
statements? Thus, unavoidable problems of daily mathe-
matical practice lead to fundamental questions of episte-
mology and ontology, but most professionals have learned
to bypass such questions as irrelevant.

In practice, each member of the panel has a vital com-
mitment to his own area (however skeptical he may be
about everybody else) and the committee follows the politi-
cal principle of nonaggression, or mutual indifference.
Each “area” or “field” gets its quota, no one has to justify
his own field’s existence, and everyone tolerates the contin-
ued existence of various other “superfluous” branches of
mathematics.

Further Readings. See Bibliography

B. Boos and M. Niss; S. Ulam; Anon. “Federal Funds . . ."



How Much
Mathematics

Can There Be?

ITH BILLIONS OF BITS of information

being processed every second by machine,

and with 200,000 mathematical theorems of

the traditional, hand-crafted variety pro-
duced annually, it is clear that the world is in a Golden Age
of mathematical production. Whether it is also a golden
age for new mathematical ideas is another question alto-
gether.

It would appear from the record that mankind can go
on and on generating mathematics. But this may be a naive
assessment based on linear (or exponential) extrapolation,
an assessment that fails to take into account diminution
due to irrelevance or obsolescence. Nor does it take into ac-
count the possibility of internal saturation. And it certainly
postulates continuing support from the community at
large.

The possibility of internal saturation is intriguing. The
argument is that within a fairly limited mode of expression
or operation there are only a very limited number of rec-
ognizably different forms, and while it would be possible to
proliferate these forms indefinitely, a few prototypes ade-
quately express the character of the mode. Thus, although
it is said that no two snowflakes are identical, it is generally
acknowledged that from the point of view of visual enjoy-
ment, when you have seen a few, you have seen them all.

In mathematics, many areas show signs of internal ex-
haustion —for example, the elementary geometry of the
circle and the triangle, or the classical theory of functions
of a complex variable. While one can call on the former to
provide five-finger exercises for beginners and the latter
for applications to other areas, it seems unlikely that either
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will ever again produce anything that is both new and star-
tling within its bounded confines.

It seems certain that there is a limit to the amount of liv-
ing mathematics that humanity can sustain at any time. As
new mathematical specialties arise, old ones will have to be
neglected.

All experience so far seems to show that there are two
inexhaustible sources of new mathematical questions. One
source is the development of science and technology,
which make ever new demands on mathematics for assis-
tance. The other source is mathematics itself. As it becomes
more elaborate and complex, each new, completed result
becomes the potential starting point for several new inves-
tigations. Each pair of seemingly unrelated m-atl_lgnatical
specialties pose an implicit challenge: to find a fruitful con-
nection between them.

Although each special field in mathematics can be ex-
pected to become exhausted, and although the exponemgl
growth in mathematical production is bound to level off
sooner or later, it is hard to foresee an end to all mathe-
matical production, except as part of an end to mankind’s
general striving for more knowledge and more power.
Such an end to striving may indeed come about some day.

Whether this end would be a triumph or a tragedy, it is far
beyond any horizon now visible.

Further Readings. See Bibliography

C. S. Fisher; J. von Neumann

25



Appendix A

Appendix A

Bricr CuHronorLocicar TaAsLE To 1910

2200 p.c.
1650 B.C.
600 B.c.
540 B.c.
380 B.c.
340 B.C.
300 B.c.

150 A.p.
250
300

820
1100

1150
1202

1545

1580
1600
1610
1614
1635
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Mathematical tables at Nippur.

Rhind papyrus. Numerical problems.

Thales. Beginning of deductive geometry.

Pythagoras. Geometry. Arithmetic.

Plato.

Aristotle.

Euclid. Systematization of deductive geome-
try.

Apollonius. Conic sections.

Archimedes. Circle and sphere. Area of para-
bolic segment. Infinite series. Mechanics, hy-
drostatics.

Ptolemy. Trigonometry. Planetary motion.

Diophantus. Theory of numbers.

Pappus. Collections and commentaries. Cross
ratio.

al Khowarizmi. Algebra.

Omar Khayyam. Cubic equations. Calendric
problems.

Bhaskara. Algebra.

Fibonacci. Arithmetic, algebra, geometry.

Tartaglia, Cardano, Ferrari. Algebraic equa-
tions of higher degree.

Viete. Theory of equations.

Harriot. Algebraic symbolisms.

Kepler. Polyhedra. Planctary motion.

Napier. Logarithms.

Fermat. Number theory. Maxima and minima.

1820

1825

1854

1880
1890
1895
1899

1907
1910

Descartes. Analytic gcometry. Theory of equa-
tions.
Pascal. Conics. Probability theory.

Newton. Calculus. Theory of equations. Grav-
ity. Planetary motion. Infinite series. Hydro-
statics and dynamics.

Leibniz. Calculus.
Bernoulli. Calculus; probability.

Euler. Calculus. Complex variables. Applied
mathematics.

Lagrange. Differential equations. Calculus of
variations.

Laplace. Differential equations. Planetary the-
ory. Probability.

Gauss. Number theory. Differential geometry.
Algebra. Astronomy.

Bolyai, Lobatchevksy. Non-Euclidean geome-
try.

Riemann. Integration theory. Complex vari-
ables. Geometry.

Cantor. Theory of infinite sets.

Weierstrass. Real and complex analysis.

Poincaré. Topology. Differential equations.

Hilbert. Integral equations. Foundations of
mathematics.

Brouwer. Topology. Constructivism.
Russell, Whitehead. Mathematical logic.
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The Mathematical Landscape

Appendix A, continued.

Brief Chronology of Ancient Chinese Mathematics

“Chou Pei Suan Ching”. 300 sc (?) (Sacred Book of Arith-
metic). Astronomical calculations, right triangles, frac-
tions.

“Chiu-chang Suan-shu” (250 Bc) (Arithmetic in Nine Sec-
tions.)

Lui Hui (250) “Hai-tao Suan-ching” (Sea Island Arith-
metic Classic)

Anonymous, 300. “Sun-Tsu Suan Ching” (Arithmetic
Classic of Sun-Tsu).

Tsu Ch’ung-chih (430-501). “Chui-Shu”. (Art of Mend-
ing) m = 355/113.

Wang Hs’iao-t’'ung (625) “Ch’i-ku Suan-ching” (Contin-
uation of Ancient Mathematics) Cubic equations.

Ch’in Chiu-shao (1247). “Su-shu Chiu-chang” (Nine
Chapters of Mathematics) Equations of higher degree.
Horner's method.

Li Yeh (1192-1279). “T’se-yuan Hai Ching” (The Sea
Mirror of the Circle Measurements) Geometric prob-
lems leading to equations of higher degree.

Chu Shih-chieh (1303). “Szu-yuen Yu-chien”. (The Pre-
cious Mirror of the Four Elements) Pascal’s triangle.
Summation of series.

Kuo Shou-ching (1231-1316). “Shou-shih” calendar.
Spherical trigonometry.

Ch’eng Tai-wei (1593). “Suan-fa T’ung-tsung” (A Syste-
matized Treatise on Arithmetic). Oldest extant work
that discusses the abacus.

Ricci and Hsu (1607). “Chi-ho Yuan-pen” (Elements of
Geometry) Translation of Fuclid.
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Appendix B

THE CLASSIFICATION OF MATHEMATICS.
1868 AND 1979 COMPARED

Subdivisions of the Jahrbuch iiber die Fortschritte der
Mathematik, 1868.

History and Philosophy

Algebra

Number Theory

Probability

Series

Differential and Integral Calculus

Theory of Functions

Analytic Geometry

Synthetic Geometry

Mechanics

Mathematical Physics

Geodesy and Astronomy

THIRTY-EIGHT SUBCATEGORIES

The Classification of Mathematics, 1979
(From the Mathematical Reviews)

General Number theory
History and biography Algebraic number theory,
: . field theory and
Logic and foundations _ .
polynomials
Set theory . / o
LA Commutative rings and
Combinatorics, graph
algebras
theory

Algebraic geometry

Linear and multilinear
algebra; matrix theory

Associative rings and
algebras

Order, lattices, ordered
algebraic structures

General mathematical
systems
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Nonassociative rings and
algebras

Category theory,
homological algebra

Group theory and
generalizations

Topological groups, Lie
groups

Functions of real variables

Measure and integration

Functions of a complex
variable

Potential theory

Several complex variables
and analytic spaces

Special functions

Ordinary differential
equations

Partial differential
equations

Finite differences and
functional equations

Sequences, series,
summability

Approximations and
expansions

Fourier analysis

Abstract harmonic analysis

Integral transforms,
operational calculus

Integral equations

Functional analysis

Operator theory

Calculus of variations and
optimal control

Geometry

Convex sets and geometric
inequalities

Differential geometry

General topology
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Algebraic topology

Manifolds and cell
complexes

Global analysis, analysis on
manifolds

Probability theory and
stochastic processes

Statistics

Numerical analysis

Computer science

General applied
mathematics

Mechanics of particles and
systems

Mechanics of solids

Fluid mechanics, acoustics

Optics, electromagnetic
theory

Classical thermodynamics,
heat transfer

Quantum mechanics

Statistical physics, structure
of matter

Relativity

Astronomy and
astrophysics

Geophysics

Economics, operations
research, progranm'ling_,
games

Biology and behavioral
sciences

Systems, control

Information and
communication, circuits,
automata

APPROXIMATELY 3400
SUBCATEGORIES

VARIETIES OF
MATHEMATICAL
EXPERIENCE



