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INTRODUCTION

Braiding Mathematics,
Language, and Thinking

[The] human ability—to imagine the future taking sev-
eral paths, and to make adaptable plans in response to
our imaginings—is, in essence, the source af mathemat-
ics and language. . . . [T]hinking mathematically is just
a specialized form of using our language facility.
—Keith Devlin, The Math Gene, 2000

THREE KEY PIECES

I have said to many elementary school teachers over the past [iflteen
years, “If you have learned ways to help kids to think effectively and un-
derstand ideas in reading and language, use them in math and you won't
be disappointed.” These teachers know quite a bit about reading and lan-
guage. This suggestion is a good one, but it is only part of the story. Cer-
tainly, if you use what you know works in reading, language arts, and
writing to teach mathematics, you will get some good results. Teachers
enthusiastically report significant involvement and understanding from
their students. However, teachers can go beyond simply applying aspects
of reading comprehension to mathematics. 1 have taught hundreds of
teachers (and even reading specialists) in scores of courses and work-
shops how to do more through braiding together mathematics, language,
and thinking.

If you set out to integrate mathematics and language (or problem
solving and reading), what would you put together? What aspects of lan-
guage fit nicely with mathematics? How about vocabulary? Or writing in
math journals? However, the real question is what guides you in deter-
mining exactly what the kids should do and how you teach them. Asking
the language arts people will only get you what they do in their knowl-
edge domain. Concepts in mathematics are very different from concepts
in language. They don't really know the domain of mathematical knowl-
edge or the process of mathematical thinking.

Nonetheless, cognitive processes underlie both language and math-
ematics. In fact, some theorists think that the same kind of cognition un-
derlies both. Therefore, 1 see several key principles from cognitive
psychology that can guide us. I have used the term braiding to indicate that
thinking, language, and mathematics can be braided together into a tightly
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knil entity like a rope that is stronger than the individual strands, When
these three important processes are braided, the result is stronger, more
durable, and more powerful than any one could be by itself.

For many years, the teaching of mathematics and especially problem
solving has suffered from insufficient attention to thinking and language.
If you want students to understand mathematical ideas, they must use
both language and thought. Trying to put more thinking into the math
curriculum or one’s teaching without attention to language will be fruit-
less and so will trying to use language without thinking. The term braid-
ing here suggests that the three components are inseparable, mutually
supportive, and necessary.

DEATH, TAXES, AND MATHEMATICS

There are two things in life that we can be certain of . . . everyone knows
the answer . . . death and taxes. Add another item to that list: at least half
of our nation's fifth graders hate story problems. Actually, they dislike
math in general, but story or word problems hold a special place of loath-
ing in their souls. This percentage may vary a bit from classroom to class-
room. Research has shown that most children start kindergarten with
some fairly good ways to solve mathematical problems in the sandbox or
with toys and games. However, during their first four or five years of
school, they abandon their previously successful ways ol dealing with
problems involving mathematics.

Have you ever watched three children trying to figure out how to
split up a bunch of candies? If the candies are identical, they just give one
to each, then another, then another until they run out. Obviously influ-
enced by Long John Silver of Treasure Island fame, they refer to this pro-
cess as “divvying” the candies up. The children have not memorized
division lacts; they just have a way to do what is necessary. If the candies
do not come out evenly (they often check to make sure everyone got the
same number of candies), they may use some probabilistic device (e.g.,
flip a coin, odds or evens of total fingers displayed, paper/scissors/rock)
Lo see who gets the extras. Children can be remarkably resourceful when
no adults are around to tell them what to do.

No. Iam not advocating Lord of the Flies. The question is: what forces
are at work to dampen our children’s inherent awe and wonder, their ex-
citement about learning, and their facility with mathematics? The early
years of schooling present children with a torrent of messages that they
must do math in one particular way, that there is one right answer, and
one right way to find it. They are told what to memorize, shown the
proper way to write down problems and answers in symbolic notation,
and given a satchel full of gimmicks they don't understand. No matter
that they don't understand what they are lrying to memorize. Does any-
one ask if the symbols malke any sense to them? Does anyone notice that

they have ceased o trust their own reasoning or intuition borne of expe-
rience? Many children (and adults too) see mathematics as arcane, mysti-
cal. They believe that understanding mathematics is beyond most mere
mortals. Can the children get the answer quickly, efficiently, and accu-
rately? That’s all that matters. .

Of course, 1 believe that it is necessary for children to learn the basic
math facts of the four operations. As much as I love problem solving, 1
know that students will be hampered in their problem solving (especially
in estimation and determining reasonableness) if they don’t know basic
arithmetic facts. The question is not if those facts are learned, but how
and when. All students should understand and be able to use number
concepts, operations, and computational procedures. There are several
critically important processes, each with a critical cognitive component,
that lead to understanding, proficiency, and fluency that need to be devel-
oped. When students have many successful experiences using these pro-
cesses, remembering math facts becomes a simple matter.

These processes are: counting (building one-to-one corresponder?ce
and number sense); number relations (decomposing and recomposing
quantities to see relationships among the numbers); place value (crealin‘g
sets of ten with objects and beginning to understand the base ten, posi-
tional notation); the meaning of the operations (creating mental maps of
different situations and realizing that operations have multiple mean-
ings); and fact strategies (thinking strategies for learning the facts for the
operations). o

Acting along with some erroneous beliefs about computation is an-
other perhaps even more sinister force. Most people deny the importance
of language in the world of mathematics. An exaggeration? Textbook
publishers are very sensitive to the feedback from teachers whose mes-
sage has been crystal clear for years: too many words on the page will
make learning too hard for the kids who can't read well. “Johnny is not a
good reader. Math is the only subject he likes (or does well in). Just let
him work with the numbers.” So what happens when Johnny has to read
the story problem? The teacher is ready with a magic trick: just look for
the key word (cue word) that will tell you what operation to use. If you
see sum or all together, you add the numbers. If you see take away or dif-
Jerence, then subtract the smaller number from the bigger number.

What is the fundamental message the kids get when told to look for
the key/cue word? Don't read the problem. Don't imagine the situation.
Ignore that context. Abandon your prior knowledge. Who cares about
metacognition, metaphors, metamorphosis, metatarsals, whatever? You
don’t have to read; you don’t have to think. Just grab the numbers alnd
compute. After all, you've got a 25 percent chance of randomly selecting
the correct operation.

This situation, all too prevalent in U.S. schools, discourages kids
[rom thinking. That makes no sense. Both reading and mathematics re-
quire thinking. Teachers should use every means possible to encourage
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students to think, reflect, question, imagine. And how do we do that?
With language—with expressive language (speaking and writing) and
with receptive language (listening and reading). And they all fit together
in a child’ life and in the classroom.

There is yet another critical reason to braid language, thinking, and
mathematics. When math is taught with the language pruned or purged,
who is immediately penalized? Those who use language as their primary
means of processing ideas; those who develop their language facility
early. Girls. Of course, all children can prolit from discussing, verbalizing
thoughts, talking mathematics, but girls develop language strengths ear-
lier than boys and, when encouraged, can use them effectively to build
mathematical understanding. Girls understand the value of braiding lan-
guage, thinking, and mathematics; they even get the metaphor.

A LITTLE FORESHADOWING

Consider the following ideas, each culled [rom the literature on reading
and language learning and well known to most elementary school teach-
ers. Each of these ideas has a solid foundation in cognition. | have simply
played those ideas through mathematics and problem solving. Like the

television game show, Jeopardy, 1 have worded the idea in the form of a
question.

1. Are students expected to construct their own meaning in math-
ematics?

2. Are students encouraged to have ownership of their problem solv-
ing—to choose to use mathematics for purposes they set for them-
selves? What would ownership look like?

3. Are students encouraged to do problem solving for authentic pur-
poses? What would authentic mathematics look like?

4. Are students encouraged to do voluntary mathematics, selecting
tasks for information, pleasure, or to [ulfill personal goals?

5. How is mathematics instruction scaffolded?

6. Does the school help teachers and students build a rich, math-
ematically literate environment or community?

7. Are students encouraged to see the big picture, important concepts,
vital connections versus isolated pieces of mathematics?

8. Is forgiveness granted to students in mathematics? Is making mis-
takes a natural part of learning? Is doing mathematics seen as a
dynamic process that incorporates planning, drafting, revising, ed-
iting, and publishing?

Is it heresy [or an unapologetically passionate teacher of mathemat-
ics to believe that we could do a far, far better job of teaching children
how to understand and love mathematics if we did all of these things?

READING COMPREHENSION

What is reading? Sounds like a silly question, but if you have been fol-
lowing the “reading wars” in the past twenty years (and you may have
also followed the “math wars”), there are a whole lot of people who be-
lieve that reading is decoding, phonics, and word attack skills. No re-
spectable educator would argue that these things are not part of the
process of reading and learning to read, but they do not define it. By anal-
ogy, arithmetic computational proficiency and math facts are part of
mathematics, but they do not define it. Mathematics is the science of pat-
terns. Neither reading nor math is a collection of skills or subskills. I have
no intention ol addressing all aspects of reading and language in this
book, nor should 1. Instead, 1 will draw selectively from the experts
whom I admire.

Reading is the process of constructing meaning from written language.
Reading is thinking. Constructing meaning does involve decoding, but in
greater measure, it is a very dynamic process requiring some very special
thinking about what one knows already (prior knowledge) and one’s expe-
riences (especially with language). Readers interact with what they read.
They do not passively receive its meaning, they construct it. They use what
they know about the content of the text, about the context being described,
about how texts of this kind are structured (their format), and about the
particular vocabulary (including specialized terms). They must continu-
ally draw inferences about the meaning of the words. They must make as-
sumptions about missing pieces, things implied but not there on the page.
For prolicient readers, this is all done effortlessly and largely uncon-
sciously. As complex as all these processes are, throw into the mix that
these things are greatly facilitated by the readers’ metacognitive monitoring
ol what they are doing and a metacognitive awareness of their own ways of
operating, being able to reflect on their own ways of thinking (as if looking
at your mind in a four-dimensional mirror).

Some people ask: “Do children really do all those things? Don't they
just learn phonics and listen to people talk and they figure out how to
read?” In psychology, they call that kind of thinking “the black box.” We
don't know what goes on inside kids' heads. It is a black box. We can't read
their minds. We can only go by their behavior. Such an approach is danger-
ous. And yet, I hear it frequently in both reading and math. A significant
portion of adults in this country believe that if they could just memorize
the math facts, they'd be fine in subsequent mathematics courses. Ironi-
cally, some people who are involved in one of the biggest “reform” cur-
ricula in math have said that if teachers just give the kids some good math
to do, by “osmosis” they will construct meaning. OSMOSIS!

Those who believe in such osmosis may lack an understanding of
cognition and metacognition, and how a teacher can facilitate meaning-
making. Teachers model, show, ask questions, make suggestions, and
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create a sale, supportive, rich, literate environment in which students
can explore ideas and interests. Teachers also can mediate between the
larger world and the world of the child. Sometimes they explain things.
Language, especially oral language, is used continually throughout
these processes.

Reading Comprehension Strategies

Research on reading has identified several highly effective cognitive strat-
egies for students to use in reading comprehension. Specific teaching
techniques for helping students with these strategies have been devel-
oped. With minor differences in terminology among experts in the field,
they are:

making connections (activating relevant prior knowledge, linking
what is in the text to their own experiences, discerning the context;
relating what is in the text to other things they've read, things in the
real world, to phenomena around them);

asking questions (actively wondering, raising uncertainties, consid-
ering possibilities, searching for relationships, making up “what if”
scenarios);

visualizing (imagining the situation or people being described, mak-
ing mental pictures or images);

inferring and predicting (interpreting, drawing conclusions, hy-
pothesizing);

determining importance (analyzing essential elements);

synthesizing (finding patterns, summarizing, retelling);
metacognitive monitoring (actively keeping track of their thinking,
adjusting strategies to fit what they are reading).

When teachers focus on these cognitive strategies in a variety of differ-
ent text genres, students can learn to use those strategies independently
and flexibly. The cognitive strategies are taught most effectively in a read-
ing workshop that includes (1) crafting lessons with direct, explicit in-
struction and modeling by the teacher, (2) students applying the content of
the cralting lesson, and (3) students reflecting at the end of the reading
workshop (Public Education and Business Coalition [PEBC] 2004).

During crafting lessons, teachers introduce and explain a new strat-
egy. They think aloud as they read, modeling their own use of that strat-
egy for their students and carefully explaining how they are applying the
new strategy to the text. Alter the cralting lesson, students spend large
amounts of time applying the content of the cralting lesson to their own
reading experiences. During this time, students might meet in small,
needs- or interest-based groups, or read independently. Teachers spend
this time guiding small groups of students as they negotiate a common
text or a common instructional need, or conferring with individuals as
they work to make sense of their reading materials. At the end of the
reading workshon. students regularlv share their insiehts about the con-

this reflection can vary, depending on purpose. The teacher participates
in the reflecting, offering observations and recording the individual and
group needs generated by this process. The goal is for students to inter-
nalize these strategies and use them easily.

These seven strategies are fairly broad and incorporate quite a few
pieces. Reading experts have also developed more focused strategies. For
instance, K-W-L (Know-Want to know- Learn) is a method of having kids
think about key ideas before, during, and after reading. QAR (Question-
Answer-Relationship) is a method of asking questions while reading.
Each chapter of the book addresses one of the broader reading compre-
hension strategies listed above. It is not my intention to be comprehen-
sive. There are many marvelous books cited in the references list at the
end of the book that provide a wealth of examples. In each chapter, I have
tried to include only the key elements of reading and language, identified
by principles of cognition, that can be braided with mathematics. The
chapters will be both cumulative and recursive. Later chapters will incor-
porate previous ideas into the main strategy being discussed and also will
revisit previous ideas to build a deeper understanding of them, in light of
the new strategy.

MATHEMATICAL THINKING AND PROBLEM SOLVING

The National Council of Teachers of Mathematics (NCTM) developed a
set of principles and standards for mathematics curriculum, teaching,
and assessment in 1989. NCTM produced a revised version in 2000 with
standards addressing five broad strands of mathematics K-12: Number
and Computation; Algebra; Geometry; Measurement; Data and Probability.
Each of the strands is chock [ull of powerful mathematical concepts. In
order for students to learn those concepts with deep understanding, the
NCTM Standards address five processes in which students must be en-
gaged: problem solving, connections, reasoning and proof, communication,
and representations.

Despite their complexity, | infer that the NCTM standards are based
on three big (that is, foundational) ideas:

1. Math is the science of patterns; it is much more than arithmetic.
Every strand of math has certain patterns that we look for. Probably
every concepl in mathematics is a pattern of some kind.

2. The goal of mathematics teaching should be understanding con-
cepts, not merely memorizing facts and procedures. Therefore, we
must use what we know about cognition.

3. For children to understand mathematical concepts, they must use
language, the quintessential characteristic of human cognition.

The five content standards have provoked a lot of dialogue about the
concepts of the elementary school curriculum. Less progress has been
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doing mathematics and as a powerful vehicle for building understanding
of mathematical concepts. This would be a shocker for most of my old
math teachers, for whom problem solving was an afterthought, some-
thing that the kids did after they’d been taught the concept or procedure.
Today we can see that by using well-constructed problems, worthwhile
mathematical tasks, the use of good strategies, and with the teacher’s fa-
cilitation, students can construct deeper meaning for concepts by actu-
ally using the mathematics they know.

Granted, the majority of classrooms in the United States may be using
textbooks that are hanging on to a conception of problem solving as deter-
mining what computational procedure to use. The problems may be remi-
niscent of the settlers leaving Missouri bound for Oregon. For example,
“Hattie needs 5 and 7/8 yards of muslin at 27 cents per yard. What will it
cost?” They are generally called “routine” problems or “translation” prob-
lems (translating the description of the situation into an equation). Some-
what more complex story problems usually entail a string of consecutive
computational procedures in order to find the correct answer.

In the 1950s George Polya helped to broaden our sense of problem
solving by describing heuristics or strategies that college students could
use in their mathematics classes. By the early 1980s the idea of strategies
found its way into the school curriculum and most textbooks introduced
students to a dozen or so problem-solving strategies. A problem was seen
as a task for which the person conlronting it wants to find a solution, but
for which there is not a readily accessible procedure that guarantees or
completely determines the solution. Consider the case of a student con-
fronted with the question, “Sacks of flour cost $4.85 per sack; how much
would you pay for ten sacks?” If this student understands that there are
ten sacks and each one costs the same amount ($4.85) and realizes that
the answer can be readily determined by repeated addition or by multi-
plication, is this a “problem” for her or him? No, it is a thinly disguised
drill exercise, perhaps valuable, but not a problem.

A number of math educators have infused textbooks with problems
that require students to do more than merely determine which opera-
tion(s) to use, moving beyond what educators see as translation prob-
lems. They created “nonroutine” problems, what some called “process”
problems, in which a good process of thinking was required. For in-
stance, “How many different ways can a person make change for a quar-
ter?” There is no obvious computation procedure to invoke. You have to
figure it out. Try it.

If you tried it, did you find twelve different ways? But how did you
work it? Did you make a list? Did you draw a picture? Did you make a
table? If so, you chose a problem-solving strategy. Strategies can help stu-
dents find solutions. They may also help them understand the problem.

In the 1980s some educators came to think of problem solving as an
“art” in which mathematicians (as well as regular humans) worked on
perplexing problems. They placed problem solving at the heart of math-

from an “initial state” to a “goal state” and strategies were to be used
when one was “stuck” and did not know what to do next to move toward
the end goal.

A serious drawback to this view is that it treats problem solving as a
process independent of content. Strategies tend to be seen as generic,
applicable to anything, and able to be mastered, like a skill or a proce-
dure. For me, the term problem-solving skill is an oxymoron. Skills are
physical in nature, requiring a certain amount of innate ability and mas-
sive amounts of practice, but with minimal thought or reasoning. In con-
trast, problem solving is clearly a cognitive venture. How you think and
what you think about are intimately related. Analyzing a poem and ana-
lyzing a spreadsheet of data are very different processes. That they are
similar in that both “break things down” becomes completely irrelevant
when one is immersed in the task.

There is yet another way that some math educators are conceiving of
problem solving and strategies. Some use a perspective referred to as
modeling or creating models in which problem solving serves primarily to
interpret the problem. Similar to what some would call task definition, this
broader approach to problem solving emphasizes the need [or interpreta-
tion, description, elaboration, and explanation of the nature of the prob-
lem. This perspective recognizes the importance of the context, content,
and the concepts of the problem. The solution to problems is often the
building of a model using particular concepts that are still being devel-
oped by the students. In this view, the purpose of the strategies is to help
students refine, revise, and extend their ideas, especially through interac-
tion with others.

The point is the kids have to do the math. How does a student get
better at solving problems? What is the best way to get better at reading?
By reading more. Of course, a third grader can’t simply pick up Kant and
make any sense out of him. (Come to think of it, | can't either.) Problems
should be challenging, but not overwhelming.

The dilemma goes even deeper. The NCTM process standard termed
Connections encourages a wide variety of links within mathematics. For
decades the mathematics curriculum has consisted of little, bite-sized
chunks of mathematical knowledge. 1 am not speaking only of narrowly
delined skills (as in skill and drill), although some still cling to the erro-
neous belief that if children crank out a gazillion math facts they know
how to do mathematics. I am concerned here with the fragmentation of
concepts into isolated compartments that is contrary to the NCTM ad-
monition that students need to see that mathematics is a coherent whole.
Many concepts are connected to a multitude of others. Even when teach-
ers go after conceptual understanding, the curriculum treats that concept
in isolation from its related concepts. To make matters worse, the cur-
riculum deals with a topic for two weeks and then ignores it for a year.

My wife and T always knew when it was April 1 because the [raction
wortksheets would come home to be stuck on the refrigerator with mag-
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come, they just disappeared one day (usually at the deadline for filing in-
come tax returns—I am not sure what the connection is). What are kids to
make of this phenomenon? Fractions only exist during these two weeks?
Nobody thinks about them or uses them at any other time during the year.

What about the highly touted “spiraling” curriculum, which does
not expect mastery (or understanding?) the first time a child encounters
a concept because it will be back two more times during the year? The is-
sue is not how many times or how often one revisits a concept, but the
nature and quality of the experience. Is it conceptually rich? Have the
students built a solid initial foundation to begin using the concept in a
way that is meaningful to them? Some spiraling math curricula are more
like tornados. What happens when the tornado touches down? It briefly
stirs things up, and then leaves for an indeterminate time. If its touch-
down time is riddled with gimmicks, what do the kids have to show for
their brief encounter with the mathematics of that moment?

Another NCTM process standard not fully developed in the United
States is representations. It was barely mentioned in the 1989 version of
the standards. Therefore, in 1991 my wife and [ wrote Mathwise, in which
we made a strong pitch for the critical importance of creating representa-
tions in doing mathernatics. Furthermore, we asserted that of the ten
popular problem-solving strategies, there are five strategies that are based
on representations, two that were so broad as to be metastrategies that
should be used all the time, and three that were fairly narrow and should
be considered supplementary.

When using the five most powerful strategies, students create their
own representations. Through this creation, they are truly constructing
meaning. These five strategies are:

* Discuss the problem in small groups (language representations using
auditory sense).

* Use manipulatives (concrete, physical representations using tactile
sense).

* Act It Out (representations of sequential actions using bodily kines-
thetic sense).

* Draw a picture, diagram, or graph (pictorial representations using
visual sense).

* Make a list or table (symbolic representations often requiring ab-
stract reasoning).

Language should be used throughout all five of these strategies.

The two common strategies of looking for a pattern and using logical
reasoning always should be used in problem solving. Mathematics is the
science of patterns; every branch of mathematics (e.g., numbers, geom-
etry, measurement, data and chance, algebra) has characteristic patterns.
Logical reasoning is essential to doing mathematics. But is it a strategy? s

it something one chooses Lo do instead of something else? Okay. What is
the alternative? “Pav attentinn Lide: wola hasn vancamioe illaciaall. 01

year long in math; now it is time for a new strategy. Lel's use logical rea-
soning for a change!”

Children delight in seeing patterns in mathematics or truly under-
standing a concept. Consequently, I am concerned when children’s books
present seeing mathematical patterns everywhere as a “curse,” mathemat-
ics as magic or as witchcraft practiced by the Number Devil. 1 believe itis a
big mistake to tell children that mathematics is magical or incomprehen-
sible while at the same time trying to help them believe in their own capa-
bilities and that they can expect it to make sense through diligent work. The
books may be cute, but can send a decidedly mixed message.

When students are taught how to look for patterns and reason logi-
cally in every activity along with the five representational strategies, the
representations they create build understanding of the problem (and lead
to a solution). In creating them, students are developing different mental
models of the problem or phenomena. In rich, meaningful mathematical
tasks, students may use several of these representations, moving from
one to another to figure out more about the problem. Later they might
draw on supplementary strategies (such as the three popular ones: guess
and check, work backwards, simplify problem), but these cannot be used
elfectively unless one understands the problem. As students become more
mathematically sophisticated, they are able to use more abstract and
symbolic strategies (e.g., use proportional reasoning, apply a formula).

Obviously, thinking is eritically important in reading and language as
well as mathematics and problem solving. It is beyond the scope of this
book, let alone this chapter, to adequately address cognition or all the
related cognitive issues. Fortunately two wonderful volumes do a fine job
of just that. They are How People Learn (Branslord, Brown, and Cocking
2000) and its companion, How Students Learn (Donovan and Bransford
2005), which uses three main principles to synthesize a tremendous
amount of information about human cognition:

1. engaging prior understandings (using prior knowledge, confront-
ing preconceptions and misconceptions)

2. organizing knowledge (developing a deep loundation of factual
knowledge organized into coherent conceptual frameworks that
reflect contexts for application and knowing when to use which
information—referred to as conditionalized knowledge)

3. monitoring and reflecting on one’s learning (developing metacog-
nitive processes and sell-regulatory capabilities)

HOW DO ALL THESE IDEAS FIT TOGETHER?

Fitting all these ideas together is not an easy task. May I phone a friend?
In Figure 1.1, I have simply placed the major ideas that need to be braided
into three separate clouds. Imagine that each cloud was an overhead
transparency that could be placed like a template on top of one of the

1o
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Place the template of thinking over the mathematics and one can
see the importance of connecting to prior knowledge, activating rel-
evant schemata, building organized knowledge, and developing self-
awareness and monitoring as a learner. Place the template of language
over the mathematics and one can imagine some wonderful opportuni-
ties for language—expressive, spoken, written, responsive, interactive,
dynamic, mercurial, creative, playful, clarifying, metaphoric, defining,
and so on. All of these can be a part of the mathematical experience of
all students.

From among many ways to organize the braiding of these ideas, this
book devotes six chapters to the reading comprehension strategies (ask-
ing questions, making connections, visualization, inferring and predict-
ing, determining importance, and synthesizing). The seventh strategy
(metacognitive monitoring) involves students becoming increasingly
self-regulating when doing the other six strategies. In Chapter 1 1 discuss
how the strategy ol asking questions is essential to metacognition. With
these six big ideas to organize the chapters, I explain what each of these
strategies contains and then braid in first the cognitive ideas and then the
mathematics. No doubt more clever minds than mine would have orga-
nized this material differently and better. I am also certain that astute
readers will note ideas and relationships that I have overlooked. That is
inevitable and 1 look forward to hearing about them.

Knowing what works is good, but even better is knowing why. That is
where theory comes in. Two books by mathematician Keith Devlin, The
Math Gene (2000) and The Math Instinct (2005), and one written jointly
by linguist George Lakoll and mathematician Raphael Nunez, Where
Mathematics Comes From (2000), suggest some rather important linkages
between mathematical thinking and language. 1 could not do these books
Justice in a hundred pages, let alone one or two. Let me simply say that as
the quotation at the beginning of this chapter stated, Devlin believes
mathematical thinking is a specialized form of our human language facil-
ity. Both developed in humans in parallel tracks from the same source—
the ability to reason abstractly in a “What if?” mode. “[M]athematicians
think about mathematical objects and the mathematical relationships
between them using the same mental faculties that the majority of people
use to think about other people. . . . The overall mechanism is the same:
a mental capacity developed to handle things in the real world is applied
to an abstract world that the mind creates” (2000, 262-63).

Lakoff and Nunez (2000) have a somewhat different nominee for
this mechanism. Humans conceptualize abstract concepts in concrete
terms by means of conceptual metaphor, “a cognitive mechanism for al-
lowing us to reason about one kind of thing as if it were another. This
means that metaphor is not simply a linguistic phenomenon, a mere fig-
ure of speech. Rather, it is a cognitive mechanism that belongs 10 the
realm of thought” (p. 6). In fact, they see it as the principal cognitive
mechanism: “. . . much of the ‘abstraction’ of higher mathematics is a
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consequence of the systematic layering of metaphor upon metaphor,
often over the course of centuries” (p. 7).

If you want more theory, these authors will oblige. Bear in mind
that they distinguish between arithmetic and mathematics. In our
popular way of looking at learning, people olten assume that language
and mathematics are incompatible or just too different. Yet it seems
each day, week, or year we discover ever more powerful and surprising
human capabilities!

ASKING QUESTIONS

INQUIRING MINDS WANT TO KNOW

Children are natural inquirers; they have a million questions. Most have
no trouble asking anyone just about anything. At age four my daughter
asked me, “Do some men work alone?” I thought the question a bit odd,
but simply told her that some do. After getting the same question four
days in a row, I finally asked her why she wanted to know. She said that
she just thought men would probably smell better if they wore calogne.

1f 1 had allowed her question to initiate a discussion, instead of just
trying to answer her and be done with it, I might have learned sooner
what she was thinking. Language and thought go hand in hand (or per-
haps, synapse in synapse). The point is a simple one: the more you know
yourself and how your mind works, the better able you are to solve prob-
lems. The more we teachers can stimulate our students to be aware of
their own thinking and monitor it, the better readers they will become
and the better mathematical problem solvers.

About a dozen years ago a sixth-grade teacher had attended an inten-
sive week-long summer math problem-solving course I taught in her dis-
trict. When I ran into her in the supermarket a year later, she said she had
enjoyed the course, had read Mathwise, and had elected to do her master’s
degree thesis on problem solving. In her research project, she had found
that the most important things that she did with her kids were the sug-
gestions on just two pages of the book. What helped them the most was
developing their metacognitive awareness and monitoring through what
we are now calling the KWC. This little device, which we'll get 1o shortly,
is built around students asking questions.

The research literature on metacognition in reading is voluminous,
far more extensive than in mathematics. All of the reading comprehen-
sion strategies involve metacognition in some way or to some extent. Pro-
ficient readers have learned how to use or to adapt various strategies to
different purposes. They are able to use strategies to “fix up” or “repair
meaning” when they don’t understand what they are reading. They are
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quick to recognize when they have encountered some obstacle to mean-
ing. They stop, go back to clarify, and reread to try to construct the mean-
ing. They think and they ask questions. They try to determine the author’s
purpose. They “interrogate the text and the author.” They do not pas-
sively “receive meaning.” They aggressively grab it. They wonder about
the choices the author made when composing. They realize that one
question may lead to others. They recognize that their questions are im-
portant. They believe that their questions will help them understand.

They ask questions about what they read before, after, and right in
the middle of reading. They do this to help them understand, to construct
meaning, to discover new information, to clarify what is going on, to
check their inferences, to help them visualize, and a dozen other pur-
poses, all of which require thinking and metathinking.

Related to the metacognitive purposes for asking questions is
the value of consciously surfacing one’s prior knowledge so that relevant
information can be brought to bear on the text (or problem at hand). In
reading circles this is known as “activating relevant schemata.” Although
many educators and psychologists use that term, they do not all mean the
same thing. For some, schema means the knowledge and how it is struc-
tured. For others, it means both the way the information is organized and
how it is habitually used (like a script). For our purposes here let’s just
say that a schema is the accumulated background knowledge and experi-
ence about something and how aspects of it are connected or organized.

The extensive use ol asking questions to activate schemata or prior
knowledge in reading contrasts sharply with the typical mode of children
working on math story problems in the intermediate grades or middle
school. Contrary to educational naysayers, most kids are capable of
learning. By the time they get to fourth or [ifth grade, they have figured
out that the name of the game is memorization and quick recall of facts.
The rules of the game are guess-the-operation (and we're not talking
about tonsillectomies) and don’'t make any arithmetic errors.

They passively glance at the words of the story problem and perhaps
they might see a cue/key word. The questions they ask are not especially
metacognitive: “Can we do this for homework?” “Are we getting graded
on this?” Usually followed by, “I don't get it.” And then the truly impor-
tant question: “What do I do?” Tronically, that is the right question, but by
asking the teacher, they are asking the wrong person. Instead of asking
that of the teacher in the hopes that she will come over and show them
what to do (and maybe even do it for them), they should be asking that of
themselves. The earlier in their school lives that teachers encourage stu-
dents to stop and think, “Okay. What do I do? And why?” the better off
they'll be in mathematics.

My personal belief is that as students experience more and more
schooling in math, and continually find teachers emphasizing the one
right answer obtained quickly, they consciously or subconsciously think
that asking questions is a sign of not knowing. Therefore much of their

energy is invested in covering up when they do not know. When I began
my pilgrimages to elementary classrooms, I recall being very surprised at
how quite a few students in the first grade would “tighten up” during
math time. These were very capable students who usually did quite well
in math. They were very intent on getting the right answers and even
more intent on not making a mistake.

1 remember one girl who despite my reassurances that she could sim-
ply erase the one thing that she had missed (a trivial error), with tears
starting to form in her eyes, insisted on throwing away the entire paper
and doing everything again. Over my protestations she crumpled up her
paper, threw it in the trash, took a clean sheet of paper and began again.
In a third-grade classroom, a teacher handed back a math quiz and
complimented the boy who had done the best in the class. He had a
nearly perfect paper. But the key word here is “nearly.” He looked at his
paper, began to cry, and ran into the coat closet. He pulled the door shut
and would not come out. He had made a mistake. Were the behaviors of
these two children anomalies? Are these two children in therapy today?
No, I don’t think so on either question. Though they may be at the far end
of the anxiety scale, they have plenty of company.

How can we encourage children to ask questions in math class? We
can establish a climate of acceptance, where mistakes are a natural part of
learning, where successive approximation is valued. The classroom
should be a place where students have initial ideas, write drafts, and then
think some more, rewite, revise. 1 do not mean that we don't tell the kid
that he’s made a mistake or that anyone gets credit for doing it wrong. 1
simply mean that we promise to forgive our students. We let them know
that everybody makes mistakes in math. They just need to move on and
practice. Use whatever metaphor you want to help them get the point.

ASKING QUESTIONS OF THEMSELVES, THE TEXT,
AND THE AUTHOR

The reading comprehension strategies interact and are not independent
of one another. There is no absolute sequence implied. The math prob-
lem solving of most students by fourth grade suffers from a profound lack
of thinking and questioning. Therefore, we think it makes sense to nudge
them strongly toward a habit of mind of asking questions as the first
strategy to consider. Good questioning by the students will greatly facili-
tate the other strategies.

There are several ways of helping students learn how to ask ques-
tions that the reading folks have found very useful. In general, the
teacher does the kinds of things described in the previous chapter on
crafting lessons. The teacher thinks aloud as she reads and models her
own use of a particular strategy with the whole class. She explains how
she is using the strategy. Then the students try doing it in pairs or small
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groups with the teacher conferring with them. She may also meet with
individuals to guide them. The objective is for all students to individually
internalize the strategy.

Some teachers read a text out loud and articulate questions that
make sense to them as adults. They often record such questions on large
sheets of chart paper. Keene and Zimmermann (1997) saw how impor-
tant their own modeling was. Children needed to see and hear how their
teachers read, especially the way they worded the questions they asked
themselves while reading (p. 109).

Keene and Zimmermann advise teachers to talk to the children about
why readers pose questions, how questions help them comprehend more
deeply, and how they use questions in other academic areas.

Debbie Miller (2002) reminds us that through such actions, teach-
ers help students reflect on whether or not the answers to their ques-
tions can be found in the text or if they will need to infer the answer
from the text, their background knowledge, or some outside source. We
need to help students understand that many of the most intriguing
questions are not explicitly answered in the text, but are left to the
reader’s interpretation (p. 140).

These same teacher-moves are echoed by Harvey and Goudvis (2000)
and they are always on the lookout for books that generate an abundance of
questions from the students. Sometimes they have students list their ques-
tions on large chart paper. Sometimes they help students categorize these
questions, such as: ones that are answered in the text, ones that are an-
swered from someone’s background knowledge, ones whose answers can
be inferred from the text, ones that can be answered by further discussion,
ones that require further research, and ones that signal confusion.

Talfy Raphael (1982) uses QAR (Question—Answer—Relationship)
to help elementary school students see the value of different kinds of
questions. She helps them ask “right-there” questions (literal questions
that can be answered by finding the answer directly in the text). These
contrast with “think-and-search” questions that are inferential, requiring
students to put various pieces of information together,

Distinguishing between the literal meaning and inferential meaning is
critical in story problems and in fact all of mathematics. Just as some stu-
dents do not read much of the text in a story problem, others read very
selectively and make inferences (and assumptions) without realizing that
they are doing so. When questioned, kids often say, “I just figured that. . .”
But if they are aware that they are inferring something not literally in the
text, then they can ask themselves, “Is this inference accurate?” If they're
not aware, they can't ask. Although distinctions among types of inferential
questions are fascinating, for our purposes here we can say that we are
thrilled when students can distinguish hetween the literal and the inferen-
tial in math problem solving,

To understand literal meaning requires making connections between
what is there on the page and what is in your head (prior knowledge). But

to understand inferential meaning (drawing an accurate inference) you
are making connections among several things in your head and then go-
ing beyond the literal; making a connection among those ideas in your
prior knowledge to realize something that you didn't see until you made
the “leap” of inference. Actually, social scientists distinguish between low
inference (small leap) and high inference (a big jump from what is liter-
ally there). In Chapter 4 we will address drawing inferences as an impor-
tant aspect of reading comprehension.

A very well-researched and proven strategy for engaging students in
informational text is Reciprocal Teaching, developed by Palinscar and
Brown (1984), in which the teacher models each of four different strate-
gies (summarizing, questioning, clarifying, predicting). When the
teacher feels that the students have sulficient experience with the strate-
gies, she turns the teacher role over to the students. They must guide the
class in the continued use of these strategies with the text. The students
learn to ask good questions of the text.

Students learn to think more about who has written a text and how
successful the writer was for them as readers through the strategy of
“questioning the author” (Beck et al. 1997). According to Blachowicz and
Ogle (2001, 116), students “develop a dialogue with the author, just as
they would with a person talking with them face to face.” Such questions
may be: What was the author trying to say? What could the author have
said instead? What was the intent of the author? What is the point of
view? How could something be stated more clearly?

Donna Ogle developed the K-W-L strategy to help students become
engaged in reading informational texts. Itis a “frontloaded” strategy, acti-
vating schemata to make sure students have the knowledge they need
before they read (Daniels and Bizar 2005, 41). Prior to reading, the
teacher essentially asks the students, “What do you know?” about a par-
ticular topic. She models and guides students through a group process of
“brainstorming together what they know (the K in K-W-L) about the
topic. The teacher guides students to probe their knowledge statements
and to [ind conflicting or partial statements” (Blachowicz and Ogle 2001,
108). The teacher writes what the students say without evaluation or cor-
rection in the first column (K) of a three-column chart on the chalk-
board, overhead transparency, newsprint, or computer. The
brainstorming encourages students to think about the topic, to activate
their knowledge, and to develop their interest before reading. The
teacher can encourage more student engagement by continuing the
thinking: “Does anyone know anything [more] about. . . . Can anyone
frame a question that may help us find out more?” (Blachowicz and Ogle
2001, 108).

Inevitably, during the brainstorming/discussion process some ques-
tions and uncertainties come up. The teacher writes these down under a
second column (W) as they signify things they want to know. The teacher
next has to decide if the students can think more deeply about the topic;
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she may ask them to think of ways that experts might organize this
information that they have generated. They might also look at the infor-
mation in the K column and try to find connections. These are recorded
also. Next the teacher asks them to come up with real questions for the W
column—what we want to know. The teacher can readily extend the
questions in this column by asking “I wonder” questions. The third col-
umn (L) is for students to summarize what they have learned after read-
ing the text. In a follow-up to the K-W-L, K-W-L + (plus) was developed
to give students more responsibility for reorganizing the ideas involved
in the K-W-L. Graphic organizer sheets are given to students so that they
can record the K, W, and L information as it emerges in the brainstorming
and discussions. Or they might create semantic maps of the key informa-
tion. Ogle believes that it is extremely important for retention that each
student write down his or her own ideas before, during, and after read-
ing. Also the writing helps them monitor their own thinking and learn-
ing. This writing task is a concrete way for all students to continue to
participate in the thinking (Blachowicz and Qgle 2001, 111).

SECOND GRADERS USE THE KWC

For more than a dozen years teachers and 1 have been refining an ap-
proach Lo engage students in understanding word/story problems. Ini-
tially we tried applying Donna Ogle’s KWL to story problems. Although
that worked well sometimes, we realized that it was not a simple applica-
tion that was needed, but rather a transformation of the KWL into a
mathematical t0ol, one that dealt directly with the essence of mathemati-
cal problems. We now use a KWC that becomes a framework for other
strategies as well.

Probably the best way to understand what the KWC is would be to
experience it as a student would. Come with me into Betty Hogan's
second-grade classroom, where as soon as you enter the room your eyes
are splashed with bright, vibrant colors. Dozens of posters fill the walls,
books overflow their bookcases. And twenty adorable children there re-
side. Most noticeable are the long, twisted strands of crepe paper hanging
in great boughs from the ceiling. We are in the Amazon rain forest. Betty
isa veteran teacher with a master’s degree in reading and language. Math
is her least favorite subject to teach. But she has taken some courses with
me and is willing for us to team on a KWC with her second graders.

Betty arranged the twenty kids into pairs and explained that I was
going to tell them a story and then they were going to do some mathemat-
ics based on the story. We pulled out a large sheet of chart paper that had
been rolled up. We taped it up on the wall and covered it with another
sheet, revealing only the title, “The Freight Trains.”

We asked the class a series of questions. What is a freight train?
Have you ever been on a train? What kind of train was it? What is

o/
f

freight? What do you think this short story is about? The kids were ea-
ger to tell us things that we asked and to volunteer personal experi-
ences with trains. One offered, “Yesterday we had to wait for a very real
long time for a train to go past.” I asked about the train an.d the cars Ih.a[
the engine was pulling and how long did they have to wait ‘for the train
to go by. We spent five full minutes just talking about trains, and the
students had quite a lot of information to share. Of course, they are sec-
ond graders and they repeated themselves. Sometimes their answers
were a little off the mark, and I thought I was in a movie of an Amelia
Bedelia book. But they were definitely trying to answer our questions.
As Betty had predicted, most did not know what freight was, but some
did and we asked them to explain.

We continued to slide the paper down to reveal the first full sentence:

At the train station there are many different freight trains.
Then the second:

They carry 3 kinds of freight across the US: lumber, livestock, and
vegetables.

We again asked the children questions about the trains. They took
about ten minutes discussing the three different kinds of freight. We went
through each sentence one at a time, asking questions to get the kids to
clarify what was meant. Here is the whole problem.

The Freight Trains

At the train station there are many different freight trains.
They carry 3 kinds of freight across the US: lumber, livestock,
and vegetables.

Each train has some lumber cars, some livestock cars, and
some vegetables cars.

Each train always has 18 freight cars.

There are never more than 10 cars of one kind.

Freight cars that are the same are always connected together.
How many different ways of making trains with 18 cars can
you find?

Those familiar with second graders and their level of cognitive abili-
ties may believe this problem too difficult for second grade. Betty thought
they would be challenged by it, stretched in a good way. They had done a
few KWCs before. They had done multiple addends in math. It was May
in the school year, so they were “mature” second graders.

Asking Questions
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Like the KWL, the KWC expects the students to express their ideas
under three big headings.

K: What do I Know for sure?

W: What do I Want to do, figure out, find out?

C: Are there any special Conditions, rules or tricks I have to
watch out for?

The students wrote down their thoughts and answers to the questions.

For the K, most copied parts of the original problem (despite Betty
gently prodding them to “Say it your own way”). There were a few kids
who rephrased information for the K column, such as: “Only 18 cars” or
“10 cars per kind.” In the W column sixteen of them simply copied the
wording of the question asked by the problem. Four were a litle differ-
ent. Two wrote, “Find out how many different ways I can make a freight
train.” Two wrote, “Find out how many ways I can make 18.”

In the C column (special Conditions), most of the students wrote
down specilic pieces of information from the problem, sometimes things
they had mentioned in K, sometimes others things from the problem.
Several were reminding themselves, "Remember, only use 18 cars.” Six-
teen of them referred to either using only 10 of each or 18 altogether.
Four were a bit different. One wrote, “I need to remember to put the same

kind of cars together.” Another wrote, “Not take all the same kind.” Two
girls who sat and worked together both wrote, “Don't do the same thing
twice.” See four student papers in Figures 1.1-1.4.

Betty handed out to each group 10 Unifix cubes of three different
colors that would represent the three kinds of freight cars (green for veg-
etable cars, yellow for lumber cars, and red for livestock cars). Each
group got one sheet of legal size paper with the outlines of four trains of
18 cars the same size as the Unifix cubes. The students took out markers,
crayons, or colored pencils of those three colors and began. We encour-
aged them to make the train, check to make sure it met the conditions of
the problem, then color it in. One child ignored these instructions and
immediately colored in an all green (vegetable) train. I asked her to look
at her KWC sheet and see if that was okay to do. She said, “Oh, oh!” and
drew a big “X” over the train, and grabbed the Unfix cubes to make her
next try.

The kids charged ahead famously, making trains that met the criteria,
and soon asked for more sheets to make more trains. When most of the
groups had completed two sheets, Betty told them to write under the
train the number sentence that fit with the number of each kind that were
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init. When they had done that, they were to cut out each separate train.
They now had a color-picture record of their work.

I asked for all the kids who had made a train where there was the
same number of each kind of cars to hold up that train. It was a6 + 6 + 6
= 18 train. 1 took one of these from a student near me and tapeditontoa
sheet of newsprint. [t had 6 green cars on the left, 6 brown in the middle,
and 6 red on the right. 1 asked if any one else had exactly this train. Sev-
eral said yes. I asked them hold the train up and asked if these were the
same as the one we had just put on the chart. Several children immedi-
ately said no and their classmates were puzzled.

L asked the students holding up 6-6-6 trains 1o compare and to con-
trast their train with the one on the chart, “Tell us what is the same and
what is different.” Several kids gave partial answers; this was tricky for
them. They did explain eventually that the numbers were all the same but
the colors from left to right were different, Betty told them that we could
say that the “order” of the colors was different. I asked them to bring all the
6-6-6s forward and we taped them up. I asked them to figure out how
many different trains we had on the chart. They checked carefully and
found only six: (B, R, G); (B, G, R); (R, G, B): (R. B, G); (G,B,R); (G,RB).
Ithen suggested that if the order of the colors (kinds of cars) does not mat-
ter, we could say these are all from the same “family”—the 6-6-6 family.

Then 1 asked if anyone had found a 5-6-7 train and we went through
much the same “debriefing” as with the 6-6-6s, comparing and contrast-
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ing trains. This time I suggested that the order of the colors and the order
of the numbers really does not matter; we can say these are all from the
same [amily. We talked about it in terms of the number sentences. Betty
reminded them that they could add together any of the addends an‘d then
add the third one and always get the same sum. I asked, “If we ignore
colors and just look at the number sentences, how many members are in
this family?” They found six: (5, 6, 7); (5, 7, 6); (6, 5, 7); §6’ 7.5): (7.5,
6); (7,6, 3). We decided that they were all in the same family. I told them
that mathematicians name this family the 5-6-7 family, listing the num-
bers in order. .

I then told them that we were going to try to determine what the dif-
ferent families were. How many were there? And what were they? At.this
point a girl who was sitting near me came over to me and very qulef‘ly
asked, “Do you mean we are supposed to find all the combinations?” 1
whispered yes to her.
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We asked them to save their paper trains and the next day Betty con-
tinued to work on finding all the families (combinations) with them,

DEBRIEFING THE ACTIVITY

What follows are my comments on why Betty and I did what we did. She
put them into small groups according to her perception about who would
work well together on this task. I have done this activity with second
graders before and was able to describe the typical behavior and what [
hoped to see. The small groups, in this case pairs, would give the students
maximum opportunities to talk about their conceptions of the problem.
The materials and their use in creating representations (i.e., the Unifix
cubes, the paper strips, and the crayons, markers, colored pencils) could
be shared more easily with two rather than three students,

We told them that we would read a story aloud and they could read
a.long with us on the newsprint. Then they'd have to answer some ques-
tions about it, math questions. They were fine with that. Since math edu-
cators call them “story” problems, I give my problems a title. Therefore
the students' first encounter with the problem had the title of “The
Freight Trains.” By asking them to think about the meaning of the title,
we were Lreating this experience like one of their reading activities
which, if positive, would carry over into the math activity. They had lots:
Lo say and many experiences to relate to this reading. They were moti-
vated; they had bought in.

When we introduce the KWC to kids, it is not just to stimulate en-
gagement (although that is valuable). They need to activate the schemata
they have that will help them with the problem. For instance, we wanted
them to imagine trains with an engine car pulling a great many freight
cars. As we slid the paper down to reveal each sentence separately, we
posed questions and also asked the kids to explain their responses. When
teachers introduce the KWC they often make an overhead transparency
of the problem, separating each sentence on different lines, Some kids get
overwhelmed by the text of an entire problem. The overhead transpar-
ency allows the kids to focus on just one sentence at a time as the teacher
covers what comes next.

Alter we had read and talked through the entire problem, they began
to write information on the graphic organizer, Betty had added the sec-
fmd row of “prompts” to the KWC questions: “I know that . .. J4I'm try-
ingto...,"and “Ineed to . ..” She also added the italicized prompts in
the first row under C (Special rules? Tricks to watch out for? Things to re-
member?). 1 have encouraged teachers to work with their classes to
modify wording of the KWC questions in ways that will help their kids.

Writing things down under K is not a problem for kids, except when
there is an abundance of information and they have not yet worked with
the strategy for determining the most important information. Unlike
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at the very end. Students know this text structure, and they are on the
lookout for a question or a question mark. They have no trouble discern-
ing the W and what to enter onto their sheet. The C is always tricky and
this case was no exception.

In mathematical problem solving we have long had “givens, the goal,
and the constraints.” I will discuss in Chapter 5 how some believe that
math story problems are a genre and we will examine alternatives to this
genre. “Givens” have been established by the author of the story problem.
In technical terms, one is in a “given state” and the problem solver is to
figure out/lind out how to get to the “goal state.” The KWC asks the ques-
tion, What do | Know for sure? so that students will think about the prob-
lem and generate the givens. Then the KWC asks, what do T Want to find
out or figure out?

Constraints are special conditions, often limitations on what the
problem solver/mathematician can do, or what possible values are al-
lowed. These constraints are often the most difficult of the three things to
discern. Sometimes they involve drawing an inference or making an as-
sumption. Sometimes they are only obvious to an expert in the context of
the problem and hard for a novice to see because they are only implied.
On the other hand, sometimes students will generate all the necessary
information in the problem, including the constraints, while looking for
the K. Students and teachers usually need some examples of what we
mean by C.

In the freight train problem the students had the opportunity of oral
discussion as a whole group with the teacher modeling the thinking that
goes on when we ry to answer the three questions: What do you know for
sure? What are you trying to find out? Are there any special conditions?
They read through each of the sentences of the story one at a time as a class
and then they wrote down their answers on their graphic organizer.

However, five of the twenty kids did not mention that each train had
three different kinds of cars. Sometimes, kids will pick up a piece of in-
formation like that under C rather than K, but in this case they just did
not mention it anywhere on their papers. However, all five students did
make trains that had three different kinds and/or three different colors.
They “knew” to do so. These second graders were learning how to write
down information. The physical representation of the trains made it easy
to realize the need for three colors.

In this problem we scaffolded the multiple representations and
helped the kids go back and forth between them. The term scaffolding has
several meanings. For some it means making sure that the task is chal-
lenging, but within their capabilities; I'd say, pitched just right to make
them have to stretch to do it. Scaffolding can also mean that the teacher
provides some process, structure, or device (tangible materials or a good
question to prompt thinking) that enables the students to actually do the
task. Scaffolding does not necessarily make the problem easier, and the
teacher does not do the work for students or show them how to do it.

R I 1 T A P eenws
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safely work on the outside wall, the scaffolding does not do the work. It
enables the person to do it.

In the freight train problem we provided some scaffolding by requiring
that: (1) they use oral and written language to describe the situation; (2)
they physically make each train, then place it on the paper to check that
they had 18; and (3) they had to make a color-picture record of each train.
Finally, they counted the squares and wrote number sentences/equations
with three addends that symbolically represented what they had done.

This progression of representations was moving from concrete to
abstract: language and object (most concrete) to picture to symbols
(mostabstract). In the final stage, which began on day one and continued
into day two, the students found different number families and made a
table of them (used an abstract representation to look for patterns). The
girl who recognized that we were looking for combinations might have
been able to handle a more abstract version of the problem from the be-
ginning, “What are all the combinations of three different addends that
sum to 18 with the constraint that none can be greater than 10?”

The girl’s insightlul question brings up a related issue. There are gen-
eral questions that kids can ask themselves that would fit with virtually
any story problem (e.g., the three KWC questions). There are also ques-
tions that are very context dependent. For example, in the freight train
problem kids often ask, “Can we alternate the colors like stripes?” Al-
though it does not literally say “alternating colors is prohibited,” the pro-
hibition is implied and kids should realize that this is an inference they
should have drawn from the statement, “Freight cars that are the same
kind are always connected together.” We will deal with inferences in a
subsequent chapter. Here simply note that to a child who asked about
alternating colors, we might ask things like, “What does the problem ac-
tually say?” “What do you think that means?” “Are you sure?” “Are you
making an inference?” Asking questions keeps their thinking going.
When we answer definitively, we give them permission to stop thinking,

Another kind of question is more content or concept dependent. The
girl asked about “combinations,” a very slippery concept when approached
in the abstract. When kids study the concept of combinations (versus per-
mutations), they use the KWC but we also help them learn to ask them-
selves several critical questions that are strictly related to the concept.

How many different combinations did you find?
Did you check for duplicates/repeats? How?
Did you find all the combinations?

And the really important question is:
How do you know when you've found them all?

There are many different directions that we could have gone with
Belty’s second graders once they had generated a good number of
trains with number sentences. For instance, this problem can be a
very nice hasis [or the associative and commutative properties of addi-
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permutations (where order does matter). A longer discussion of what
makes two things “different” might have been profitable. We might
have used the paper trains to show the patterns as the numbers of
each color were systematically changed in order, which can be a pre-
cursor to an organized list—keep one color the same number (start
with the most it can be) and change the other two (e.g., 10,7, 1; 10, 6,
2; and so on). When you place the paper trains side by side in that or-
der the visual impact is considerable.

We chose to focus on making sure that the children were not over-
whelmed by the sheer number of trains they had made. We wanted them
to have a way of grouping them to be a more manageable number. This
also served to lay a foundation for other ideas Betty would address later,
such as associative and commutative properties. Just as important, they
were developing their cognitive and metacognitive processes. They were
learning how to attack problems by breaking them down analytically, by
translating between representations they had created, and by talking
through with teammates what was going on.

In the KWC, the teacher models for the whole class the process of
asking herself the three critical questions. Then the teacher leads the
whole class in asking the questions. Then the students work in small
groups and ask each other those questions. Finally, each individual stu-
dent should internalize these questions and use them when solving prob-
lems alone (on a test, at home, by oneself).

FRONTLOADING TO UNDERSTAND THE PROBLEM

In the introduction | mentioned George Polya, the grandfather of prob-
lem solving. He saw problem solving in four phases:

1. understanding the problem

2. developing a plan/considering various problem-solving strategies
3. implementing a strategy or plan

4. looking back to see if your answer makes sense

For Polya and many others who write on problem solving, the flirsl
phase is critically important and deserves to have signilicant time
devoted to it—perhaps up to 75 percent of the time available. Does this
sound excessive? Have you ever had a project given to you that was ill-
defined or that made you initially uncertain how to do it? That would
be a problem. Or have you ever worked on a group project that was not
structured, where the participants had to make a lot of decisions about
what to do and how to do it? In both these cases, spending initial time
on task definition—understanding exactly what you have to do—is lhe
smart way to proceed. Il one “[rontloads” the discussion to gain c:larl.ly
on the task, it is time well spent because there is always danger in
assuming one knows what is the problem and charging ahead to solve
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The KWCis designed to encourage students to consciously attend to
understanding the problem. It is the best device we have found to help
with the understanding phase. 1t requires kids to stop and think, to get
their minds around the problem. It is quite versatile and can be used with
many different kinds of problems. The reading folks use the expression
“activating relevant schemata,” in which a reader brings to conscious
awareness the prior knowledge that is related to the text at hand. If a stu-
dent, even a very capable math student, goes charging ahead without re-
ally thinking about all elements of the story problem, there is a high
probability of misreading or misunderstanding and operating in error.
Each of the questions in the KWC asks the students to focus attention on
a somewhat different but related part of the problem.

The students use the KWC to sort out basic factual information. In 50
doing, they must read the problem and think about the information. The
teacher may ask them to jot down some notes, or to do it orally for the
whole class, and she records the facts on the chalkboard. Although this
recording may sound tedious, it establishes that the teacher believes it is
important for the students to actively think about what they know to be
true. They get the message that this is an important step. Notice that they
cannot tell what facts are relevant or important until they have read or
seen the question. I'll have more to say about this in Chapter 5. The key
idea here is that they read carefully, attending to any information. As we
saw in the freight train problem, while they are developing their ability in
problem solving, the teacher may require them to consider only one sen-
tence at a time by having the problem on an overhead transparency and
by displaying a single sentence to be understood.

After students have read the question, they do the W— What are we
trying to find out or prove? They should restate the problem in their own
words. Next they must consider the special conditions. For some prob-
lems these are very real constraints on the possible values. In other cases,
the information is so evident that students glean all they could possibly
get from simply doing the K phase. Nevertheless, thinking about possible
C statements keeps them thinking. It slows down the impulsive students
who like to charge on ahead, willy-nilly, and gets them to be more careful
and thoughtful. For those who need more guidance in problem solving, it
provides a structure.

HOW THE K AND THE C WORK TOGETHER

The interplay of the K and the C can be seen in a different kind of prob-
lem done in the third-grade classroom of Beverly Kiss in Deerfield, 1li-
nois, a number of years ago. We were working on fractions and gave the
students what we called the Canteen Problem. As usual we had them ask
the KWC questions. The problem was:

A small plane carrying three people makes a forced Ianfiing in
the desert, The people decide to split up and go in three different
directions in search of an oasis. They agree to divide equally the
food and water they have, which includes 15 identical canteens,
5 full of water, 5 half-full of water, and 5 empty. They will want
to take the empty canteens with them in case they find an oasis.
How can they equally divide the water and the canteens among
themselves?

Some kids jumped right in with the KWC. Others seemed perplexed
and were hesitant to volunteer K information. They finally asked some
questions like, “How much money do they have with lhem?“‘ “Will the
people just follow the highway? Maybe a car will stop for them.” Schemata
were being activated all right, but not what Bev and 1 expected. By discuss-
ing the problem, their schema for “oasis” surfaced; it was a rest stop on the
highway with a Baskin-Robbins and a Wendy'’s. They l'lVEfi near an inter-
state highway with the Deerfield Oasis. The value of activating relevant
schemata cannot be overestimated. Often students have in their heads ac-
curate and useful information relevant to a problem, but fail to access it or
to connect it to the problem at hand. Good problems, rich in malhemali(:f'{l
ideas, often reside in specific contexts or real-life situations. After this inci-
dent, we started calling this problem “Meet Me at the Oasis,” and before
reading the problem, we asked the kids to tell us what they thought the
story would be about. The question of what is an oasis always seems to pop
up. I have shown a five-minute clip from a video of the movie Jewel of tfle
Nile showing actor Danny DeVito cavorting with Sulis at the local oasis.
That has started a lively dialogue about oases!

There are always some students who need the C with this problem.
The problem includes explicit statements about dividing the canteens,
even the empty ones. And it gives an explanation of why. Nevcr.lh.eiess,
there are always a few students who do not catch this special condition or
constraint. They try to divide only the water. Seriously considering the C
question helps most students slow down, go back, read and reread, and
catch the other idea. Once the students understand the problem and want
to try solving it, we suggest drawing a picture. Some students quic'kly say,
“Just pour half of each full canteen into an empty one. Then you'll have

15 half-full canteens and each person can take 5 of them.”

When they tell me this, 1 respond, “How will you know you Ihave
exactly half?” Or “You don't want to pour because you might SP]“ or
some water might evaporate. Is there a way to solve this problem without
pouring anything?” [A simple solution is for one person to take. 2 full, 2
empty, and 1 half full—which is 5 of the 15 canteens, and one-third of the
water; a second person does exactly the same thing; that will leave for the
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third person 5 canteens, each of which has the same total amount of wa-
ter. They start with FFFFF HHHHH EEEEE (full, half, and empty). The

use of manipulatives shows this relationship readily. (FFHEE ) (FFH
EE}or {FHHH E).

SURFACING PRIOR KNOWLEDGE

A different type of problem illustrates a variation in using the KWC. In
the Eight Shapes Plroblan, pairs of students (fifth grade and up) are given
oaktag cutout versions of the shapes in Figure 1.5. The KWC begins with
the W: “What do you know for sure about these shapes?” The question is
often followed with, “What are the ‘attributes’ (or features, characteris-
tics, properties) of these eight shapes?” I tell the kids, “1 just gave you
some manipulatives. Take a close look at them.” Either I write down the
information they share on the chalkboard or they write it on their graphic
organizers. I will sometimes ask, “How many different shapes do you
have?” There are only four different shapes, one pair of each. The key
concept is congruence. The kids can discern congruent shapes by laying
one on top of another.

Depending on grade level and experience, the students may fill the
chalkboard with their prior knowledge. Thus, this little problem may be
quite a valuable diagnostic activity. If they do not mention a key attribute
that I'want them to surface for this activity, I might ask, “What can you tell
me about the corners (angles, vertices) of these shapes?” Usually most will
realize that all the shapes have one square corner (some say right angle,
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some say 90-degree angle). With continued questioning the teacher can get
a feel for what the students understand about angles and degrees.

There are four different shapes; three are quadrilaterals, of no special
name. The fourth shape is a triangle that has one right angle (and is called
a right triangle). Task them, “How would we prove that each shape has a
right angle?” They often lay the shapes on top of each other. To this I re-
spond, “That shows me that the angles are congruent, they are the same.
But are they right angles?”

The students use various means to compare the four corners to a stan-
dard they “know" is a right angle, such as a piece of paper. Others stand
two shapes next to one another on a table top with right angles on the table.
Or they place the four quadrilaterals down on the table and move four al-
leged right angles together at a common point. If the four are equal and
completely encircle the point (covering the full 360 degrees), all are 90-
degree angles. Now comes the question that makes this a problem.

Can you use these eight shapes to make a square from some
and an equilateral triangle out of the others? And the two
shapes must have the same area,

When we ask the kids the W question: What do 1 Want to do, to fig-
ure out, to find out? They readily say, make a square and an equilateral
triangle. But there are always some (generally less than a third of the
class) who ask, “Can we make a square with all eight pieces?” Then we
ask them the C question: “Are there any special conditions here?” The
problem is not simply asking for a square and an equilateral triangle. The
constraint is that they must be of equal area. How can one guarantee that
the two shapes have equal area?

Notice that the critical piece of information that needs to be activated
and connected to the problem is all about congruence. 1f each of these four
pieces is congruent to these other four pieces, then any polygon you make
with the first four MUST have the same area as any polygon made with the
other four shapes. II this critical concept does not surface/emerge when
discussing the K, the students are rarely able to solve this problem.

The discussion about the right angles of the four shapes [requently
leads students to place the four right angles at the four approximate cor-
ners and then interchange them or turn them over until they fit nicely
together as a square. See Figure 1.6. However, most kids, in fact most
adults, have trouble making the equilateral triangle. While discussing the
K, some students activate potentially useful triangle schemata: an equi-
lateral triangle has three 60-degree angles. Then alter placing the four
right angles in the four corners to help them make the square, they try to
find three 60-degree angles, a marvelous use of prior knowledge.

By comparing the angles of shapes (laying them on top of one an-
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FIGURE 1.6

FIGURE 1.7
angles. But are they each 60 degrees? When placed side by side, the three
angles will form a straight line against a ruler or piece of paper (three 60s learned in a context, filled with meaning, where the numbers refer to
make 180 degrees,  straight line). If some students are having difficulty comprehensible things. Here is an example.
making the triangle, we provide a little scaffolding in the form of a A number of years ago | spotted a data table that I really found fasci-
blackline border of the triangle. See Figure 1.7. nating. Ever since, I do a yearly update on the figures to keep it fresh for
students. The data table may be seen in Figure 1.8. What do you see?
. Llet them suggest things. 1 don't write anything down on the board. [
USING REAL-LIFE PROBLEMS: INTERROGATE THE AUTHOR just listen. If no one asks the key questions that T have written on page 36,
1 will ask the students to consider and respond themselves.

b

More and more in recent years, students are asked 1o work on real prob-
lems that are quite different from the often-contrived problems of school
math. Some educators applaud this trend and others deride it. In a sense
there are two competing philosophies here. One says that children learn

GALLONS OF SOFT DRINKS SOLD IN THE UNITED STATES IN ONE YEAR

mathematics incrementally by working with one piece of the puzzle at a Egra":;:m Pf,a:::,r;in peiaﬂ:;fm pegrall:::;f)n
time. And these pieces cannot be as messy as real life. They say that stu- L ;
dents get too confused by the complexities of real-life situations: there Alabama 59.62 Indiana 46.66 Nebraska 53.30 | S. Carolina 63.34
are oo many concepts impinging all at once on the children, After they Alaska 47.79 lowa 46.98 Nevada 55.89 South Dakota 41.31
have mastered the skills or understood the concepts from easier, simpli- Arizona 47.14 Kansas 58.16 New Hamp.  46.01 Tennessee 58.97
fied cases, they can transfer their knowledge to other more complex ones Arkansas 53.95 Kentucky 57.19 New Je{se)f 46.49 Texas 58.16
and apply their new knowledge to real-life situations. This point of view California 52.16 Louisiana 59.45 New Mexico 46.49 | Utah 45.36
sounds reasonable, but the transfer of learning from one setting to an- Colorado 48.60 Maine 47.30 | New YCl’_k 51.35 V?”T‘O_m 43.09
other is not borne out by research. Connecticut ~ 50.71 Maryland 56.54 | N.Carolina  64.64 | Virginia 62.05
The viewpoint that is substantiated by research on transfer is that if Deléware 52.65 M-:ass.. 51.19 North Dakota 37.58 Wasll::: D.C. iggé
students are to use mathematical knowledge in certain situations in their FIorJd.? 51 M!chlgan 411 Ohlo fiat mzst |\?lgtc‘>n. 55'40
lives, they need to have some experiences that approximate the real Georgia 63.83 Minnesota 53.46 | Oklahoma :g.;z Wissconlsrﬁ:ma -
setting. If well constructed, those simulations of real situations can not Fawail 50.71 Mississippi 61 '83 POregonl ) 42'92 el Ve
only facilitate subsequent transfers, they can greatly enhance a student’s :ﬁ'aho. g;;; mlssourl ;:?5 Ri’;’(‘ise)f’:&':z o y 8 :
ability to build initial understanding. So instead of boiling down the nats ‘ lly ; )

learning of computation to its “naked numbers” that refer to nothing and
represent nothing, computation concepts and procedures can be better FIGURE 1.8
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on a task. However, efforts to break down awareness and monitoring into
subcomponents of metacognition in reading comprehension have not ob-
tained consistent results. Meanwhile, many math folks have trouble sepa-
rating metacognition from cognition. They see cognition including
self-regulating awareness and “executive control.” Most agree that better
problem solving comes when students ask themselves questions about

¢ the conditions, limitations, and constraints

+ if there is sufficient information to get an answer

* if there is one answer, more than one, or no answer

» different ways to represent a problem

+ if what you are doing makes sense

* what you have done or where you have been already (“Am | making
progress?™)

* if answers are reasonable

Using the KWC is an excellent systematic way to accomplish this needed
process.

As you plan for your kids to do problem solving, there are several
critically important things for you to consider. In the next section vou
will see some considerations related to the material in this chapter. By the
term consider (or consideration) 1 mean things that you may need to at-
tend Lo or deal with. They are not prescriptions for how to do things.
They are more like, “1 need to check to see if I need to address this issue.”
There are many different ways to address these considerations, and | have
given you some suggestions on how T address them. However, you always
will modify and adapt anyone else’s ideas to [it your own personality, your
teaching style, your school circumstances, and the particular students
you have.

In this chapter [ have begun to show the Braid Model of Problem Solving
by describing the KWC. Subsequent chapters will add more features to the
model. At the ends of Chapters 2 through 4, I will provide a cumulative
picture of the model as it becomes more elaborate and also will offer addi-
tional considerations in planning. Therefore, you will have a full model
and complete set of considerations by the end of Chapter 4 that you can use
in thinking about the problems presented in Chapters 5 and 6.

/

{
CONSIDERATIONS IN PLANNING FOR PROBLEM SOLVING

Situation

Big Ideas, Enduring Understandings, and Essential Concepts
What is the concept that | want the students to understand?
To what prior knowledge should we try to connect?

Are there different models of the concept?

Should T break down the concept into its underlying ideas?
Is there a sequence of understandings that the students need to have?
What other mathematical concepts are related?

Authentic Experiences
What are the different real-life situations or contexts in which stu-
dents would encounter the concept?
Will they see it in science or social studies?
How can I vary the contexts to build up a more generalized under-
standing?
What version of this situation can 1 present to start them thinking
about the concept?

What questions can I ask to intrigue them and initiate problem
solving?
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