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What is mathematics?

For all the time schools devote to the teaching of mathematics, very little (if any) is spent trying to
convey just what the subject is about. Instead, the focus is on learning and applying various procedures
to solve math problems. That’s a bit like explaining soccer by saying it is executing a series of maneuvers
to get the ball into the goal. Both accurately describe various key features, but they miss the “what?”
and the “why?” of the big picture.

Given the demands of the curriculum, I can understand how this happens, but I think it is a mistake.
Particularly in today’s world, a general understanding of the nature, extent, power, and limitations of
mathematics is valuable to any citizen. Over the years, I’ve met many people who graduated with degrees
in such mathematically rich subjects as engineering, physics, computer science, and even mathematics
itself, who have told me that they went through their entire school and college-level education without ever
gaining a good overview of what constitutes modern mathematics. Only later in life do they sometimes
catch a glimpse of the true nature of the subject and come to appreciate the extent of its pervasive role
in modern life.

1 More than arithmetic

Most of the mathematics used in present-day science and engineering is no more than three- or four-
hundred years old, much of it less than a century old. Yet the typical high school curriculum comprises
mathematics at least three-hundred years old—some of it over two-thousand years old!

Now, there is nothing wrong with teaching something so old. As the saying goes, if it ain’t broke,
don’t fix it. The algebra that the Arabic speaking traders developed in the eighth and ninth centuries (the
word comes from the Arabic term al-jabr) to increase efficiency in their business transactions remains as
useful and important today as it did then, even though today we may now implement it in a spreadsheet
macro rather than by medieval finger calculation.

But time moves on and society advances. In the process, the need for new mathematics arises and,
in due course, is met. Education needs to keep pace.

Mathematics is believed to have begun with the invention of numbers and arithmetic around ten
thousand years ago, in order to give the world money. (Yes, it seems it began with money!)

Over the ensuing centuries, the ancient Egyptians and Babylonians expanded the subject to include
geometry and trigonometry.1 In those civilizations, mathematics was largely utilitarian, and very much
of a “cookbook” variety. (“Do such and such to a number or a geometric figure and you will get the
answer.”)

The period from around 500bce to 300ce was the era of Greek mathematics. The mathematicians
of ancient Greece had a particularly high regard for geometry. Indeed, they regarded numbers in a
geometric fashion, as measurements of length, and when they discovered that there were lengths to which
their numbers did not correspond (the discovery of irrational lengths), their study of number largely came
to a halt.2

In fact, it was the Greeks who made mathematics into an area of study, not merely a collection of
techniques for measuring, counting, and accounting. Around 500bce, Thales of Miletus (now part of

1Other civilizations also developed mathematics; for example the Chinese and the Japanese. But the mathematics of
those cultures does not appear to have had a direct influence on the development of modern western mathematics, so in
this book I will ignore them.

2There is an oft repeated story that the young Greek mathematician who made this discovery was taken out to sea
and drowned, lest the awful news of what he had stumbled upon should leak out. As far as I know, there is no evidence
whatsoever to support this fanciful tale. Pity, since it’s a great story.
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Turkey) introduced the idea that the precisely stated assertions of mathematics could be logically proved
by formal arguments. This innovation marked the birth of the theorem, now the bedrock of mathematics.
For the Greeks, this approach culminated in the publication of Euclid’s Elements, reputedly the most
widely circulated book of all time after the Bible.3

By and large, school mathematics is based on all the developments I listed above, together with just two
further advances, both from the seventeenth century: calculus and probability theory. Virtually nothing
from the last three hundred years has found its way into the classroom. Yet most of the mathematics
used in today’s world was developed in the last two hundred years!

As a result, anyone whose view of mathematics is confined to what is typically taught in schools is
unlikely to appreciate that research in mathematics is a thriving, worldwide activity, or to accept that
mathematics permeates, often to a considerable extent, most walks of present-day life and society. For
example, they are unlikely to know which organization in the United States employs the greatest number
of Ph.D.s in mathematics. (The answer is almost certainly the National Security Agency, though the
exact number is an official secret. Most of those mathematicians work on code breaking, to enable the
agency to read encrypted messages that are intercepted by monitoring systems—at least, that is what is
generally assumed, though again the Agency won’t say.)

The explosion of mathematical activity that has taken place over the past hundred years or so in
particular has been dramatic. At the start of the twentieth century, mathematics could reasonably be
regarded as consisting of about twelve distinct subjects: arithmetic, geometry, calculus, and several more.
Today, between sixty and seventy distinct categories would be a reasonable figure. Some subjects, like
algebra or topology, have split into various subfields; others, such as complexity theory or dynamical
systems theory, are completely new areas of study.

The dramatic growth in mathematics led in the 1980s to the emergence of a new definition of mathe-
matics as the science of patterns. According to this description, the mathematician identifies and analyzes
abstract patterns—numerical patterns, patterns of shape, patterns of motion, patterns of behavior, vot-
ing patterns in a population, patterns of repeating chance events, and so on. Those patterns can be
either real or imagined, visual or mental, static or dynamic, qualitative or quantitative, utilitarian or
recreational. They can arise from the world around us, from the pursuit of science, or from the inner
workings of the human mind. Different kinds of patterns give rise to different branches of mathematics.
For example:

• Arithmetic and number theory study the patterns of number and counting.

• Geometry studies the patterns of shape.

• Calculus allows us to handle patterns of motion.

• Logic studies patterns of reasoning.

• Probability theory deals with patterns of chance.

• Topology studies patterns of closeness and position.

• Fractal geometry studies the self-similarity found in the natural world.

2 Mathematical notation

One aspect of modern mathematics that is obvious to even the casual observer is the use of abstract
notations: algebraic expressions, complicated-looking formulas, and geometric diagrams. The mathe-
maticians’ reliance on abstract notation is a reflection of the abstract nature of the patterns they study.

Different aspects of reality require different forms of description. For example, the most appropriate
way to study the lay of the land or to describe to someone how to find their way around a strange town
is to draw a map. Text is far less appropriate. Analogously, annotated line drawings (blueprints) are the

3Given today’s mass market paperbacks, the definition of “widely circulated” presumably has to incorporate the number
of years the book has been in circulation.
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appropriate way to specify the construction of a building. And musical notation is the most appropriate
way to represent music on paper.

In the case of various kinds of abstract, formal patterns and abstract structures, the most appropriate
means of description and analysis is mathematics, using mathematical notations, concepts, and proce-
dures. For instance, the symbolic notation of algebra is the most appropriate means of describing and
analyzing general behavioral properties of addition and multiplication.

For example, the commutative law for addition could be written in English as:

When two numbers are added, their order is not important.

However, it is usually written in the symbolic form

m + n = n + m

Such is the complexity and the degree of abstraction of the majority of mathematical patterns, that to
use anything other than symbolic notation would be prohibitively cumbersome. And so the development
of mathematics has involved a steady increase in the use of abstract notations.

Though the introduction of symbolic mathematics in its modern form is generally credited to the
French mathematician Françoise Viète in the sixteenth century, the earliest appearance of algebraic
notation seems to have been in the work of Diophantus, who lived in Alexandria some time around
250ce. His thirteen volume treatise Arithmetica (only six volumes have survived) is generally regarded
as the first algebra textbook. In particular, Diophantus used special symbols to denote the unknown in
an equation and to denote powers of the unknown, and he had symbols for subtraction and for equality.

These days, mathematics books tend to be awash with symbols, but mathematical notation no more
is mathematics than musical notation is music. A page of sheet music represents a piece of music; the
music itself is what you get when the notes on the page are sung or performed on a musical instrument. It
is in its performance that the music comes alive and becomes part of our experience; the music exists not
on the printed page but in our minds. The same is true for mathematics; the symbols on a page are just a
representation of the mathematics. When read by a competent performer (in this case, someone trained
in mathematics), the symbols on the printed page come alive—the mathematics lives and breathes in the
mind of the reader like some abstract symphony.

To repeat, the reason for the abstract notation is the abstract nature of the patterns that mathematics
helps us identify and study. For example, mathematics is essential to our understanding the invisible
patterns of the universe. In 1623, Galileo wrote,

The great book of nature can be read only by those who know the language in which it was written.

And this language is mathematics.4

In fact, physics can be accurately described as the universe seen through the lens of mathematics.
To take just one example, as a result of applying mathematics to formulate and understand the laws

of physics, we now have air travel. When a jet aircraft flies overhead, you can’t see anything holding it
up. Only with mathematics can we “see” the invisible forces that keep it aloft. In this case, those forces
were identified by Isaac Newton in the seventeenth century, who also developed the mathematics required
to study them, though several centuries were to pass before technology had developed to a point where
we could actually use Newton’s mathematics (enhanced by a lot of additional mathematics developed in
the interim) to build airplanes. This is just one of many illustrations of one of my favorite memes for
describing what mathematics does: mathematics makes the invisible visible.

3 Modern college-level mathematics

With that brief overview of the historical development of mathematics under our belts, I can start to
explain how modern college math came to differ fundamentally from the math taught in school.

Up to about 150 years ago, although mathematicians had long ago expanded the realm of objects
they studied beyond numbers (and algebraic symbols for numbers), they still regarded mathematics as

4The Assayer. This is an oft repeated paraphrase of his actual words.
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primarily about calculation. That is, proficiency at mathematics essentially meant being able to carry out
calculations or manipulate symbolic expressions to solve problems. By and large, high school mathematics
is still very much based on that earlier tradition.

But during the nineteenth century, as mathematicians tackled problems of ever greater complexity,
they began to discover that their intuitions were sometimes inadequate to guide their work. Counter-
intuitive (and occasionally paradoxical) results made them realize that some of the methods they had
developed to solve important, real-world problems had consequences they could not explain. For example,
one such, the Banach–Tarski Paradox, says you can, in principle, take a sphere and cut it up in such a
way that you can reassemble it to form two identical spheres each the same size as the original one.

It became clear, then, that mathematics can lead to realms where the only understanding is through
the mathematics itself. (Because the mathematics is correct, the Banach–Tarski result had to be accepted
as a fact, even though it defies our imagination.) In order to be confident that we can rely on discoveries
made by way of mathematics—but not verifiable by other means—mathematicians turned the methods
of mathematics inwards, and used them to examine the subject itself.

This introspection led, in the middle of the nineteenth century, to the adoption of a new and different
conception of the mathematics, where the primary focus was no longer on performing a calculation or
computing an answer, but formulating and understanding abstract concepts and relationships. This was
a shift in emphasis from doing to understanding. Mathematical objects were no longer thought of as
given primarily by formulas, but rather as carriers of conceptual properties. Proving something was no
longer a matter of transforming terms in accordance with rules, but a process of logical deduction from
concepts.

This revolution—for that is what it amounted to—completely changed the way mathematicians
thought of their subject. Yet, for the rest of the world, the shift may as well have not occurred. The
first anyone other than professional mathematicians knew that something had changed was when the
new emphasis found its way into the undergraduate curriculum. If you, as a college math student, find
yourself reeling after your first encounter with this “new math,” you can lay the blame at the feet of
the mathematicians Lejeune Dirichlet, Richard Dedekind, Bernhard Riemann, and all the others who
ushered in the new approach.

As a foretaste of what is to come, I’ll give one example of the shift. Prior to the nineteenth century,
mathematicians were used to the fact that a formula such as y = x2 + 3x − 5 specifies a function that
produces a new number y from any given number x. Then the revolutionary Dirichlet came along and
said, forget the formula and concentrate on what the function does in terms of input–output behavior. A
function, according to Dirichlet, is any rule that produces new numbers from old. The rule does not have
to be specified by an algebraic formula. In fact, there’s no reason to restrict your attention to numbers.
A function can be any rule that takes objects of one kind and produces new objects from them.

This definition legitimizes functions such as the one defined on real numbers by the rule:

If x is rational, set f(x) = 0; if x is irrational, set f(x) = 1.

Try graphing that monster!
Mathematicians began to study the properties of such abstract functions, specified not by some formula

but by their behavior. For example, does the function have the property that when you present it with
different starting values it always produces different answers? (This property is called injectivity.)

This abstract, conceptual approach was particularly fruitful in the development of the new subject
called real analysis, where mathematicians studied the properties of continuity and differentiability of
functions as abstract concepts in their own right. French and German mathematicians developed the
“epsilon-delta definitions” of continuity and differentiability, that to this day cost each new generation of
post-calculus mathematics students so much effort to master.

Again, in the 1850s, Riemann defined a complex function by its property of differentiability, rather
than a formula, which he regarded as secondary.

The residue classes defined by the famous German mathematician Karl Friedrich Gauss (1777–1855),
which you are likely to meet in an algebra course, were a forerunner of the approach—now standard—
whereby a mathematical structure is defined as a set endowed with certain operations, whose behaviors
are specified by axioms.
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Taking his lead from Gauss, Dedekind examined the new concepts of ring, field, and ideal—each of
which was defined as a collection of objects endowed with certain operations. (Again, these are concepts
you are likely to encounter soon in your post-calculus mathematics education.)

And there were many more changes.

Like most revolutions, the nineteenth century change had its origins long before the main protagonists
came on the scene. The Greeks had certainly shown an interest in mathematics as a conceptual endeavor,
not just calculation, and in the seventeenth century, calculus co-inventor Gottfried Leibniz thought deeply
about both approaches. But for the most part, until the nineteenth century, mathematics was viewed
primarily as a collection of procedures for solving problems. To today’s mathematicians, however, brought
up entirely with the post-revolutionary conception of mathematics, what in the nineteenth century was
a revolution is simply taken to be what mathematics is. The revolution may have been quiet, and to a
large extent forgotten, but it was complete and far reaching. And it sets the scene for this book, the
main aim of which is to provide you with the basic mental tools you will need to enter this new world of
modern mathematics (or at least to learn to think mathematically).

Although the post-nineteenth century conception of mathematics now dominates the field at the post-
calculus, college level, it has not had much influence on high school mathematics—which is why you need
a book like this to help you make the transition. There was one attempt to introduce the new approach
into school classrooms, but it went terribly wrong and soon had to be abandoned. This was the so-called
“New Math” movement of the 1960s. What went wrong was that by the time the revolutionaries’ message
had made its way from the mathematics departments of the leading universities into the schools, it was
badly garbled.

To mathematicians before and after the mid 1800s, both calculation and understanding had always
been important. The nineteenth century revolution merely shifted the emphasis regarding which of the
two the subject was really about and which played the derivative or supporting role. Unfortunately,
the message that reached the nation’s school teachers in the 1960s was often, “Forget calculation skill,
just concentrate on concepts.” This ludicrous and ultimately disastrous strategy led the satirist (and
mathematician) Tom Lehrer to quip, in his song New Math, “It’s the method that’s important, never
mind if you don’t get the right answer.” After a few sorry years, “New Math” (which was already over
a hundred years old, note) was largely dropped from the school syllabus.

Such is the nature of educational policy making in free societies, it is unlikely such a change could
ever be made in the foreseeable future, even if it were done properly the second time around. It’s also not
clear (at least to me) that such a change would be altogether desirable. There are educational arguments
(which in the absence of hard evidence either way are hotly debated) that say the human mind has to
achieve a certain level of mastery of computation with abstract mathematical entities before it is able to
reason about their properties.

4 Why are you having to learn this stuff?

It should be clear by now that the nineteenth century shift from a computational view of mathematics
to a conceptual one was a change within the professional mathematical community. Their interest, as
professionals, was in the very nature of mathematics. For most scientists, engineers, and others who make
use of mathematical methods in their daily work, things continued much as before, and that remains the
same today. Computation (and getting the right answer) remains just as important as ever, and even
more widely used than at any time in history.

As a result, to anyone outside the mathematical community, the shift looks more like an expansion
of mathematical activity than a change of focus. Instead of just learning procedures to solve problems,
college-level math students today also (i.e., in addition) are expected to master the underlying concepts
and be able to justify the methods they use.

Is it reasonable to require this? Granted that the professional mathematicians—whose job it is to
develop new mathematics and certify its correctness—need such conceptual understanding, why make
it a requirement for those whose goal is to pursue a career in which mathematics is merely a tool?
(Engineering for example.)
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There are two answers, both of which have a high degree of validity. (spoiler: It only appears that
there are two answers. On deeper analysis, they turn out to be the same.)

First, education is not solely about the acquisition of specific tools to use in a subsequent career.
As one of the greatest creations of human civilization, mathematics should be taught alongside science,
literature, history, and art in order to pass along the jewels of our culture from one generation to the
next. We humans are far more than the jobs we do and the careers we pursue. Education is a preparation
for life, and only part of that is the mastery of specific work skills.

That first answer should surely require no further justification. The second answer addresses the
tools-for-work issue.

There is no question that many jobs require mathematical skills. Indeed, in most industries, at
almost any level, the mathematical requirements turn out to be higher than is popularly supposed, as
many people discover when they look for a job and find their math background lacking.

Over many years, we have grown accustomed to the fact that advancement in an industrial society
requires a workforce that has mathematical skills. But if you look more closely, those skills fall into
two categories. The first category comprises people who, given a mathematical problem (i.e., a problem
already formulated in mathematical terms), can find its mathematical solution. The second category
comprises people who can take a new problem, say in manufacturing, identify and describe key features
of the problem mathematically, and use that mathematical description to analyze the problem in a precise
fashion.

In the past, there was a huge demand for employees with type 1 skills, and a small need for type 2
talent. Our mathematics education process largely met both needs. It has always focused primarily on
producing people of the first variety, but some of them inevitably turned out to be good at the second kind
of activities as well. So all was well. But in today’s world, where companies must constantly innovate to
stay in business, the demand is shifting toward type 2 mathematical thinkers—to people who can think
outside the mathematical box, not inside it. Now, suddenly, all is not well.

There will always be a need for people with mastery of a range of mathematical techniques, who
are able to work alone for long periods, deeply focused on a specific mathematical problem, and our
education system should support their development. But in the twenty-first century, the greater demand
will be for type 2 ability. Since we don’t have a name for such individuals (“mathematically able” or even
“mathematician” popularly imply type 1 mastery), I propose to give them one: innovative mathematical
thinkers.

This new breed of individuals (well, it’s not new, I just don’t think anyone has shone a spotlight on
them before) will need to have, above all else, a good conceptual (in an operational sense) understanding
of mathematics, its power, its scope, when and how it can be applied, and its limitations. They will also
have to have a solid mastery of some basic mathematical skills, but that skills mastery does not have to
be stellar. A far more important requirement is that they can work well in teams, often cross-disciplinary
teams, they can see things in new ways, they can quickly learn and come up to speed on a new technique
that seems to be required, and they are very good at adapting old methods to new situations.

How do we educate such individuals? We concentrate on the conceptual thinking that lies behind all
the specific techniques of mathematics. Remember that old adage, “If you give a man a fish you can
keep him alive for a day, but if you teach him how to fish he can keep himself alive indefinitely”? It’s the
same for mathematics education for twenty-first century life. There are so many different mathematical
techniques, with new ones being developed all the time, that it is impossible to cover them all in K-16
education. By the time a college frosh graduates and enters the workforce, many of the specific techniques
learned in those four college-years are likely to be no longer as important, while new ones are all the rage.
The educational focus has to be on learning how to learn.

The increasing complexity in mathematics led mathematicians in the nineteenth century to shift
(broaden, if you prefer) the focus from computational skills to the underlying, foundational, conceptual
thinking ability. Now, 150 years later, the changes in society that were facilitated in part by that more
complex mathematics, have made that focal shift important not just for professional mathematicians but
for everyone who learns math with a view to using it in the world.

So now you know not only why mathematicians in the nineteenth century shifted the focus of math-
ematical research, but also why, from the 1950s onwards, college mathematics students were expected
to master conceptual mathematical thinking as well. In other words, you now know why your college
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or university wants you to take that transition course, and perhaps work your way through this book.
Hopefully, you also now realize why it can be important to you in living your life, beyond the immediate
need of surviving your college math courses.

NOTE: This course reading is abridged from the course textbook, Introduction to Mathematical Thinking, by me (Keith

Devlin), available from Amazon as a low-cost, print-on-demand book. You don’t need to purchase the book to complete the

course, but I know many students like to have a complete textbook. In developing this course, I first wrote the textbook,

and then used it to construct all the course materials.


