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Online Appendix 1: Analyses of Data Sets to Illustrate the Paper's
Conceptual Steps and Themes

The simple numerical examples in this Appendix illustrate the conceptual steps and themes presented
in this article. The data sets are fabricated, but the arguments in the body of the text do not depend on
any correspondence between the data in these examples and actual observations.

1. Theme 1—Conditionality: "All Effects are Conditional on the Particular Set of
Varieties and Locations Observed"

Model 5 can be expressed in symbols:
yijk - m = ci + lj + clij + rijk (5')

Just as model 5 is equivalent to model 7, model 5' is equivalent to:
σ2

y = σ2
c + σ2

l + σ2
cl + σ2

r (7')
where σ2

y denotes the variance of yield measurements, σ2
c denotes the variance of cultivar

effects, etc.

The estimates of effects and variances in Table 1 are the ones that correspond to the minimum value of
σ2

r subject to the constraint that ∑ici= 0; ∑jlj = 0; ∑iclij = 0 for each j; ∑jclij = 0 for each i; and ∑krijk= 0
for each ij combination. (Similarly for subsequent tables.)

Theme 1 is illustrated by the changes in values of effects and variances in Table 1 as more locations
and cultivars are excluded from data set 1.
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Table 1
Analysis of Variance (AOV) of Data Set 1.

Data Set 1 Estimates of effects Variance  &
heritability estimates

m 3.0 σ2
c 0.31 (13%)

location l1 1 σ2
l 1 (43%)

cultivar 1 2 l2 -1 σ2
cl 0.76 (33%)

1 5.3,4.3 0.2,1.2 c1 -0.25 σ2
r 0.25 (11%)

2 3.1,2.1 2.4,1.4 c2 -0.75
3 4.9,5.9 1.6,2.6 c3 0.75 h2

w/in location 1 0.84
4 3.7,2.7 2.8,3.8 c4 0.25 h2

w/in location 2 0.77
cl1j, cl4j ±1.05 h2

across locations 0.13
cl2j, cl3j ±0.65

rijk +/-.5

Data Set 1a

m 2.5 σ2
c 0.06 (2.5%)

location l1 1.2 σ2
l 1.44 (58%)

cultivar 1 2 l2 -1.2 σ2
cl 0.72 (29%)

1 5.3,4.3 0.2,1.2 c1 0.25 σ2
r 0.25 (10%)

2 3.1,2.1 2.4,1.4 c2 -0.25 h2
w/in location 1 0.83

clij ±0.85 h2
w/in location 2 0.59

rijk +/-.5 h2
across locations 0.25

Data Set 1b

m 3.7 σ2
c 1.21 (83%**)

location l1 0 σ2
r 0.25 (17%)

cultivar 1
1 5.3,4.3* c1 1.1 h2

w/in location 1 0.83***
2 3.1,2.1 c2 -1.1

rijk +/-.5

Notes.
*  The two figures separated by a comma denote two independent replications.  The order of the

figures is of no significance.
**  Figures in parentheses give percentages of the total variance.
*** The meaning and significance of the heritability estimates, denoted by h2, are discussed in section 4.

2. Grouping of Cultivars by Similarity in Responses Across All Locations

Consider the effect of grouping cultivars from data set 1 by similarity in responses across all locations.
As Figure 1 in the article shows, cultivars 1 and 3 would be grouped because they have similar
responses across locations; similarly, cultivars 2 and 4 would be grouped. Within each cultivar group
the ranking does not change across locations, that is, the interaction within cultivar groups has been
reduced. This is shown numerically in Table 2, which presents the results of an AOV performed with
the appropriate model, namely, model 8, or, in symbols:

yijk = m + CI + ci:I + lj + ClIj + cli:I,j + rijk  (8')
where i:I denotes the ith cultivar in cultivar group I
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Table 2
AOV of Data Set 1 divided into two groups by similarity of response across locations.

Estimates of effects Variance  &
heritability estimates

m 3.0 σ2
C 0.06 (2.7%)

location l1 1 σ2
c:C 0.25 (11%)

Cultivar
Group cultivar 1 2 l2 -1 σ2

l 1 (43%)

A 1 5.3,4.3 0.2,1.2 CA 0.25 σ2
Cl 0.72 (31%)

B 2 3.1,2.1 2.4,1.4 CB -0.25 σ2
c:C,l 0.04 (1.7%)

A 3 4.9,5.9 1.6,2.6 c1:A -0.5 σ2r 0.25 (11%)

B 4 3.7,2.7 2.8,3.8 c2:B -0.5

c3:A 0.5
h2

within  cultivar group

A or B within location 1 0.26

c4:B 0.5
h2

within  cultivar group

A or B within location 2 0.66

ClIj ±0.85
h2

 within cultivar group

A across both locations 0.06

cli:I,j ±0.2
h2

 within cultivar group

B across both locations 0.44

rijk +/-.5

Now compare this with an arbitrary grouping, analyzed in Table 3.

Table 3
AOV of Data Set 1 divided into two arbitrary groups.

Estimates of effects Variance  &
heritability estimates

m 3.0 σ2
C 0.25 (11%)

location l1 l1 1 σ2
c:C 0.25 (11%)

Cultivar
Group cultivar 1 2 l2 -1 σ2

l 1 (43%)

A 1 5.3,4.3 0.2,1.2 CA -0.5 σ2
Cl 0.04 (1.7%)

A 2 3.1,2.1 2.4,1.4 CB 0.5 σ2
c:C,l 0.72 (31%)

B 3 4.9,5.9 1.6,2.6 c1:A,,c3:B 0.25 σ2r 0.25 (11%)

B 4 3.7,2.7 2.8,3.8 c2:A, c4:B -0.25

ClA1, ClB2 0.2
h2

within  cultivar group

A or B within location 1 0.83

ClA2, ClB1 -0.2
h2

within  cultivar group

A or B within location 2 0.59

cli:I,j ±0.85
h2

 within cultivar group

A across both locations 0.025

rijk +/-.5
h2

 within cultivar group

B across both locations 0.037
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Notice that 33.7% of the total variance in yield is associated with within group effects when the
grouping is arbitrary, but only 14.7% is when the groups have been formed by similarity of responses
across locations. This latter figure is comparable to the residual error.

3. Consolidation of Regressions

Consider the regression model 9 in symbolic form, with the cultivar effect partitioned into a cultivar
group effect and a cultivar-within-group effect:

yijk = m + CI + ci:I + ∑qbiqejkq + rijk (9')

where ejkq denotes the value of environmental factor q in replication k in location j;
biq denotes the regression coefficient that conveys the (partial) correlation of cultivar i's yield

with environmental factor q (across locations and replicates, j and k); and
rijk is a residual term (but not the same one as in the AOV models; this residual reflects the

particular range of environmental factors for which measurements are available and
included in the model).

To increase the number of observations on which each regression analysis is based, the
models for separate cultivars (equation 9') in a cultivar group may be consolidated into a smaller set of
analyses. This requires that that all biq's are assumed to be the same across cultivars in the same
cultivar group (= "bIq").

yijk = m + CI + ∑qbIqejkq + rijk (9a')

The homogeneity assumption involved in such consolidations is subject to questioning (theme 3),
especially since such consolidation shifts the ci and cli:I,j effects (from model 8) into the residual term
as if they were negligible. This shift also increases the residual variance and reduces the strength of
the association. (If data were available for measurable genetic factors equation 9a' could be elaborated
so as to bring those effects back out of the residual.)

4. Focusing Hypothesis Generation on Cases of High Heritability is Not Equivalent to
Focusing on Groups with Low Within-group Effects

The non-equivalence of the two approaches discussed in section 4.1 can be seen by considering the
simple case in Figure 1 in the article. Suppose that researchers, using some criterion other than
similarity of responses across locations, had chosen to group cultivar 1 with 2, and cultivar 3 with 4. In
each location, the size of the cultivar-in-location effect relative to the residual can be estimated by eye
by comparing the difference between the cultivar means (i.e, the distance between the lines for the
cultivars in a group) with the average difference between replicates (i.e, the average of the distances
between the two diamonds for each cultivar). In location 1, the ratio of cultivar to residual is clearly
much greater for both groups than it would be if groups chosen had happened to be those that cluster
analysis of the full data set would have produced, i.e. (1,3) and (2,4). However, the homogeneity of
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each of the latter groups is less questionable, so hypotheses formulated about measurable factors
operating those groups, not the groups (1,2) and (3,4), are more likely to be validated by subsequent
investigation. (For this example, nothing can be said about what those hypotheses might be, because
no other knowledge is available concerning the cultivars or locations.)

5. Derivation of Formula for Rerun Predictability

For the situation depicted in Figure 8, the formula for rerun predictability can be derived as follows:
Correlation (observed and predicted)
= Covariance (observed, predicted)/ [Variance (observed)* Variance (predicted)] 1/2

= Covariance (m + ci + lj + clij + rijk , m + c'i + lj + cl'ij + r'ijk)
/ [Variance (m + ci + lj + clij + rijk) * Variance (m + c'i + lj + cl'ij + r'ijk)] 1/2

where j is fixed, but i and k can vary & ' denotes the rerun
which can be estimated by Covariance (ci+ clij, c'i+ cl'ij) / [ ( σ2

c + σ2
cl + σ2

r) * (σ2
c + σ2

cl + σ2
r)]1/2

given that residual effects (noise) are uncorrelated and m + lj is a constant
which can be estimated by (σ2

c + σ2
cl ) / (σ2

c + σ2
cl + σ2

r) given that the cultivar is constrained to
be the same in the observed situation and the rerun (i.e., i = i')

Formulas for rerun predictability can also be derived using path analysis, a data analysis
technique that quantifies the relative contributions of variables ("path coefficients") to the variation in
a focal variable once a certain network of interrelated variables has been accepted (Lynch and Walsh
1998: 823).  The usual starting point for path analysis is a regression model that associates the focal
variable (here, the yield) with several other measured variables, but it is still possible to employ the
technique when there are no measured variables except the observed focal variable. This can be done
by formulating an additive model of constructed variables that take the values of the effects from an
AOV. The path coefficients are then set to equal the square root of the ratio of the variance of the
effect to the total variance for the trait.  The "equation of complete determination" that lies at the heart
of path analysis becomes

1 = ∑ σ2
x / σ2

y (16)
where x denotes the corresponding effect or variable.

When the same trait is observed in parent and offspring, their separate path analyses can be
linked and the correlation between the parent and offspring calculated (Lynch and Walsh 1998: 826),
provided it is assumed that the effects (and path coefficients) are constant across generations and the
residuals are uncorrelated, that is, the rerun conditions apply (sections 2.1 and 4.1). For the network as
defined by model 5 (figure 1), the predicted correlation between parent and offspring over all locations
is the corresponding formula for heritability:

σ2
c / σ2

y  = σ2
c / (σ2

c + σ2
l + σ2

cl + σ2
r) (11’)
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Figure 1.
Path diagram linking trait values of parent and offspring, both modeled by equation 5.

More complicated networks of interrelated variables can be analyzed.  Typically, these incorporate
diploidy and biparental inheritance, degrees of relatedness of different cultivars (not only parent-
offspring pairs), and correlations among replicates (e.g., when plots are assigned non-randomly within
a single location).  (In the analysis of human traits, non-random replication is usually attributed to
siblings in a family all sharing some unspecified environmental factors or to factors that differ among
siblings.) In addition to the assumption that effects and path coefficients are constant across
generations, all such path analyses, like the AOV and rerun predictability, a) are based on observed
traits and do not require reference to measurable genetic factors that are transmitted from parent to
offspring; and b) are conditional on the particular set of genetically defined varieties and locations
observed (from which effects/path coefficients are estimated).  (Pearl [2000, 135 & 344-5] interprets
path analysis as an analysis of causes, but does not acknowledge these conditions-conditions that
render path diagrams used in heritability estimation quite different from engineering circuit diagrams.)

6. Heterogeneity May Remain Even Within Cultivar Groups Formed by Cluster Analysis

Consider the generic model of development in online Appendix 2, Figure 1, but simplify it by not
allowing the state of the organism to induce actions by genetic and environmental factors. That leaves
the attribute in question being produced by a sequence of gene actions, each one modulated by a
corresponding environmental factor and subject to noise. One way this could be modeled is as follows:

y'ijk = ∏r (gir
ejr) fjrk  (17)

where g, e, f denote genetic factors, environmental factors, and random noise, respectively,
active at time r in the sequence,

γir  = 1 or 1+γ with equal probability,
ejr = ±ß with equal probability, and
fjrk = 1 for the 1st replicate, 1+random number in interval(-∂, ∂) for the 2nd replicate

To facilitate comparison with data set 1, I scale any data generated from model 17 so it has the
same mean and SD:

yijk = constant1 + constant2* y'ijk (17a)
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One data set generated by model 17 with the values γ  = .8,  ß  = .5,  ∂ = .25, r = 1,...,5,
constant1 = -0.88, and constant2 = 3.53 is given in the bottom right hand corner of Table 4. The AOV
of these data using additive model 5 is given in Table 5 and Figure 2. Cultivar groups are assigned on
the basis of similarity of responses across locations. Note the high within-location heritabilities for
cultivar group B (cultivars 2 and 4) and the low values for cultivar group A (cultivars 1 and 3).

Table 4
Parameter values in Model 17 that generate Data Set 2.

locations
envtl

factors 1 2
1 0.5 0.5
2 0.5 -0.5
3 -0.5 0.5

genes 4 -0.5 -0.5
cultivars 1 2 3 4 5 0.5 0.5

1 1.8 1.8 1 1.8 1 3.9, 5.6 1.8, 2.6
2 1 1 1.8 1.8 1.8 1.8, 1.2 3.9, 3.6
3 1 1.8 1 1 1.8 5.5, 5.6 2.7, 2.0
4 1 1.8 1 1.8 1 2.7, 3.2 1.1, 1.0

Table 5
AOV of Data Set 2 divided into two groups by similarity of response across locations.

Estimates of effects Variance  &
heritability estimates

m 3.0 σ2
C 0.49 (21%)

location l1 0.67 σ2
c:C 0.25 (11%)

Cultivar
Group cultivar 1 2 l2 -0.67 σ2

l 0.45 (20 %)

A 1 3.9, 5.6 1.8, 2.6 CA 0.70 σ2
Cl 0.60 (26 %)

B 2 1.8, 1.2 3.9, 3.6 CB -0.70 σ2
c:C,l 0.55 (24%)

A 3 5.5, 5.6 2.7, 2.0 c1:A,,c3:A ±0.24 σ2r 0.16 (7 %)

B 4 2.7, 3.2 1.1, 1.0 C2:B, c4:B ±0.30

ClA1, ClB2 -0.77
h2

within  cultivar group

A within location 1, 2 0.29, 0.029

ClA2, ClB1 0.77
h2

within  cultivar group

B within location 1, 2 0.87, 0.996

cli:A,j ±0.17
h2

 within cultivar group

A across both locations 0.02

cli:B,j ±1.04
h2

 within cultivar group

B across both locations 0.08

rijk varied
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Figure 2.
Data set 2.  Lines connect the midpoint of the cultivar in each location.  The x-axis is the location effect = average over all cultivars for that
location - overall mean.

 (This simple model also accentuates the difficulties of exposing the complexity of biophysical
processes of growth and development using AOV. As a thought experiment, consider what a
comparison of the AOV of data sets 1 and 2 would suggest to researchers about the processes that
generated the observed data. A comparison of Figure 1 in the article and Figure 2 above shows that
although cultivars 4 and 2 only converge in data set 1 but cross in data set 2, the overall trends are
very similar. The similar AOVs would not suggest that the data sets 1 and 2 were generated by
radically different kinds of models. However, this is the case. Although I did not state this, data set 1
was simply generated by the additive model 5 using the parameter values shown in Table 3.

This simple model can also be used to illustrate a point to be made in section 4.2, namely, if
the contributions of genetic and environmental factors modulate each other, the relationship of the
factors to heritability is complex. The same values of the parameters γ ,  ß ,  ∂ in model 17 can result in
widely varying heritability estimates. A spreadsheet that allows exploration of this feature is available
from the author on request.)

7. Example of Genetically Correlated Relatives Without Any Common Genetic Factor(s)
Accounting for the Similarity of Outcomes Within the Larger Group of Cultivars
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Table 6
Genetically correlated relatives without any common genetic factor(s) accounting for the similarity of outcomes within the larger group of
cultivars. Data generated by a variant of Model 17 (available from the author by request).

Group of relatives Sequence of genes Yield when genes are modulated by a
sequence of environmental factors FGHij

Twin 1 Dizygotic twin 2 Twin 1 Dizygotic twin 2

1 ABcDE AbcdE 1.409 1.264
2 AbcDE AbCDE 0.975 1.144
3 Abcde ABCde 0.685 0.715
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