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Abstract
Ancestral state reconstruction is a phylogenetic comparative method that involves estimating the unknown trait values of hypotheti-
cal ancestral taxa at internal nodes of a phylogenetic tree. Ancestral state reconstruction has long been, and continues to remain, 
among the most popular analyses in phylogenetic comparative research. In this review, I illustrate the theory and practice of ances-
tral state reconstruction for both discretely and continuously-valued phenotypic traits. For discrete characters, I focus on the Mk 
model and describe the distinction between marginal and joint reconstruction, as well as between local vs. global estimation. For 
continuous traits, I describe ancestral state reconstruction under a model of Brownian motion evolution. I highlight several use cases 
of ancestral state reconstruction via a set of empirical examples, ranging from diel activity pattern in primates, to environmental 
tolerance in lizards. Finally, I discuss and explore the statistical properties of ancestral state estimation as well as its limitations. 
By illustrating ancestral reconstruction under the hidden-rates and threshold models (for discrete traits), and bounded Brownian 
motion (for continuous characters), I demonstrate the considerable sensitivity of ancestral reconstruction to model misspecification. 
Although ancestral state reconstruction is virtually certain to retain its popularity into the future, I conclude by recommending 
considerable caution and circumspection in the use and interpretation of ancestral reconstruction in empirical evolutionary research.
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Introduction

Ancestral state reconstruction (also referred to as ancestral 
character estimation, and I’ll use the terms interchangeably 
here) is the general practice of estimating the value or values 
of a feature or attribute at the set of common ancestors of the 
operational taxa1 of a phylogenetic tree (Revell & Harmon, 
2022; Schluter et al., 1997; Yang, 2006, 2014). Ancestral 
state reconstruction falls within the domain of phylogenetic 
comparative methods—defined, for the purposes of this arti-
cle, as the set of methodologies typically employed down-
stream of phylogenetic inference to test hypotheses about 
evolution based on a tree, and often in combination with trait 
data for the taxa of that tree (Harmon, 2019; Nunn, 2011; 

O’Meara, 2012; Pagel, 1997; Revell & Harmon, 2022)—
and has long been relentlessly popular. This popularity of 
ancestral reconstruction is easy to comprehend. Evolution-
ary biologists are often inherently interested in the evolu-
tionary past, and ancestral character estimation promises us 
a window towards that otherwise invisible history (Harvey 
& Pagel, 1991; Revell & Harmon, 2022).

Undertaking ancestral state reconstruction requires that 
we have a reconstructed tree (or set of trees, e.g., from a 
bootstrapping analysis or Bayesian posterior sample), as well 
as observations of a phenotypic trait of interest from some or 
all of the terminal taxa of that tree (Harvey & Pagel, 1991; 
Nunn, 2011; Revell & Harmon, 2022). Modern ancestral 
state reconstruction also requires that we have a model or 
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1  Operational taxa are the named tips or leaves in a phylogeny which 
are often nominal species, but sometimes subspecies, populations, 
cultural groups (in the case of language phylogenies), genera, or other 
units of study (e.g., Hall et  al., 2018; Li et  al., 2022; Walker et  al., 
2012; Yaxley and Foley, 2019).
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hypothesized model for how our character trait evolved over 
the macroevolutionary time represented by our phylogeny.2 
Finally, we’ll use a formal statistical inference procedure 
to obtain a set of estimates of our trait at some or all of the 
internal nodes of the tree.

In the sections below, I’ll first offer some preliminaries 
on the goals of this article and on terminology. I’ll then 
continue to describe the procedures for estimating ancestral 
phenotypes, first for discrete and then for continuously-val-
ued traits, accompanying each section with a small number 
of empirical examples. Finally, I’ll discuss some limitations 
of ancestral state estimation, focusing particularly on those 
arising from identifiable inadequacies of the assumed trait 
evolution model.

Preliminaries

This article focuses on phylogenetic ancestral state recon-
struction of discrete and continuously-valued phenotypic 
traits. A phylogenetic tree is an acyclic (meaning that the 
graph doesn’t form loops or cycles), directed graph, typi-
cally used as a model to represent the historical relationships 
among species unified by common descent (Felsenstein, 
2004; Revell & Harmon, 2022; Yang, 2014). Phylogenies 
are also used to approximate other entities connected via 
a similar form of ancestor–descendant relationship, such 
as human cultural groups, viral sequences of an emerging 
infectious disease, or metastatic tumor cell lines in a cancer 
patient (e.g., Gray et al., 2009; Nunn, 2011; Quinn et al., 
2021; Somarelli et al., 2017; Turakhia et al., 2020). For the 
most part, the methods of this article will be equally appli-
cable to phylogenies employed in these other contexts.

Phylogenies consist of three main components: nodes, 
branches, and tips (Baum & Smith, 2012; Revell & Har-
mon, 2022; Yang, 2006). Nodes are hypothetical ancestral 
taxa located at the nexus point of two or more descendant 
branches. A branch (often referred to as an edge, and I’ll 
use the terms interchangeably here) is a connection between 
two different nodes: parent (i.e., ancestral) and daughter 

(i.e, descendant). Branches frequently have the property of 
length, which, in the type of tree used for ancestral state 
reconstruction, often represents elapsed time in some unit. 
Finally, a tip (sometimes referred to as a leaf) is an external 
node of the tree, not connected to any descendant nodes, 
that’s used to represent a species or other operational taxon 
of the phylogeny. Once again, in the type of phylogenetic 
tree used for ancestral state reconstruction, tips most often 
have as an attribute a label, indicating to which operational 
taxon they correspond (Baum & Smith, 2012; Felsenstein, 
2004).

Though ancestral state reconstruction can also be under-
taken for nucleotide sequences or other molecular characters 
(e.g., Yang, 2014), in this article I’ll focus on ancestral state 
reconstruction of phenotypic traits (Nunn, 2011; Revell & 
Harmon, 2022; Schluter et al., 1997). A phenotypic trait 
is an observable attribute—be it physical, morphological, 
behavioral, ecological, physiological, cellular, etc.—of the 
operational taxa of the tree. In the field of phylogenetic com-
parative biology, we conventionally subdivide phenotypic 
traits into two general categories (while realizing that some 
traits may not fall neatly into either): discrete and continu-
ous (Felsenstein, 2004; Pagel, 1997; Revell, 2024; Revell & 
Harmon, 2022).

Discrete characters are phenotypic attributes that can 
only assume one of fixed and finite set of values (Revell & 
Harmon, 2022). These might range from a discretely-cate-
gorized ecological trait (e.g., marine vs. freshwater habitat 
use in fishes, Betancur-R. et al., 2015), to a counted meris-
tic character (e.g., pre-caudal vertebra number in primates, 
Spear et al., 2023), to a behavioral specialization (e.g., diel 
activity pattern in vertebrates, Anderson & Wiens, 2017), to 
a categorical physical attribute (e.g., carotenoid-pigmented 
feathers in birds, Thomas et al., 2014).

Continuous characters, on the other hand, are phenotypic 
traits that can assume any of an infinite number of values 
on a real number scale (Revell & Harmon, 2022). Con-
tinuous characters needn’t be unbounded—for example, a 
continuous character is often bounded on the lower end by 
the value of zero. Nonetheless, unbounded evolution is a 
frequent assumption of continuous character models in phy-
logenetic comparative analysis (but see Boucher & Démery, 
2016). (Continuous traits that are bounded on the lower end 
by zero can often be transformed to an unbounded scale by 
computing the logarithm: indeed, this is a common practice 
for continuous traits in phylogenetic comparative biology.) 
A continuous trait might range from a linearly measured 
morphological feature (e.g., orbit size in extant and extinct 
cetaceans, Churchill & Baltz, 2021), to a mass or volume 
(e.g., encephalization in birds, Marugán-Lobón et al., 2021), 
to a continuously-varying life history trait (e.g., average ges-
tational length in mammals, Danis & Rokas, 2023), even to 

2  At the risk of upsetting some enthusiasts, and apart from in this 
footnote, I’ll avoid discussing parsimony as a method of ancestral 
state reconstruction here. Parsimony reconstruction involves iden-
tifying the set of states that minimize the number of evolutionary 
changes in our character required to explain our observed data. Even 
though this might seem sensible and will often provide very reasona-
ble ancestral estimates, parsimony leaves us with substantial difficulty 
in assessing the strength of evidence in support of this ‘most parsi-
monious’ solution—compared to, say, an alternative only slightly less 
parsimonious one—and does not provide any firm criteria for aver-
aging across equally parsimonious sets of states. For this reason, and 
others, I’ve decided to focus on explicit, probabilistic procedures of 
ancestral state inference in this article.
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a molecular genomic attribute (e.g., genome size in plants, 
Wang et al., 2021).

Our distinction between discrete or continuous charac-
ters seems relatively clear when put forward in this man-
ner. Nonetheless, as previously alluded, it may not always 
be straightforward to decide a priori whether a character 
should be coded as discretely or continuously-valued. For 
example, plumage color could be quantified numerically 
using a reflectance spectrometer or scored discretely against 
a palette containing a finite number of elements (e.g., Durán-
Castillo et al., 2021). A meristic (counted) trait might dif-
fer discontinuously from individual to individual, but vary 
intraspecifically such that among-species differences are 
better-approximated as a continuous random variable than 
placed in discrete bins. The position of this article is that 
the best way to reconcile this paradox, and contemplate 
whether a character trait should be categorized as discrete 
or continuous, is to consider the decision to be an implicit 
component of our model: in other words, as a necessary 
approximation of reality. If our trait varies in a manner that 
is closer to discontinuous than continuous, then (as a model 
approximation) treating it as discretely-valued is probably 
most appropriate! Logically, the converse will also be true.

Discrete Characters

The Mk Model

The standard model used to study the evolution of discrete 
characters, and thus to reconstruct their ancestral values, is 
one that’s popularly known as the Mk model (Harmon, 2019; 
Lewis, 2001; Pagel, 1994, 1997). This model describes a 
continuous time Markov chain (the‘M’in Mk) with k pos-
sible states (Revell & Harmon, 2022). This Mk stochastic 
process is fully parameterized using a k × k matrix, Q, in 
which all non-diagonal elements of the matrix ( qi,j for any 
i ≠ j ) give the instantaneous transition rates between states i 
and j, while the diagonal elements are equal to the negative 
off-diagonal row sums such that each row of the Q matrix 
adds to zero. An example value of Q for a binary discrete 
character is given below.

In this Q matrix the instantaneous forward and backward 
rates of transition between the two different levels of our 
character, 0 and 1, are q0,1 = q1,0 = 0.2 . For this example 
Q is symmetric to simplify subsequent calculations—but 
it needn’t be as a general rule! Indeed, many biological 
processes predict an asymmetry of backward and forward 

Q =

[
−q0,1 q0,1
q1,0 −q1,0

]
=

[
−0.2 0.2

0.2 −0.2

]

transition rates between character levels, and this is a com-
mon observation of empirical studies. The values in Q, 
q0,1 = q1,0 = 0.2 , are the rates of change in the character 
under our modeled stochastic process—meaning that, on 
average, 0.2 changes of our trait would be expected to occur 
every time interval. The waiting times between events under 
this continuous-time process will have an exponential dis-
tribution with a shape parameter determined by q0,1 and 
q1,0 , and the probability that (after some time) a change has 
occurred can be computed by integrating this distribution. 
Indeed, the matrix of probabilities that, after any arbitrary 
interval of time (given by t), our Markov process beginning 
in state i is now found in condition j can be calculated by 
computings the simple matrix exponential of Q × t (Pagel, 
1997; Lewis, 2001; Harmon, 2019).

Here, each element of Pt ( pi,j for all i and j) gives the prob-
ability P(j|i, t) : in other words, the chances of being found 
in state j after time t having started the time interval in con-
dition i.

Figure 1 shows a simplified rooted phylogeny with three 
terminal taxa (A, B, and C) and two observed levels (0 and 
1) of a discrete phenotypic trait. To compute the probabil-
ity of the observed data at the tips of this tree under our 
Markov chain (Mk) model, we might begin by calculating 
Pt=0.4 , Pt=0.3 , and Pt=0.7 for our transition matrix Q. If we 
were to do so, we’d obtain the following three values. (Our 
tree has a total of four edges, but two of them have exactly 
the same total length of t = 0.3 ; Fig. 1.)

Pt = exp(Qt)

C

B

A

root

internal

tC = 0.7

tAB = 0.4

tB = 0.3

tA = 0.30 1

Fig. 1   A simple, three-taxon, rooted phylogeny with two trait val-
ues of a discrete character (0 and 1) mapped at the tips of the tree. 
The two nodes of the tree (labeled root and internal, respectively) in 
whose states we might be interested in are indicated on the figure, as 
are the lengths of the four branches of the tree. See main text for more 
details
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Now, with these probability matrices in hand, we can pro-
ceed on to measuring the total probability of the data at the 
tips of the tree of Fig. 1. To do this, one more probability 
that we need to consider is the (prior) probability that the 
global root of the tree was in condition 0 or condition 1—
normally given as �0 and �1 , respectively. There are various 
ways we might set � (see FitzJohn et al., 2009; Yang, 2014; 
Revell & Harmon, 2022). For simplicity here, I’ll just say 
�0 = �1 = 0.5 (a ‘flat’ root prior); however, identifying a 
suitable root prior ( � ) has been the subject of more sub-
stantive discussion elsewhere (FitzJohn et al., 2009; Yang, 
2014).

Having decided on � , we can compute the total probabil-
ity of our data by summing the probability of our tip data (A 
in condition 1, B in 0, and C in 0, shown here as P(1, 0, 0) ), 
across all four possible combinations of states at the root 
and internal nodes of our tree, respectively: 0 & 0, 0 & 1, 1 
& 0, and 1 & 1.

In which P(1|0, tA) is the (1,2)th element of Pt=0.3 , P(1|1, tC) 
is the (2,2)th element of Pt=0.7 , and so on (Yang, 2014; Har-
mon, 2019).

After we calculate all the relevant quantities of our equa-
tion, we should find that the total probability of our data on 
this tree is 0.0267, given our transition matrix (Q) and mod-
eled process. (Importantly, this is the probability of observ-
ing the data pattern [1, 0, 0] given our tree and matrix Q, not 
the probability of the tree or Q. That means that if we were 
to identify all possible data patterns—[0, 0, 0], [0, 0, 1], 
and so on—compute their probabilities, and then sum these 
quantities, this sum should be equal to 1.0.) In this case, for 
demonstrative purposes only, I’ve explicitly enumerated all 
of the possible internal node and root states of our tree. This 
would become very onerous, however, for even a modestly-
sized phylogeny of five or ten operational taxa: indeed, it’s 
virtually impossible for larger trees. Fortunately, Felsenstein 

Pt=0.4 = exp(Q × 0.4) =

[
0.926 0.074

0.074 0.926

]

Pt=0.3 = exp(Q × 0.3) =

[
0.943 0.057

0.057 0.943

]

Pt=0.7 = exp(Q × 0.7) =

[
0.878 0.122

0.122 0.878

]

P(1, 0, 0) = �0 × P(0|0, t
AB
) × P(1|0, t

A
)

× P(0|0, t
B
) × P(0|0, t

C
)

+ �0 × P(1|0, t
AB
) × P(1|1, t

A
) × P(0|1, t

B
) × P(0|0, t

C
)

+ �1 × P(0|1, t
AB
) × P(1|0, t

A
) × P(0|0, t

B
) × P(0|1, t

C
)

+ �1 × P(1|1, t
AB
) × P(1|1, t

A
) × P(0|1, t

B
) × P(0|1, t

C
)

= 0.0267

(1981) described a highly efficient ‘pruning’3 algorithm to 
compute this exact probability.

So far we’ve treated Q as if it were fixed. In practice, we 
invariably estimate Q, typically by identifying the value of 
Q that maximizes the probability of our data given the tree: 
our Maximum Likelihood estimate, by definition (Lewis, 
2001; Pagel, 1994; Revell & Harmon, 2022). Obviously, it 
makes little sense to try to estimate Q from a tree contain-
ing only three observations! Consequently, for now we’ll 
continue using this same fixed value of Q, but we should at 
the same time keep in mind that in any empirical study Q is 
nearly invariably estimated from the same data that are being 
used to reconstruct ancestral states—rather than set to a fixed 
value or known a priori.

Marginal vs. Joint (and Local vs. Global) Estimation

An important consideration when discussing ancestral 
state reconstruction of discrete characters is the distinc-
tion between what are known as marginal and joint recon-
struction (Yang, 2006; Revell & Harmon, 2022).4 Marginal 
reconstruction involves proceeding from node to node on the 
phylogeny, and, at each node, computing the probability of 
observing the tip data of our tree conditioned on fixing the 
node we’ve visited to each one of the set of distinct values 
of our trait. This set of probabilities, referred to as mar-
ginal likelihoods, are normally rescaled such that they add 
to 1.0 (doing so merely entails dividing each by the total 
likelihood), at which point they’re frequently referred to as 
the node marginal scaled likelihoods. Yang (2006, 2014) 
has pointed out that these scaled likelihoods are also a type 
of empirical Bayes posterior probability. (Empirical Bayes 
estimation involve fixing one level of the Bayesian hierar-
chy—in this case, the value of our transition matrix Q—to 
its most likely value, and then computing our posterior prob-
abilities while conditioning on this fixed level.) They can 
thus be validly interpreted as the (posterior) probabilities 
that each node is in each of the observed character states, 
while conditioning on our fitted transition process, Q. Joint 
reconstruction, on the other hand, involves identifying the 
set of all internal node values (among all possible such sets) 
that maximizes the probability of our data. As observed by 

3  Felsenstein’s procedure is called a pruning algorithm because it 
proceeds in a “post-order” fashion—that is, from the tips towards the 
root of the tree—performing a calculation based only on the descend-
ant subtree of each internal node, pruning this subtree out of the phy-
logeny, and then using the computed quantities for the next, more 
rootward calculation.
4  In theory, the same distinction could be made for continuous 
traits—except that, in that case, our marginal and joint estimates are 
the same!
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Yang (2006), these needn’t necessarily be the set of states 
with the highest marginal scaled likelihoods!

In addition to marginal vs. joint ancestral state recon-
struction, another potentially important distinction applying 
specifically to marginal estimation that occasionally appears 
in the literature is between global and local reconstruction 
(Pagel, 1999). In this case, the difference between global and 
local involves the estimation of Q itself. Under global recon-
struction, we estimate our transition matrix Q (using, say, 
Maximum Likelihood) only once based on the phylogeny 
and all the data at the tips of the tree, without any particu-
lar assumption about the value of our character at any indi-
vidual node of the phylogeny (apart from the root—see my 
discussion of the root prior, � , above). We then proceed to 
undertake ancestral state reconstruction for all nodes while 
holding Q constant at this value (Yang et al., 1995; Koshi & 
Goldstein, 1996; Schluter et al., 1997; Pagel, 1999; Yang, 
2006; Revell & Harmon, 2022). Under local ancestral state 
reconstruction, on the other hand, a separate value of Q, 
and a separate value for the total probability of the data, is 
estimated conditioning on each of the k levels of our trait at 
every internal node of the phylogeny (Pagel, 1999).

A simple example of a circumstance in which local and 
global estimation could yield substantively different results 
can be seen if we imagine a scenario where our best global 
estimate of Q has a forward transition rate (from 0 to 1) of 
q0,1 > 0 (that is, some positive non-zero value), but a back-
ward transition rate (from 1 to 0) of q1,0 = 0 . Under our 
standard procedure of global ancestral state estimation, any 
node with even a single tip in condition 0 among its descend-
ants must have been in condition 0 with probability 1.0. On 
the other hand, with local estimation, we would first assume 
that our hypothesis that the node was in condition 1 is cor-
rect, then we’d estimate a value of Q conditioning on this 
hypothesis being true and in which a value of q1,0 > 1 would 
thus be guaranteed (Pagel, 1999). Our marginal reconstruc-
tion for the node then becomes a ratio of the probability of 
our data given that the node state is 0 or 1 divided by their 
sum, but not assuming that Q has a constant value for the 
two different cases.

Although Pagel (1999) argued fairly persuasively for 
the merits of local ancestral state reconstruction, the global 
method (in which Q is held constant) has nonetheless come 
to overwhelmingly predominate (Revell & Harmon, 2022). 
A major factor likely to underlie the near universal adop-
tion of global estimation for ancestral state reconstruction 
in comparative biology is how computationally onerous it 
would be to estimate Q (itself a challenging task in many 
circumstances) separately k times for each internal node of 
a large or even medium-sized phylogenetic tree. I’ll focus 
on global ancestral state estimation in the sections that fol-
low; however, readers can keep in mind that local estima-
tion would merely involve substituting a different value of Q 

for each state (normally the value of Q that maximized the 
likelihood, conditioned on that state) at each internal nodes 
during estimation. All other calculations are unchanged from 
what’s shown below, and the computational machinery to 
undertake local estimation using existing software is rela-
tively uncomplicated.

Marginal Ancestral State Estimation

Marginal ancestral state reconstruction involves traversing 
the tree and at each node calculating the probability of the 
tip data in our tree under our model, conditioned on our 
current node being in each of our character levels (Pagel, 
1999; Yang, 2006). These ‘marginal’ probabilities are then 
normalized by dividing by their sum at each node, at which 
point they can be interpreted as the (empirical Bayes pos-
terior) probabilities that each node is in each state of the 
character (Revell & Harmon, 2022; Yang, 2006). Since 
we’ve already calculated all the relevant quantities for our 
example of Fig. 1, let’s proceed and evaluate first the mar-
ginal likelihoods at the root, then the marginal likelihoods 
for our single internal node.

Here P(root = 0) gives the probability of our observed 
data (conditioning on Q), given that the root is in state 0; 
while P(root = 1) gives the probability of our data, given 
that the root is in state 1. Importantly, as a sidenote for 
clarity, P(root = 0) and P(root = 1) do not give the prob-
ability that the root state was in condition 0 or condition 1, 
respectively. If they did, then we would expect their values 
to add to 1.0! If these two quantities are rescaled by their 
sum, however (which is also, recall, the total likelihood), we 
obtain the marginal scaled likelihoods for states 0 and 1 of 
P(0, 1) = [0.878, 0.122] at the root node of the tree.

Now let’s repeat the same procedure for the single inter-
nal node of our phylogeny of Fig. 1.

P(root = 0) =�0 × P(0|0, tAB) × P(1|0, tA)

× P(0|0, tB) × P(0|0, tC)

+ �0 × P(1|0, tAB) × P(1|1, tA) × P(0|1, tB) × P(0|0, tC)

= 0.5 × 0.0434 + 0.5 × 0.0035

= 0.0234

P(root = 1) = �1 × P(0|1, tAB) × P(1|0, tA)

× P(0|0, tB) × P(0|1, tC)

+ �1 × P(1|1, tAB) × P(1|1, tA) × P(0|1, tB) × P(0|1, tC)

= 0.5 × 0.0005 + 0.5 × 0.0060

= 0.0033
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Once again, if these two quantities are rescaled by their sum, 
which is also the total likelihood (just as it was for the root 
node), we’ll have the marginal scaled likelihoods for condi-
tions 0 and 1 of P(0, 1) = [0.822, 0.178] . Figure 2a gives the 
marginal ancestral state reconstruction of our tree and data 
in Fig. 1, conditioned on the value of Q indicated earlier 
in this article. These states are shown mapped to the cor-
responding nodes of the tree using pie diagrams, as is so 
very commonly done in empirical studies that use marginal 
ancestral state reconstruction (Fig. 2a).

Just as I did when computing the total likelihood, 
above, for demonstrative purposes I’ve enumerated 
all the terms of each marginal likelihood. This would 
quickly become prohibitively complicated for even mod-
estly-sized phylogenies, so in practice computer imple-
mentations of marginal ancestral state reconstruction use 
one of various fast algorithms based on pruning to com-
pute these quantities (Felsenstein, 1981; Yang, 2006).

Joint Reconstruction

The other type of ancestral state reconstruction that we 
might perform under the Mk model, in addition to the 

P(internal = 0) = �0 × P(0|0, tAB) × P(1|0, tA)

× P(0|0, tB) × P(0|0, tC)

+ �1 × P(0|1, tAB) × P(1|0, tA) × P(0|0, tB) × P(0|1, tC)

= 0.5 × 0.0434 + 0.5 × 0.0005

= 0.0219

P(internal = 1)− = �0 × P(1|0, tAB) × P(1|1, tA)

× P(0|1, tB) × P(0|0, tC)

+ �1 × P(1|1, tAB) × P(1|1, tA) × P(0|1, tB) × P(0|1, tC)

= 0.5 × 0.0035 + 0.5 × 0.0060

= 0.0047

method of marginal ancestral state reconstruction that 
we just learned, is what’s typically referred to as joint 
reconstruction (Revell & Harmon, 2022; Yang, 2006). 
In this case, our estimated ancestral states are merely the 
set of such states that jointly maximize the probability of 
our data at the tips of the tree.

In our example from Fig. 1, there are a total of four pos-
sible sets of states at the two nodes of the phylogeny: [0, 0] , 
[0, 1] , [1, 0] , and [1, 1].5 Uncoincidentally, these four sets of 
states correspond to the four terms of our equation for the 
probability of our data ( P(0, 0, 1) ), above. In other words:

Here, P([0, 0]) gives the probability of our data at the tips 
of the tree, conditioning on both the root and single internal 
node of the tree being in states 0 and 0, respectively. The 
same interpretation can be made of P([0, 1]) , P([1, 0]) , and 
so on. From this set of values we can see that the combina-
tion of states that jointly maximizes the probability of our 
data are [0, 0]—in other words, condition 0 at both the root 
and single internal node of the tree (Fig. 1). This set thus 
becomes our joint Maximum Likelihood ancestral state esti-
mate. We could also imagine rescaling the set of probability 
values by their sum and reporting the probabilities of each 
set of states conditioned on Q—though this is not typically 
undertaken in joint reconstruction. Figure 2b illustrates the 
joint reconstruction from our tree and data of Fig. 1.

Stochastic Character Mapping

In addition to joint and marginal reconstruction, a third 
important and popular method of ancestral state estima-
tion under the Mk model is the procedure called stochas-
tic character mapping (Bollback, 2006; Huelsenbeck et al., 
2003; Revell, 2024; Revell & Harmon, 2022). Stochastic 
character mapping originally derives from a closely related 
approach called ‘mutational mapping’ (Nielsen, 2002) and 
was first generalized to phenotypic traits by Huelsenbeck et 

P([0, 0]) = �0 × P(0|0, tAB) × P(1|0, tA) × P(0|0, tB)
× P(0|0, tC) = 0.0217

P([0, 1]) = �0 × P(1|0, tAB) × P(1|1, tA) × P(0|1, tB)
× P(0|0, tC) = 0.0017

P([1, 0]) = �1 × P(0|1, tAB) × P(1|0, tA) × P(0|0, tB)
× P(0|1, tC) = 0.0002

P([1, 1]) = �1 × P(1|1, tAB) × P(1|1, tA) × P(0|1, tB)
× P(0|1, tC) = 0.0030

C

B

A

a) marginal reconstruction

C

B

A

b) joint reconstruction

Fig. 2   a Marginal ancestral state reconstruction based on the tree and 
data of Fig. 1. b Joint ancestral reconstruction. Both reconstructions 
assume a constant value of Q, as indicated in the text. See main text 
for more details

5  In general, there will be a number km of such sets for k character 
levels and m nodes. It goes without saying that computer implemen-
tations of joint ancestral state reconstruction do not comprehensively 
enumerate all possible node state combinations to find the set that 
maximizes the likelihood!
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al. (2003). Under stochastic character mapping, complete 
character histories (including character state changes along 
the branches of the tree) are randomly (in other words, “sto-
chastically”—hence the name of the method) sampled from 
their probability distribution under a model.

Stochastic character mapping is a computationally inten-
sive method. The most efficient algorithm to generate a sin-
gle stochastic character map minimally involves two travers-
als of the tree. The first of these is a post-order (tip to root) 
“pruning” traversal in which a set of conditional likelihoods 
of each subtree is calculated for each node of the phylogeny. 
These are the set of marginal likelihoods, under our model, 
for only the data descended from a given node. Note that if 
we generate more than one stochastically mapped history for 
a given tree and value of Q, as we nearly invariably should, 
these values can be recycled across simulations and do not 
need to be recomputed. Once the root node is reached, these 
calculated quantities also correspond to the marginal likeli-
hoods at this node and sum to the total probability of our 
data under the model. A root state is randomly sampled with 
probability equal to its marginal scaled likelihoods.

Next, we undertake a pre-order tree traversal. Looking at 
each daughter node from the root, we first calculate a set of 
updated probablities (p) that each of the two or more daugh-
ters is in each state of our character. For each daughter, this 
vector of probabilities, p, is simply equal to the ith row of the 
exponentiated product of Q, the transition matrix, and the 
elapsed time of the daughter edge, multiplied element-wise 
by the vector of conditional likelihoods of the subtree for 
that node (also known as the Hadamard product)—the val-
ues that we computed in our prior post-order tree traversal. 
In other words, p = exp(Qt)i⋅ ⊙ L , in which the subscript i⋅ 
indicates the ith row of exp(Qt) , ⊙ is the element-wise vector 
product, and L is a vector of conditional likelihoods.

We then proceed to the daughter node and randomly sam-
ple a state for it according to the probabilities given by p. We 
use simulation and rejection sampling to obtain a discrete 
character history along that edge consistent with our sam-
pled parent and daughter node states. Finally, we recursively 
traverse the phylogeny in a post-order (root to tip) fashion 
repeating this procedure for each pair of parent and daughter 
nodes. (Of course, if the daughter node is a tip then typically 
the state will be known rather than sampled probabilistically, 
but our procedure is otherwise identical.) Fig. 3 gives an 
example of ten stochastic character histories, given our phy-
logeny and data of Fig. 1 and the Q transition matrix of our 
previous sections in which q0,1 = q1,0 = 0.2 . Normally, we’d 
generate many more than ten stochastic character histories!

A single stochastic character map contains almost no 
information about evolutionary history, but a set of many 
such maps can be used to measure the posterior probabilities 
that each node is in each state of our character, as well as 
to generate an estimate of the probability distribution of the 
number of changes of each type on the tree. Indeed, when 
a single, fixed value of Q is used for stochastic mapping, 
the relative frequencies of each state at each node and the 
marginal scaled likelihoods from our previous section should 
exactly converge as the number of stochastic simulations 
goes to ∞ (though normally they will be highly similar after 
100 or 1,000 simulations). An advantage of stochastic char-
acter mapping, however, is that it also allows us to take into 
account uncertainty in the transition process represented 
by Q. For example, it’s straightforward to sample Q from 
its Bayesian posterior distribution using MCMC, or to use 
a set of transition processes in proportion to their weights 
based on model comparison (e.g., Revell & Harmon, 2022; 
Revell, 2024).

Fig. 3   A set of ten stochastic 
character maps for the tree and 
data of Fig. 1. These stochas-
tic character histories were 
sampled in proportion to their 
probability using a constant 
value of the transition matrix Q. 
See main text for more details C
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Empirical Examples

Marginal Reconstruction: Diel Activity Pattern in Primates

To demonstrate marginal reconstruction, we’ll study diel 
activity pattern, coded as ‘nocturnal,’ ‘diurnal,’ and ‘cath-
emeral’ (active randomly during the day or night), among 90 
species of primates. The phylogeny and data for this example 
come from Kirk and Kay (2004; but see a similar analysis 
using different data in Santini et al., 2015).

Our first step, in this case, will be to fit a set of four Mk 
models to our tree and data. We can begin with a very sim-
ple model in which we assume that the rates of transition 
between all three pairs of our states (nocturnal ↔ diurnal, 
nocturnal ↔ cathemeral, and diurnal ↔ cathemeral) are all 
equal one to the other, and in both directions. This model is 
called the ‘equal-rates’ (ER) model and our matrix, Q, will 
have just one parameter to be estimated. Next, we might 
proceed to fit a model in which the backward and forward 
transition rates between each pair of states are equal (one 
to the other), but differ for each character state pair. This 
is called the ‘symmetric’ (SYM) model and has a total of 
three parameters. We’ll fit a model in which every transi-
tion rate in each direction is permitted to assume a different 
rate. This is called the ‘all-rates-different’ (ARD) model, 
and our Q matrix for this model will include a total of six 
parameters to be estimated. (In general the ARD model has 
a total of k × (k − 1) parameters for k states.) Lastly, we’ll fit 
a model in which we imagine that the cathemeral condition 
is intermediate between the nocturnal and diurnal activity 

states, whereby any lineage evolving from one to the other 
must first pass through the state of cathemeral diel activity. 
This set of fitted models, and their AIC values and Akaike 
weights, is given in Fig. 4.

Since the weight of evidence is fairly even across each 
in our set of four models, I elected to use model-averaged 
marginal ancestral state estimation. Model-averaging simply 
involves taking the Akaike weights, multiplying them by the 
marginal scaled likelihoods for each model, and then sum-
ming across models (Revell, 2024). The resultant marginal 
ancestral states are shown in Fig. 5. They reveal that the 
common ancestor was most likely nocturnal (under our fit-
ted model), and also suggest multiple transitions to diurnal 
diel activity pattern in different parts of the primate tree of 
life (Fig. 5).

Joint Reconstruction: Tail Spines in Lizards

To illustrate joint reconstruction, we’ll use a phylogeny from 
Pyron et al. (2013) along with a dataset of tail spine presence 
and absence in lizards originally published by Ramm et al. 
(2020). To commence, we can fit a set of just two Mk models 
for this binary trait: the ER model, in which the back-and-
forth transitions between our two states are forced to take 
place at the same rate; and the ARD model in which they 
can differ. (We might have also considered two irreversible 
models: one in which tail spines can only be gained in our 
tree; and another in which they are only lost. In this case, 
doing so would not have substantively changed our results.)

Fig. 4   A set of fitted Mk models 
for the evolution of diel activ-
ity pattern in primates. a The 
equal-rates (ER) model. b The 
symmetric (SYM) model. c An 
ordered model in which the 
cathemeral state is assumed to 
be intermediate between the 
other two conditions. Finally, 
d the all-rates-different (ARD) 
model. These models involve 
the estimation of 1, 3, 4, and 6 
parameters, respectively. Note 
that the legend color gradient 
differs for each figure panel. 
Model-support and Akaike 
weights are indicated in each 
panel header. The data and phy-
logeny for this analysis derive 
from Kirk and Kay (2004). See 
main text for more details
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The fitted model parameters, log-likelihoods, and model 
weights are given in Table 1. Our analysis indicates much 
higher model weight (0.93 vs. 0.07) for the ARD compared 
to the ER model. Consequently, I used only this model for 
our subsequent joint ancestral state reconstruction, given in 
Fig. 6.6

Joint reconstruction involves a key difference in interpre-
tation compared to marginal reconstruction. Now, we can 
no longer point to a particular node and say that the most 
probable state is ‘spiny’ or ‘non-spiny.’ Rather, we might say 
that “in the most probable joint reconstruction, the ancestral 
condition at the global root was non-spiny,” or something 
to that effect. Since researchers more often wish to be able 

to make specific statements about particular nodes (rather 
than the most probable set of conditions across all nodes), 
marginal reconstruction tends to be the much more popular 
of these two techniques among comparative biologists.

Stochastic Character Mapping: Leaf Armature in Palms

To demonstrate stochastic character mapping, I used a recent 
dataset and phylogeny published by Onstein et al. (2022). 
In this example, the phylogeny contains a total of 2,539 tree 
species from the family Arecaceae (the palms), and data for 
the presence of absence of leaf armature (spines, hooks, or 
prickles on the palm leaves) for all but 120 of these taxa. 
The trait data of this study were compiled by Onstein et al. 
(2022) from the PalmTraits 1.0 database (Kissling et al., 
2019), and the palm phylogeny is derived from an earlier 
tree by Faurby et al. (2016).

To begin, I re-coded all data deficient species (which had 
been left out by Onstein et al., 2022) as ambiguous for the 
trait of leaf armature, and then I proceeded to fit a total of 

Al
le

no
pi

th
ec

us
 n

ig
ro

vi
rid

is
C

er
co

pi
th

ec
us

 m
iti

s
C

er
co

pi
th

ec
us

 c
ep

hu
s

C
er

co
pi

th
ec

us
 p

et
au

ris
ta

Er
yt

hr
oc

eb
us

 p
at

as
C

hl
or

oc
eb

us
 a

et
hi

op
s

M
io

pi
th

ec
us

 ta
la

po
in

M
ac

ac
a 

ne
m

es
tri

na
M

ac
ac

a 
fa

sc
ic

ul
ar

is
M

ac
ac

a 
m

ul
at

ta
C

ol
ob

us
 g

ue
re

za
C

ol
ob

us
 p

ol
yk

om
os

Pi
lio

co
lo

bu
s 

ba
di

us
N

as
al

is
 la

rv
at

us
Py

ga
th

rix
 n

em
ae

us
R

hi
no

pi
th

ec
us

 ro
xe

lla
na

Se
m

no
pi

th
ec

us
 e

nt
el

lu
s

Tr
ac

hy
pi

th
ec

us
 c

ris
ta

tu
s

Pr
es

by
tis

 c
om

at
a

Pr
es

by
tis

 m
el

al
op

ho
s

H
yl

ob
at

es
 k

lo
ss

ii
H

yl
ob

at
es

 la
r

Sy
m

ph
al

an
gu

s 
sy

nd
ac

ty
lu

s
G

or
illa

 g
or

illa
H

om
o 

sa
pi

en
s

Pa
n 

tro
gl

od
yt

es
Po

ng
o 

py
gm

ae
us

Al
ou

at
ta

 p
al

lia
ta

Al
ou

at
ta

 s
en

ic
ul

us
At

el
es

 fu
sc

ic
ep

s
At

el
es

 g
eo

ffr
oy

i
At

el
es

 p
an

is
cu

s
La

go
th

rix
 la

go
tri

ch
a

Ao
tu

s 
tri

vi
rg

at
us

C
al

lim
ic

o 
go

el
di

i
C

al
lit

hr
ix

 a
rg

en
ta

ta
C

al
lit

hr
ix

 p
yg

m
ae

a
C

al
lit

hr
ix

 ja
cc

hu
s

Le
on

to
pi

th
ec

us
 c

hr
ys

om
el

as
Le

on
to

pi
th

ec
us

 ro
sa

lia
Sa

gu
in

us
 m

id
as

Sa
gu

in
us

 le
uc

op
us

Sa
gu

in
us

 fu
sc

ic
ol

lis
C

eb
us

 a
lb

ifr
on

s
C

eb
us

 c
ap

uc
in

us
Sa

im
iri

 o
er

st
ed

ii
Sa

im
iri

 s
ci

ur
eu

s
C

ac
aj

ao
 m

el
an

oc
ep

ha
lu

s
C

hi
ro

po
te

s 
sa

ta
na

s
Pi

th
ec

ia
 p

ith
ec

ia
C

al
lic

eb
us

 m
ol

oc
h

C
al

lic
eb

us
 to

rq
ua

tu
s

Ta
rs

iu
s 

ba
nc

an
us

Ta
rs

iu
s 

sy
ric

ht
a

M
ic

ro
ce

bu
s 

m
ur

in
us

M
ic

ro
ce

bu
s 

ru
fu

s
M

irz
a 

co
qu

er
el

i
C

he
iro

ga
le

us
 m

aj
or

C
he

iro
ga

le
us

 m
ed

iu
s

Le
pi

le
m

ur
 le

uc
op

us
Le

pi
le

m
ur

 m
us

te
lin

us
Ph

an
er

 fu
rc

ife
r

In
dr

i i
nd

ri
Av

ah
i l

an
ig

er
Pr

op
ith

ec
us

 v
er

re
au

xi
Pr

op
ith

ec
us

 d
ia

de
m

a
Eu

le
m

ur
 fu

lv
us

Eu
le

m
ur

 ru
br

ive
nt

er
Eu

le
m

ur
 m

on
go

z
Eu

le
m

ur
 m

ac
ac

o
H

ap
al

em
ur

 g
ris

eu
s

H
ap

al
em

ur
 s

im
us

Le
m

ur
 c

at
ta

Va
re

ci
a 

va
rie

ga
ta

D
au

be
nt

on
ia

 m
ad

ag
as

ca
rie

ns
is

Ar
ct

oc
eb

us
 a

ur
eu

s
Ar

ct
oc

eb
us

 c
al

ab
ar

en
si

s
Pe

ro
di

ct
ic

us
 p

ot
to

Lo
ris

 ta
rd

ig
ra

du
s

N
yc

tic
eb

us
 c

ou
ca

ng
N

yc
tic

eb
us

 p
yg

m
ae

us
Eu

ot
ic

us
 e

le
ga

nt
ul

us
G

al
ag

o 
m

at
sc

hi
ei

G
al

ag
o 

m
oh

ol
i

G
al

ag
o 

se
ne

ga
le

ns
is

G
al

ag
oi

de
s 

za
nz

ib
ar

ic
us

G
al

ag
o 

al
le

ni
O

to
le

m
ur

 c
ra

ss
ic

au
da

tu
s

O
to

le
m

ur
 g

ar
ne

tti
i

G
al

ag
oi

de
s 

de
m

id
of

f

Cathemeral
Diurnal
Nocturnal

Fig. 5   Model-averaged marginal ancestral state reconstruction of diel 
activity pattern in primates, integrating over the four models of Fig. 4 
in proportion to their Akaike weights. Nodes in which no single con-

dition had a model-averaged marginal scaled likelihood > 0.95 are 
shown in larger size. The data and phylogeny for this analysis derive 
from Kirk and Kay (2004). See main text for more details

Table 1   Estimated transition rates, log-likelihood, number of parameters, AIC, and model weight for two different discrete character evolution 
models for the evolution of the presence or absence of tail spines in lizards

The phylogeny used in this analysis is based on Pyron et al. (2013), and the data were compiled by Ramm et al. (2020). See main text for more 
details

q0,1 q1,0 log(L) d.f AIC Weight

ER model 0.00152 0.00152 −123.5618 1 249.1235 0.0688
ARD model 0.00059 0.01112 −119.9564 2 243.9129 0.9312

6  An interesting ‘footnote’ (get it?) to this result is that the ML joint 
reconstruction at the global root of the tree is ‘non-spiny,’ but in an 
analogous marginal reconstruction the most probable condition for 
the same node was ‘spiny.’ I haven’t included this analysis here, but 
the reader is encouraged to download the data and discover this for 
themselves!
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four Mk trait evolution models: the ER model, the ARD 
model, and two irreversible models—one in which leaf 
armature could be acquired but not lost, and a second in 
which the reverse was true. (Coding for ambiguity simply 
involves observing, a priori, that an ambiguous tip could 
equally likely be in one condition or the other. The total 
probability of the data then becomes the sum of the prob-
ability conditioning first on the tip being in one state and 
then in the other. This total probability can be computed 
efficiently via the pruning algorithm of Felsenstein 1981.) A 
summary of parameter estimates and model support is given 
in Table 2. I found almost no support for the two irreversible 

models, but roughly similar weights of evidence for the two 
different reversible models: ER and ARD (Table 2).

I next generated 500 stochastic character maps in which 
each of the four models were sampled randomly with prob-
abilities given by their relative model weights (Table 2). 
Note that the sampling algorithm and total sample size of 
stochastic character maps is such that it ensures almost no 
irreversible (absent → present or present → absent) stochas-
tic character histories will be sampled. A single, randomly 
chosen stochastically mapped tree is shown in Fig. 7.

Normally, relatively little can be learned from a single, 
stochastic character history such as that shown in Fig. 7. On 
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Fig. 6   Joint reconstruction of the presence and absence of tail spines 
on a phylogeny of 658 species of lizards. Reconstruction was per-
formed under the best-supported Mk model which featured unequal 
back and forth transition rates between the two different character lev-

els of the trait (the ARD model; Table 1). The phylogeny and data for 
this analysis derive from Pyron et al. (2013) and Ramm et al. (2020), 
respectively. See main text for more details

Table 2   Estimated transition rates, log-likelihood, number of parameters, AIC, and model weights for four different discrete character evolution 
models for the evolution of the presence or absence of leaf armature in palms

The phylogeny and data for this analysis derive from Faurby et al. (2016), Kissling et al. (2019), and Onstein et al. (2022). See main text for 
more details

q0,1 q1,0 log(L) d.f AIC Weight

ER model 0.00392 0.00392 −431.5580 1 865.1161 0.57424
absent → present 0.01162 0.00000 −617.2943 1 1236.5886 0.00000
present → absent 0.00000 0.01279 −485.6286 1 973.2573 0.00000
ARD model 0.00338 0.00471 −430.8572 2 865.7145 0.42576
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the other hand, neither is anything to be gained by visual-
izing 500 such histories—particularly for large phylogenetic 
trees! For this reason, various tactics have been proposed 
to summarize the results across a set of stochastic charac-
ter maps (Revell, 2013, 2014b, 2024; Revell & Harmon, 
2022). Two such analyses are shown in Fig. 8. In particular, 
Fig. 8a shows a posterior density map (Revell, 2013, 2014b) 
obtained by measuring the relative frequency of each of the 
two states over our set of 500 stochastic simulations across 
all edges and nodes of the tree. These frequencies give the 
posterior probabilities along all of the edges and nodes of 
the phylogeny. (These will be empirical Bayes posterior 
probabilities for a fixed value of Q; however, full Bayesian 
probabilities are also possible—for example, if the Q matrix 
is sampled from its posterior probability distribution using 
MCMC.) Fig. 8b, on the other hand, illustrates a visualiza-
tion of the posterior probability distribution of the number 
of changes of each type on the phylogeny. These distribu-
tions are obtained simply by counting the changes in each of 
the 500 stochastically sampled character maps (e.g., Revell 
2024).

Continuous Characters

The Brownian Motion Model

The standard model employed to study the evolution of 
continuous traits, as well as (especially) to reconstruct their 
ancestral values, is one called the Brownian motion model 
(Felsenstein, 1973, 1985; O’Meara et al., 2006; Harmon, 
2019). Brownian motion is a continuous time, direction-
less, random walk model (Harmon, 2019; Revell & Harmon, 
2022). Under Brownian motion, successive evolutionary 
changes are independent and come from a Gaussian distri-
bution with a mean of 0 and variance of �2 × t , in which �2 
is the instantaneous rate of the Gaussian process and t is the 
elapsed time (Harmon, 2019). Figure 9 shows a simulation 
of Brownian motion evolution (Fig. 9b) on the same simpli-
fied phylogenetic tree of three taxa that we saw earlier in the 
article (e.g., Fig. 1), but in which I’ve re-colored the edges 
(Fig. 9a) so that they can be matched more easily with the 
Brownian trait evolution scenario (Fig. 9b).

Brownian motion evolution will produce a realized trait 
vector of phenotypic values among species that has an 
expected value ( E[x] ) equal to the root state ( x0 ), and a 
multivariate normal distribution with variance equal to 
the total height of each tip above the root multiplied by the 
instantaneous Brownian rate, �2 (O’Meara et al., 2006). 
In other words x ∼ MVN(x0, �

2C) in which C is an N × N 

leaf armature
absent
present

Fig. 7   A single stochastically-sampled character history of the 
absence or presence of leaf armature (spines or other defensive struc-
tures) in 2,539 species of palms. The phylogeny and data for this 

analysis derive from Faurby et al. (2016), Kissling et al. (2019), and 
Onstein et al. (2022). See main text for more details
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matrix (for N tips in the tree), where each i,jth element 
contains the height above the root of the most recent com-
mon ancestor of taxa i and j. This matrix, C, for our phy-
logeny of Fig. 9a would be calculated as follows (Revell 
& Harmon, 2022).

To compute the probability density of a set of data ( x ) at 
the tips of the tree for any particular value of �2 and x0 , we 
must evaluate the following density function. If this expres-
sion seems familiar to some readers, they shouldn’t be sur-
prised: it’s just a typical multivariate normal probability 
density function!

P(x) =
exp(−

1

2
[x − 1x0]

�(�2C)−1[x − 1x0])
√
(2�)N × det(�2C)
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Fig. 8   a Probability density of the absence/presence of leaf armature 
based on 500 stochastic character mappings on a phylogenetic tree of 
2,539 palm species. The four models of Table 2 were randomly sam-
pled in proportion to their model weights following Revell (2024). 
Probability density of changes from leaf armature absent to present 

b and present to absent c from 500 stochastic character maps. The 
phylogeny and data for this analysis derive from Faurby et al. (2016), 
Kissling et  al. (2019), and Onstein et  al. (2022). See main text for 
more details
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Finding the set of values for x0 and �2 that maximize the 
value of this expression would provide us with the Maxi-
mum Likelihood estimates of these model parameters 
(O’Meara et al., 2006; Revell & Harmon, 2022).

Ancestral State Estimation Under Brownian Motion

Under Brownian motion evolution of our trait, not only are 
the tips distributed as a multivariate normal random vari-
able, so are the values of internal nodes (Rohlf, 2001; Revell 
& Harmon, 2022; Schluter et al., 1997). To find those node 
values that maximize the probability of our tip data, x, we 
merely have to expand the matrix C to include one additional 
row and column for each (non-root) internal node of the 
tree. In our three-taxon phylogeny of Fig. 9a there is only 

one such node (labeled “internal”) and our matrix C thus 
looks as follows.

To find the set of ancestral states under Brownian motion 
that maximize the probability of our observed data (our ML 
states), we simply identify the internal node values and root 
state ( x0 ) that jointly maximize the probability of the tip data 
given our model. Figure 10 gives a log-likelihood surface for 
the ancestral values at the root node (on the x-axis) and the 
single internal node (on y) of our tree: showing the maxi-
mum likelihood values of x0 and x

internal
 to be 1.29 and 1.82, 

respectively. The figure also includes an illustrative course 
of numerical optimization on this likelihood surface, though 
this result would (naturally) depend on our starting values 
and specific optimization routine (Fig. 10).

In practice, rapid algorithms have been identified to find 
the set of internal node values that maximize the probability 
density of the data under our model (e.g., Rohlf, 2001). For 
instance, Rohlf (2001) points out that the Maximum Likeli-
hood ancestral state at any node i can be expressed as a simple 
weighted average of the tip taxa values, in which the set of 
weights ( wi ) is given by the following expression.

Fig. 9   a Three-taxon phyloge-
netic tree of Fig. 1, but in which 
each edge of the tree has been 
plotted with a different color. b 
Single illustrative realization of 
Brownian motion evolution on 
the tree of figure panel a. See 
main text for more details
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Here, I is the identity matrix and 1 is a conformable vector 
of 1.0s (Rohlf, 2001). The only unfamiliar term, CHiO

 , is the 
ith row of the m × N matrix ( CHO ) containing the heights 
above the root of the most recent common ancestor of each 
ith internal node (in rows) and each jth tip (in columns). For 
our tree of Fig. 9, the matrix CHO would be as follows.

If we apply the equation of Rohlf (2001) to our tree of 
Fig. 9a, then we will obtain the following sets of weights.

Finally, using these weights and our original data of Fig. 9, 
we’ll get the following two results for xroot and xinternal , our 
estimated root and internal node states, respectively.

Not by coincidence, these values are identical to the ones 
that we obtained by numerically maximizing the likelihood 
in Fig. 10. Although we could imagine obtaining variances 
and confidence intervals for our ancestral state estimates 
from the curvature of the likelihood surface, Rohlf (2001) 
also provides more reliable and efficient analytic standard 
errors, which, in turn, have been implemented in widely-
used software for ancestral state estimation of continuous 
traits (e.g., Revell, 2024).

Lastly, as was the case for discrete traits, one might logi-
cally think that estimating ancestral states under Brownian 
motion for a continuous character jointly (across all nodes) 
or marginally (node by node) should result in different esti-
mated states. In fact, this is not the case: under Brownian 
motion, marginal and joint ancestral state estimates are 
identical.

wi =

((
1�C−11

)−1
1 + CHiO

(
I − C−111�

(
1�C−11

)−1))
C−1

xroot = wrootx
� = 0.28 × 2.22 + 0.28 × 1.82

+ 0.44 × 0.36 = 1.29

xinternal = winternalx
� = 0.44 × 2.22 + 0.44 × 1.82

+ 0.12 × 0.36 = 1.82

Empirical Examples

Brownian Motion: Environmental Niche Evolution 
in Liolaemid Lizards

To explore ancestral character estimation for continuous 
characters under Brownian motion, I began with a dataset of 
maximum environmental temperature in degrees Celsius for 
lizards of the South American family Liolaemidae derived 
from Esquerré et al. (2019). With these data and phylog-
eny in hand, I proceeded to estimate ancestral states under a 
Brownian model of evolutionary change, and then projected 
the observed (at the tips) and reconstructed (along edges and 
at nodes) values onto the tree using a visualization method 
described in Revell (2013, 2014b).

Figure 11 shows the result of this analysis. Although the 
estimated ancestral value at the deepest nodes of the phylog-
eny are predictably intermediate,7 the projection nonetheless 
reveals an interesting pattern of similarity in thermal envi-
ronment (phylogenetic signal, Blomberg et al., 2003; Revell, 
2024) between related species (Fig. 11). The ancestral state 
reconstruction also helps us to see multiple shifts in envi-
ronmental temperature distributed among the different major 
clades of the phylogeny (Fig. 11).

Brownian Motion: Body Size in the Frog Genus Conraua

In addition to environmental temperature in Liolaemidae 
(Fig. 11), I also estimated ancestral states for overall body 
size (reported as snout-to-vent length, or SVL, in Black-
burn et al., 2020) for African frogs from the genus Conraua, 
known commonly as slippery (Blackburn et al., 2020) or 
giant (Channing & Rödel, 2019) frogs.

The Conraua frog clade includes the world’s largest 
frog—the Goliath frog, Conraua goliath—making their 
evolutionary history of body size particularly interesting 
(Blackburn et al., 2020). The tree and data for this example 
derive from Blackburn et al. (2020) and Channing and Rödel 
(2019), respectively, and a similar ancestral state reconstruc-
tion analysis was undertaken by Blackburn et al. (2020).

To estimate node states in this group, I obtained maxi-
mum body size values of six species of Conraua frog (Chan-
ning & Rödel, 2019), along with a single representative 
value of 53 mm for the outgroup clade Petropedetidae (as 
in Blackburn et al., 2020), although the latter has been left 
out of all plots. I transformed all values using the natural 
logarithm for estimation, and then back-transformed my 

7  After all, ancestral state estimates under the Brownian motion 
model are a simple weighted mean of the species trait values, as 
shown above.
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estimates and their confidence limits to the linear scale for 
graphing.

Figure 12 shows two different visualizations of ancestral 
state estimates for Conraua frogs. First, Figure panel 12a 
uses a continuous color gradient (similar to that of Fig. 11) 
mapped to the nodes and tips of the plotted tree. Figure 12b, 
by contrast, shows a projection of the tree into a phenotype 

space, called a ‘traitgram’ (following Evans et al., 2009; 
Revell, 2013; Revell et al., 2018). Overlain shaded poly-
gons give the 95% confidence intervals around estimated 
ancestral values. In both graphs, we see the dramatic shift 
to large body size in the lineage leading to the Goliath frog, 
C. goliath (Fig. 12).
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Fig. 11   A phylogenetic tree of the Maximum Likelihood ancestral 
states (along edges) and observed values (at the tips) of maximum 
environmental temperature among lizards of the South American 

family Liolaemidae. The phylogeny and data for this analysis are 
based on Esquerré et al. (2019). See main text for more details
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Fig. 12   Ancestral state reconstruction of body size in the Conraua 
frogs. a Projection of the observed (at the tips) or estimated (at 
nodes) ancestral values of body size in mm. b Traitgram projection 
of the phylogenetic tree into trait space, based on the ancestral recon-

struction. The superimposed shaded polygons show 95% confidence 
limits around estimated values. The body size data and phylogeny are 
based on Channing and Rödel (2019) and Blackburn et  al. (2020), 
respectively. See main text for more details
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Properties of Ancestral State Estimation

Though relentlessly popular, ancestral character estima-
tion has been subject to numerous criticisms over the years 
(e.g., Cunningham et al., 1998; Cunningham, 1999; Omland, 
1999; Losos, 2011; Gascuel & Steel, 2020). These critiques 
have assumed (very roughly) two flavors.

On the one hand, ancestral state estimates, particularly for 
nodes close to the root of the tree, tend to have broad uncer-
tainty. Indeed, Ané (2008) shows that the effective sample 
size (a measure of the amount of independent information 
contained by the data) for an estimate of the root node of the 
tree under Brownian motion tends to be much smaller than 
the number of tips, and could be as small as 5 or 6 for trees 
containing dozens of terminal taxa, or more (Ané, 2008). 
Put another way, it’s also been demonstrated that all estima-
tors for both continuous and discrete characters, and across 
multiple models of evolutionary change, may be unbiased, 
but are frequently statistically inconsistent for deep nodes of 
the phylogeny, particularly the global root (Ané, 2008; Fan 
& Roch, 2018; Ho & Dinh, 2022; Vu et al., 2023).

Statistical inconsistency of ancestral state estimators 
merely means that our estimate is not guaranteed to con-
verge on the true value, even as our number of tips goes to 
∞—but instead is a random variable with an expected value 
equal to the true root state, and a variance that depends on 
the structure of the tree (Ané, 2008). Though research on the 
conditions of statistical inconsistency in ancestral state esti-
mation has focused on the root node (e.g., Ané, 2008; Fan & 
Roch, 2018; Ho & Dinh, 2022, Vu et al., 2023), these results 
are likely to apply to other deep nodes in the phylogeny (if 
not to all nodes, depending on the case). The implication of 
statistical inconsistency under broad circumstances is not 
that we should conclude that our ancestral state estimates are 
bad, but merely suggests that we ought to limit our expecta-
tions on how less bad they’ll get by increasing our sample 
size of taxa (Ané, 2008).

Relatedly, Gascuel and Steel (2020) point out a paradox, 
or tradeoff, between the conditions under which we can esti-
mate the state at the root of the tree for a discretely-valued 
trait, and the conditions under which the rates of change 
between character levels are estimable—a phenomenon they 
denominate the ‘Darwinian uncertainty principle.’ In short, 
when the rate of evolution is low, relatively few changes of 
the trait will have accrued and deep ancestral conditions are 
straightforward to estimate. On the other hand, these few 
changes of the trait will have provided very little informa-
tion about the rate of change between character levels. When 
the rate of change between states is high, on the other hand, 
precisely the converse will be true (Gascuel & Steel, 2020).

Observing that the confidence intervals around ances-
tral states are broad (and will tend to stay broad even as 

our sampling is increased, Ané, 2008; Gascuel & Steel, 
2020; Vu et al., 2023) is not the same as arguing that they’re 
wrong—it’s merely a reminder that phylogenetic compara-
tive methods are ordinary statistical methods too (Revell 
et al., 2018; Revell & Harmon, 2022). As such, it would be 
incorrect to treat an estimated ancestral state as if it were a 
quantity known without error (Losos, 2011). Indeed, when 
the underlying model assumptions are valid, ancestral state 
estimation has reasonable statistical properties (Revell & 
Harmon, 2022).

A more pernicious problem arises when the model is 
wrong (Revell & Harmon, 2022)—or, rather ‘badly wrong’ 
(seeing how, in point of fact, all models are wrong, even if 
many are useful8). Under these circumstances, it becomes 
possible to confidently estimate wrong ancestral node states. 
This, too, one could argue, falls into the category of ances-
tral state reconstruction behaving as do all normal statistical 
methods! On the other hand, some evidence suggests that 
ancestral reconstruction is particularly sensitive to model 
assumption violations.

To investigate ancestral state estimation when model 
assumptions are violated, I’ll consider three different case 
studies: discrete character evolution under the hidden-rates 
model (Beaulieu et al., 2013); discrete trait evolution under 
the threshold model (Felsenstein, 2005, 2012; Revell, 2014a) 
and bounded Brownian motion evolution (Boucher & Démery, 
2016). I’ll show that when an incorrect model is used (specifi-
cally, a homogenous-rate Mk model for the discrete data, and 
unbounded Brownian motion for continuous characters), bad 
statistical behavior emerges. On the other hand, however, I’ll 
also show that this effect is substantively diminished when the 
correct, generating model is used in estimation for each case.

Ancestral State Estimation When the Model is Right

Before showing that ancestral state estimation can misbe-
have when the model of evolution is wrong, it seems per-
tinent to undertake a very brief exploration of the proper-
ties of ancestral state reconstruction when the model used 
for estimation fully captures the generating evolutionary 
process: in other words, when the model is “right.” This is 
genuinely the best case scenario for ancestral character esti-
mation, so we might expect to find statistical properties that 
are optimal in this scenario.

To begin with, I simulated 100 stochastic, pure-birth phy-
logenies, each containing a total of 501 taxa (and thus 500 
internal nodes), with a total root to tip height of 10.0. (This 
tree depth has no particular meaning. By trial and error I 
discovered that it tended to result in a relatively even distri-
bution of marginal scaled likelihoods across simulations.) I 

8  To paraphrase the statistician George Box (1976).



17Evolutionary Biology (2025) 52:1–25	

next generated one binary (0/1) character for each tree. This 
discrete character was simulated with a generating value of 
Q that matched the illustrative value of Q used earlier in the 
article.

In addition to this discretely-valued character, I also sim-
ulated one continuous trait for each tree under Brownian 
motion using a starting value of x0 = 0.0 and a Brownian 
motion (stochastic diffusion) rate of �2 = 1.0.

To measure the performance of ancestral state reconstruc-
tion for discrete characters when the generating model was 
known and used for estimation, I first binned the marginal 
scaled likelihoods of the node being in condition “1” into 
50 equal-sized intervals, each 0.02 units wide. For each 
bin, I then simply counted the number of nodes across all 
simulations whose true states were equal to “1”. This count, 
divided by the total number of nodes in that bin, would be 

Q =

[
−q0,1 q0,1
q1,0 −q1,0

]
=

[
−0.2 0.2

0.2 −0.2

]

expected to be equal to the midpoint of the bin if the mar-
ginal scaled likelihoods genuinely correspond to a probabil-
ity that the node is in each state, under the model. So, for 
instance, if the marginal scaled likelihood bin spanned 0.19 
through 0.21, with a midpoint of 0.2, then we would expect 
to find that (on average) 20% of nodes in this bin should be 
in condition “1” (and 80% thus in condition “0”), and so on.9

To measure the performance of ancestral state estima-
tion when the generating model was known for continuous 
characters, I simply quantified the fraction of node-wise 95% 
confidence intervals for which the true value fell within the 
interval. (I could’ve also measured the correlation between 
the generating and estimated values, or the average differ-
ence between the known values and the estimates.)

Figure 13 summarizes the results of this analysis. In 
Fig. 13a, we see that the relative frequency of being in con-
dition “1” closely tracks the marginal scaled likelihoods. In 
Fig. 13b, we likewise see that the distribution of true node 
values that fall on the 95% confidence intervals, averaged 
by simulation, is centered closely on 95%, with a mean of 
94.98% and a range of [0.916, 0.976] (Fig. 13). In summary, 
when the model for estimation is correct, ancestral state 
reconstruction can work precisely as intended.
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Fig. 13   Accuracy of ancestral state reconstruction of discrete (a) and 
continuous (b) characters when the model for estimation is correct. 
a Node marginal scaled likelihoods (of state “1”) compared to the 
relative frequency that each node was in that condition. If the scaled 
likelihoods are an accurate measure of the true probability that each 
node was in each character state, then these values should form a 1:1 

line. Point diameters have been scaled by the natural logarithm of 
the sample size (number of nodes) for each bin. b Distribution of the 
relative frequency (from 100 simulations) in which the true ancestral 
value fell on the 95% confidence interval of each node estimate, aver-
aged across all nodes for each simulation. See main text for additional 
details

9  If I’m not mistaken, B. O’Meara originally suggested this to me 
as a procedure for measuring the accuracy of a statistical method 
designed to compute probabilities during the Evolution conference 
some years ago now.
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Ancestral State Estimation When the Model is Wrong

In the previous section, I illustrated how ancestral state 
reconstruction can be statistically well-behaved when the 
model for estimation is correct. Using a trio of very simple 
examples, I’ll now try to demonstrate how ancestral charac-
ter estimation might go astray when the model for estimation 
is badly wrong. I’ll do this by simulating data under three 
different trait evolution models that I haven’t yet discussed: 
two for discrete characters; and a third for continuous traits. 
Note that the purpose of this section is not to prove that we 
can recover the good statistical behavior of ancestral state 
reconstruction when the correct model is used, though that 
is sometimes true and will be true in these particular cases. 
To the contrary, my intention is to highlight the substantial 
sensitivity or vulnerability to model assumption violations 
of our standard reconstruction methods.

Ancestral States Under a Hidden‑Rates Model

To show this, I’ll first use a model called the hidden-rates 
model (Beaulieu et al., 2013; Boyko & Beaulieu, 2021; 
Marazzi et al., 2012; Revell, 2024; Revell & Harmon, 
2022). The hidden-rates model is one in which, for each 
observed level of a discrete trait, there might be one or 
more unobserved conditions, each with their own rates of 
transition of the observed state. Figure 14 illustrates evolu-
tion under a flavor of the hidden-rates model in which the 
observed condition “1” has two hidden levels: “1” in which 
the trait can still transition back to the “0” form; and “1*” 
in which it cannot. (The character condition of “1*” is also 
then an ‘absorbing’ state for the character.) An attribute of 
trait evolution under the hidden-rates model is heterogene-
ity in the rate of transition between states. This is apparent 
in Fig. 14b and 14c in which we see that transitions occur 
frequently between the two visible conditions of the trait, 

“0” and “1”, until the condition “1” changes to the hidden 
state “1*” (Fig. 14). It’s relatively easy to imagine a trait 
that could evolve in this way. Consider parity mode in 
squamate reptiles, for instance. Perhaps when viviparity 
(which, in some squamates might be called ‘ovoviviparity’ 
and is little more than egg retention through hatching), has 
recently evolved, it can still be lost. Over time, however, 
additional adaptations or loss of function mutations accu-
mulate and viviparity eventually evolves into a condition 
from which oviparity can no longer re-emerge. This evo-
lutionary scenario would be well-captured by the model 
illustrated in Fig. 14.

To simulate under this model I used the following tran-
sition matrix, Q, between observed and unobserved levels 
of each of the two trait conditions.

I used the same one hundred, 501 taxon phylogenies 
that were simulated for the previous section. After simula-
tion, I merged the two different hidden levels of character 
“1” (that is, “1” and “1*”) into a single, observed character 
condition. (This is because in empirical studies the ‘hid-
den’ level of character “1” and its unhidden condition are 
the same observed state!) Finally, as opposed to estimating 
ancestral states under the correct model, I began by using 
an incorrect model of evolution without hidden states, but 
in which the back-and-forth transition rates between the 
two observed character conditions were allowed to occur 
with different rhythms.

The result from this analysis is given in Fig. 15a. Even 
though most points fall on the 1:1 line, we also see a large 

Fig. 14   A graphical illustration 
of the hidden rates model. a 
The structure of a hidden-rates 
model with one hidden, absorb-
ing condition (“1*”) of the 
observed level “1”. b Simulated 
evolution with both hidden lev-
els of “1” shown. c Simulated 
history from b, but with the 
two levels of “1” merged into a 
single, observed trait. See main 
text for more details

Index

a)

0 1 1*
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fraction of nodes that are not resolved into one condition 
or the other, even though they have a (known) true state 
“0” (Fig. 15a).

In addition to simply reconstructing under the standard 
Mk model, I also fit and estimated ancestral states using the 
hidden-rates model, which was the generating evolutionary 
scenario of our data. The results from this analysis are given 

in Fig. 15b which more closely resembles panel a of Fig. 13 
(in which the true model was known and used for estimation) 
than it does Fig. 15a. This suggests that, here, good statisti-
cal properties of estimation are largely recovered when the 
correct model is used.
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Fig. 15   Accuracy of ancestral state reconstruction of discrete char-
acters when the hidden rate model of Fig.  14 was used for simula-
tion. a Node marginal scaled likelihoods (of state “1”) compared to 
the relative frequency that each node was in that condition using a 
standard Mk model for estimation. b The same as a, but in which the 
generating hidden-rates model was used. If the scaled likelihoods are 

an accurate measure of the true probability of that each node was in 
each character state, then these values should form a 1:1 line. As in 
Fig.  13, point diameters have been scaled by the natural logarithm 
of the sample size (number of nodes) for each bin. See main text for 
additional details

Fig. 16   Illustration of evolution 
under the threshold model. a 
The evolution of liabilities: the 
unobserved continuous charac-
ter whose condition determines 
the state of the discrete trait. 
The thresholds between discrete 
character levels in the thresh-
old trait are shown using the 
vertical dotted lines. b The real-
ized evolution of the discrete 
character across the branches 
and nodes of the phylogeny. See 
main text for more details
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Ancestral States Under the Threshold Model

The next discrete character evolution model that we’ll con-
sider is one that’s called the threshold model (Felsenstein, 
2005, 2012; Wright, 1934). Under the threshold model, 
our discrete character is underlain by an unobserved quan-
titative trait called ‘liability.’ Every time liability crosses 
a pre-defined (but unknown) threshold, our observed dis-
crete character changes state. The model derives originally 
from evolutionary quantitative genetics where it was used 
by Wright (1934) to describe variation in digit number of 
guinea pigs, but was much later adapted by Felsenstein 
(2005, 2012) to phylogenetic comparative biology. A simu-
lation of discrete character evolution under the threshold 
model is given in Fig. 16. Panel (a) of the figure shows the 
Brownian evolution of the normally unobserved liabilities 
(and thresholds), whereas panel (b) illustrates the resultant 
discrete trait evolution on the branches and nodes of the 
phylogeny.

Various features of the evolution of our discrete charac-
ter are manifestly different between Fig. 16b and evolution 
under a standard Mk scenario. Most conspicuously, and 
not unlike the hidden-rates model of Fig. 14, the tempo 

of evolutionary change for the discrete trait varies from 
clade to clade of the phylogeny. This is because in parts 
of the tree where the evolutionary process for the liability 
is close to a threshold, the character changes frequently in 
state. By contrast, when the liability is far from any thresh-
old, the discrete character may experience long periods of 
stasis with little to no change at all (Revell, 2014a; Revell 
& Harmon 2022).

To simulate evolution under the threshold model, I used 
the same one hundred, 501 taxon phylogenies that were 
simulated for the previous sections. I next simulated a con-
tinuous trait (liability) evolving via Brownian motion with 
a rate equal to �2 = 0.1 , an ancestral value of x0 = 2.0 , 
and thresholds between character levels of [0, 1, 3] . This 
typically resulted in four levels of the discrete character, 
but in a small subset of simulations only three character 
levels were observed. For each dataset, I fit an ordered 
Mk model (because the threshold model itself is intrinsi-
cally ordered), as well as the threshold model itself. To fit 
the threshold model I used the discrete approximation of 
Boucher and Démery (2016; Revell, 2024). For each fitted 
model, I computed marginal ancestral states in the typical 
way. Finally, as in Fig. 15, I compared the marginal scaled 
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Fig. 17   Accuracy of ancestral state reconstruction of discrete charac-
ters when the threshold model of Fig. 16 was used for simulation. a 
Node marginal scaled likelihoods compared to the relative frequency 
that each node was in that condition using a standard Mk model for 
estimation. b The same as a, but in which the generating threshold 
model was used for estimation. If the scaled likelihoods are an accu-
rate measure of the true probability of that each node was in each 

character state, then these values should form a 1:1 line. Point diam-
eters have been scaled by the natural logarithm of the sample size 
(total number of probabilities computed) for each bin. Note that these 
don’t sum to the number of nodes because multiple values are calcu-
lated for each node in each simulation, depending on the number of 
levels (3 or 4) of the trait. See main text for additional details
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likelihoods that each node was in each state to the genuine 
frequency of the node being in the corresponding character 
condition. If the ancestral state reconstruction method is 
working properly, these values should form a 1:1 line. The 
result of this analysis is shown in Fig. 17.

As is evident from the figure, I found marginal ancestral 
reconstruction to be quite inaccurate when the Mk model 
was used for estimation (Fig. 17a). In particular, marginal 
scaled likelihoods tended to overestimate the probability 
that a node was in each state when low, and underestimate 
the same quantity when high (Fig. 17a). In contrast, when 
estimation was performed using the generating threshold 
model, good statistical behavior of marginal reconstruc-
tion was fully recovered (Fig. 17b).

Ancestral States Under Bounded Brownian Motion

As discussed earlier in this article, the typical model for 
ancestral state reconstruction of continuous traits is one 
of unbounded Brownian motion evolution, also known as 
stochastic diffusion or a continuous time random walk. To 
investigate the sensitivity of continuous character ances-
tral state reconstruction to model misspecification, I first 
generated 100 datasets, one for each our 100 simulated 

501 taxon trees of the previous two sections. In this case, 
however, our generating model is bounded Brownian evo-
lutionary change, with x0 = 0.0 , �2 = 1.0 , and upper and 
lower bounds of [−2, 2] . Bounded Brownian motion (with 
reflective bounds) is just like standard Brownian motion, but 
in which whenever the boundary condition is reached, the 
evolutionary process reflects back into the bounded space 
(Boucher & Démery, 2016).

Following simulation, I first reconstructed ancestral states 
under a standard (unbounded) Brownian model, and then 
under bounded Brownian evolution, the latter utilizing the 
method of Boucher and Démery (2016). I measured the sta-
tistical behavior of ancestral state estimation in the same way 
as in Fig. 13b; however, since the true value of an estimated 
parameter might fall within the confidence interval of the 
estimate either because the estimate is accurate or because 
the confidence interval is wide, I also measured accuracy of 
ancestral estimates by calculating the correlation between 
the known generating values and the estimates for each 
simulation. The results of this analysis are given in Fig. 18.

We see that when data are simulated under bounded 
Brownian evolution, but unbounded Brownian motion is 
assumed as a model for estimation, confidence intervals are 
too narrow (Fig. 18a), with a mean fraction of true ancestral 
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Fig. 18   Accuracy of ancestral state reconstruction of continuous 
characters when data were simulated under Brownian motion evolu-
tion with reflective bounds. a Frequency distribution of the fraction of 
nodes falling in within the 95% confidence interval of each node esti-
mate, averaged across all nodes by simulation both when a standard 
Brownian model (grey) and bounded model (shading lines) was used 

for estimation. b Distribution of correlation between true and esti-
mated ancestral states when the data were generated under bounded 
Brownian evolution, and either a standard Brownian motion model 
(grey) or bounded model (shading lines) was used for estimation. See 
main text for additional details
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states falling within the 95% confidence intervals of the esti-
mates of 80.8% (range: [71.6, 87.6] ; Fig. 18a). By contrast, 
almost exactly 95% of confidence intervals estimated under 
bounded Brownian evolution (Boucher & Démery, 2016) 
included the true, generating values of the states (average: 
94.6%; range: [92.0, 97.8] ; Fig. 18a).

In addition to having the correct confidence intervals, 
estimates obtained under bounded Brownian motion were 
also more accurate (Fig. 18b). The mean correlation between 
generating and estimated ancestral states when unbounded 
Brownian evolution was assumed as a model for estimation 
was r̄ = 0.822—compared to a mean of r̄ = 0.843 when the 
correct model was used (Fig. 18b).

Software Implementation and Availability

Ancestral character estimation is implemented in the R 
statistical computing software (R Core Team, 2024) pack-
age phytools Revell (2012, 2024), as well as in a number 
of other R packages and software (e.g., Beaulieu et al., 
2023; Boyko & Beaulieu, 2021; Maddison & Maddison, 
2023; Pagel & Meade, 2024; Paradis & Schliep, 2019; 
Schliep, 2011). All analyses of this article were conducted 
using phytools. phytools in turn depends on the core R 
phylogenetics packages ape (Paradis & Schliep, 2019) and 
phangorn (Schliep, 2011). phytools, ape, and phangorn 
are all publicly available through the Comprehensive R 
Archive Network, CRAN (https://​cran.r-​proje​ct.​org/).

Conclusions

Ancestral state reconstruction has long been among the most 
relentlessly popular analyses of phylogenetic comparative 
biology. In this article, I’ve tried to overview the theoreti-
cal and practical basics of ancestral state reconstruction for 
discrete and continuously-valued character traits. I’ve shown 
how ancestral state reconstruction can be applied to empiri-
cal datasets of various types, such as estimating the ancestral 
conditions of environmental temperature in liolaemid liz-
ards, diel activity pattern in primates, or body size in frogs.

In spite of its popularity, ancestral state estimation has 
some limitations. In particular, ancestral node estimates 
often come associated with very broad confidence limits, 
especially for nodes that lie deep in our phylogenetic tree. 
Additionally, ancestral state reconstruction can be highly 
sensitive to violations of the assumptions of the evolutionary 
model used for estimation. Though both of these attributes 
(broad confidence intervals when the amount of information 
about a parameter is low; and sensitivity to model assump-
tions) are properties of many statistical inference methods, 
enthusiasts of ancestral state reconstruction have sometimes 

failed to sufficiently appreciate the nature and depth of these 
limitations.

In an age when phylogenetic data is ever easier to pro-
duce, I have little doubt that the appeal of ancestral character 
state reconstruction will continue to grow into the future. 
I hope that this article will provide a helpful introductory 
guide to those biologists and scientists of other disciplines 
who dare to venture into this endeavor.

A Short Postscript on the Origins of this 
Article

Some time during 2023 I was asked to contribute a section 
on ‘Ancestral Reconstruction: Theory & Practice’ for the 
second edition of a compendium entitled the ‘Encyclopedia 
of Evolutionary Biology’ (Kliman, 2016). Not having care-
fully read the instructions, but enthusiastic about the task, 
I proceeded to write what I expected to be a lengthy book 
chapter on the subject, including some original primary 
research on the accuracy of ancestral state reconstruction 
under different circumstances. As it turns out, and as I real-
ized before submitting my article to the publisher, this was 
totally inconsistent with the aims of the project which called 
for a much more compact and less detailed treatment of the 
subject. Having identified my blunder, I was forced to go 
back to the drawing board and produce a much more appro-
priate length piece for the encyclopedia (Revell, 2025). The 
present article is the fruit of my original labor and is geared 
towards researchers more interested in the technical details 
of ancestral reconstruction and its application.10 I hope that 
it can serve this purpose here.
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