Evolutionary Biology (2025) 52:1-25
https://doi.org/10.1007/511692-025-09645-y

REVIEW q

Check for
updates

Ancestral State Reconstruction of Phenotypic Characters
Liam J. Revell'

Received: 10 July 2024 / Accepted: 17 January 2025 / Published online: 6 February 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

Ancestral state reconstruction is a phylogenetic comparative method that involves estimating the unknown trait values of hypotheti-
cal ancestral taxa at internal nodes of a phylogenetic tree. Ancestral state reconstruction has long been, and continues to remain,
among the most popular analyses in phylogenetic comparative research. In this review, I illustrate the theory and practice of ances-
tral state reconstruction for both discretely and continuously-valued phenotypic traits. For discrete characters, I focus on the Mk
model and describe the distinction between marginal and joint reconstruction, as well as between local vs. global estimation. For
continuous traits, I describe ancestral state reconstruction under a model of Brownian motion evolution. I highlight several use cases
of ancestral state reconstruction via a set of empirical examples, ranging from diel activity pattern in primates, to environmental
tolerance in lizards. Finally, I discuss and explore the statistical properties of ancestral state estimation as well as its limitations.
By illustrating ancestral reconstruction under the hidden-rates and threshold models (for discrete traits), and bounded Brownian
motion (for continuous characters), I demonstrate the considerable sensitivity of ancestral reconstruction to model misspecification.
Although ancestral state reconstruction is virtually certain to retain its popularity into the future, I conclude by recommending
considerable caution and circumspection in the use and interpretation of ancestral reconstruction in empirical evolutionary research.

Keywords Phylogenetic comparative methods - Trait evolution - Discrete characters - Continuous characters

Introduction

Ancestral state reconstruction (also referred to as ancestral
character estimation, and I’ll use the terms interchangeably
here) is the general practice of estimating the value or values
of a feature or attribute at the set of common ancestors of the
operational taxa' of a phylogenetic tree (Revell & Harmon,
2022; Schluter et al., 1997; Yang, 2006, 2014). Ancestral
state reconstruction falls within the domain of phylogenetic
comparative methods—defined, for the purposes of this arti-
cle, as the set of methodologies typically employed down-
stream of phylogenetic inference to test hypotheses about
evolution based on a tree, and often in combination with trait
data for the taxa of that tree (Harmon, 2019; Nunn, 2011;
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O’Meara, 2012; Pagel, 1997; Revell & Harmon, 2022)—
and has long been relentlessly popular. This popularity of
ancestral reconstruction is easy to comprehend. Evolution-
ary biologists are often inherently interested in the evolu-
tionary past, and ancestral character estimation promises us
a window towards that otherwise invisible history (Harvey
& Pagel, 1991; Revell & Harmon, 2022).

Undertaking ancestral state reconstruction requires that
we have a reconstructed tree (or set of trees, e.g., from a
bootstrapping analysis or Bayesian posterior sample), as well
as observations of a phenotypic trait of interest from some or
all of the terminal taxa of that tree (Harvey & Pagel, 1991;
Nunn, 2011; Revell & Harmon, 2022). Modern ancestral
state reconstruction also requires that we have a model or

! Operational taxa are the named tips or leaves in a phylogeny which
are often nominal species, but sometimes subspecies, populations,
cultural groups (in the case of language phylogenies), genera, or other
units of study (e.g., Hall et al., 2018; Li et al., 2022; Walker et al.,
2012; Yaxley and Foley, 2019).
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hypothesized model for how our character trait evolved over
the macroevolutionary time represented by our phylogeny.”
Finally, we’ll use a formal statistical inference procedure
to obtain a set of estimates of our trait at some or all of the
internal nodes of the tree.

In the sections below, I'll first offer some preliminaries
on the goals of this article and on terminology. I'll then
continue to describe the procedures for estimating ancestral
phenotypes, first for discrete and then for continuously-val-
ued traits, accompanying each section with a small number
of empirical examples. Finally, I’ll discuss some limitations
of ancestral state estimation, focusing particularly on those
arising from identifiable inadequacies of the assumed trait
evolution model.

Preliminaries

This article focuses on phylogenetic ancestral state recon-
struction of discrete and continuously-valued phenotypic
traits. A phylogenetic tree is an acyclic (meaning that the
graph doesn’t form loops or cycles), directed graph, typi-
cally used as a model to represent the historical relationships
among species unified by common descent (Felsenstein,
2004; Revell & Harmon, 2022; Yang, 2014). Phylogenies
are also used to approximate other entities connected via
a similar form of ancestor—descendant relationship, such
as human cultural groups, viral sequences of an emerging
infectious disease, or metastatic tumor cell lines in a cancer
patient (e.g., Gray et al., 2009; Nunn, 2011; Quinn et al.,
2021; Somarelli et al., 2017; Turakhia et al., 2020). For the
most part, the methods of this article will be equally appli-
cable to phylogenies employed in these other contexts.
Phylogenies consist of three main components: nodes,
branches, and tips (Baum & Smith, 2012; Revell & Har-
mon, 2022; Yang, 2006). Nodes are hypothetical ancestral
taxa located at the nexus point of two or more descendant
branches. A branch (often referred to as an edge, and I'll
use the terms interchangeably here) is a connection between
two different nodes: parent (i.e., ancestral) and daughter

2 At the risk of upsetting some enthusiasts, and apart from in this
footnote, I'll avoid discussing parsimony as a method of ancestral
state reconstruction here. Parsimony reconstruction involves iden-
tifying the set of states that minimize the number of evolutionary
changes in our character required to explain our observed data. Even
though this might seem sensible and will often provide very reasona-
ble ancestral estimates, parsimony leaves us with substantial difficulty
in assessing the strength of evidence in support of this ‘most parsi-
monious’ solution—compared to, say, an alternative only slightly less
parsimonious one—and does not provide any firm criteria for aver-
aging across equally parsimonious sets of states. For this reason, and
others, I’ve decided to focus on explicit, probabilistic procedures of
ancestral state inference in this article.
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(i.e, descendant). Branches frequently have the property of
length, which, in the type of tree used for ancestral state
reconstruction, often represents elapsed time in some unit.
Finally, a tip (sometimes referred to as a leaf) is an external
node of the tree, not connected to any descendant nodes,
that’s used to represent a species or other operational taxon
of the phylogeny. Once again, in the type of phylogenetic
tree used for ancestral state reconstruction, tips most often
have as an attribute a label, indicating to which operational
taxon they correspond (Baum & Smith, 2012; Felsenstein,
2004).

Though ancestral state reconstruction can also be under-
taken for nucleotide sequences or other molecular characters
(e.g., Yang, 2014), in this article I’ll focus on ancestral state
reconstruction of phenotypic traits (Nunn, 2011; Revell &
Harmon, 2022; Schluter et al., 1997). A phenotypic trait
is an observable attribute—be it physical, morphological,
behavioral, ecological, physiological, cellular, etc.—of the
operational taxa of the tree. In the field of phylogenetic com-
parative biology, we conventionally subdivide phenotypic
traits into two general categories (while realizing that some
traits may not fall neatly into either): discrete and continu-
ous (Felsenstein, 2004; Pagel, 1997; Revell, 2024; Revell &
Harmon, 2022).

Discrete characters are phenotypic attributes that can
only assume one of fixed and finite set of values (Revell &
Harmon, 2022). These might range from a discretely-cate-
gorized ecological trait (e.g., marine vs. freshwater habitat
use in fishes, Betancur-R. et al., 2015), to a counted meris-
tic character (e.g., pre-caudal vertebra number in primates,
Spear et al., 2023), to a behavioral specialization (e.g., diel
activity pattern in vertebrates, Anderson & Wiens, 2017), to
a categorical physical attribute (e.g., carotenoid-pigmented
feathers in birds, Thomas et al., 2014).

Continuous characters, on the other hand, are phenotypic
traits that can assume any of an infinite number of values
on a real number scale (Revell & Harmon, 2022). Con-
tinuous characters needn’t be unbounded—for example, a
continuous character is often bounded on the lower end by
the value of zero. Nonetheless, unbounded evolution is a
frequent assumption of continuous character models in phy-
logenetic comparative analysis (but see Boucher & Démery,
2016). (Continuous traits that are bounded on the lower end
by zero can often be transformed to an unbounded scale by
computing the logarithm: indeed, this is a common practice
for continuous traits in phylogenetic comparative biology.)
A continuous trait might range from a linearly measured
morphological feature (e.g., orbit size in extant and extinct
cetaceans, Churchill & Baltz, 2021), to a mass or volume
(e.g., encephalization in birds, Marugin-Lobén et al., 2021),
to a continuously-varying life history trait (e.g., average ges-
tational length in mammals, Danis & Rokas, 2023), even to
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a molecular genomic attribute (e.g., genome size in plants,
Wang et al., 2021).

Our distinction between discrete or continuous charac-
ters seems relatively clear when put forward in this man-
ner. Nonetheless, as previously alluded, it may not always
be straightforward to decide a priori whether a character
should be coded as discretely or continuously-valued. For
example, plumage color could be quantified numerically
using a reflectance spectrometer or scored discretely against
a palette containing a finite number of elements (e.g., Duran-
Castillo et al., 2021). A meristic (counted) trait might dif-
fer discontinuously from individual to individual, but vary
intraspecifically such that among-species differences are
better-approximated as a continuous random variable than
placed in discrete bins. The position of this article is that
the best way to reconcile this paradox, and contemplate
whether a character trait should be categorized as discrete
or continuous, is to consider the decision to be an implicit
component of our model: in other words, as a necessary
approximation of reality. If our trait varies in a manner that
is closer to discontinuous than continuous, then (as a model
approximation) treating it as discretely-valued is probably
most appropriate! Logically, the converse will also be true.

Discrete Characters

The Mk Model

The standard model used to study the evolution of discrete
characters, and thus to reconstruct their ancestral values, is
one that’s popularly known as the Mk model (Harmon, 2019;
Lewis, 2001; Pagel, 1994, 1997). This model describes a
continuous time Markov chain (the‘M’in Mk) with k pos-
sible states (Revell & Harmon, 2022). This Mk stochastic
process is fully parameterized using a k& X k matrix, Q, in
which all non-diagonal elements of the matrix (g;; for any
i # j) give the instantaneous transition rates between states i
and j, while the diagonal elements are equal to the negative
off-diagonal row sums such that each row of the Q matrix
adds to zero. An example value of Q for a binary discrete
character is given below.

Q= [_%,1 901 ] _ [—0.2 0.2}

d10 —910 02 -02
In this Q matrix the instantaneous forward and backward
rates of transition between the two different levels of our
character, 0 and 1, are gy ; = q; o = 0.2. For this example
Q is symmetric to simplify subsequent calculations—but

it needn’t be as a general rule! Indeed, many biological
processes predict an asymmetry of backward and forward

transition rates between character levels, and this is a com-
mon observation of empirical studies. The values in Q,
do1 = 910 = 0.2, are the rates of change in the character
under our modeled stochastic process—meaning that, on
average, 0.2 changes of our trait would be expected to occur
every time interval. The waiting times between events under
this continuous-time process will have an exponential dis-
tribution with a shape parameter determined by ¢, and
q10» and the probability that (after some time) a change has
occurred can be computed by integrating this distribution.
Indeed, the matrix of probabilities that, after any arbitrary
interval of time (given by ¢), our Markov process beginning
in state i is now found in condition j can be calculated by
computings the simple matrix exponential of Q X ¢ (Pagel,
1997; Lewis, 2001; Harmon, 2019).

P, = exp(Q1)

Here, each element of P, (p;; for all i and j) gives the prob-
ability P(j|i, ?): in other words, the chances of being found
in state j after time ¢ having started the time interval in con-
dition i.

Figure 1 shows a simplified rooted phylogeny with three
terminal taxa (A, B, and C) and two observed levels (0 and
1) of a discrete phenotypic trait. To compute the probabil-
ity of the observed data at the tips of this tree under our
Markov chain (Mk) model, we might begin by calculating
P,_y4. P_y3, and P,_, for our transition matrix Q. If we
were to do so, we’d obtain the following three values. (Our
tree has a total of four edges, but two of them have exactly
the same total length of r = 0.3; Fig. 1.)

Com — =2 moA
tag=0.4 ' ®
internal
tB =0.3 I:l B
® o0t
tc=0.7 nc

Fig.1 A simple, three-taxon, rooted phylogeny with two trait val-
ues of a discrete character (0 and 1) mapped at the tips of the tree.
The two nodes of the tree (labeled root and internal, respectively) in
whose states we might be interested in are indicated on the figure, as
are the lengths of the four branches of the tree. See main text for more
details
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4
[0.926 0.074]
P_o4 =exp(Qx0.4) = 0.074 0.926
0.943 0.057]
P_o; =exp(Qx0.3) = 0.057 0.943
0.878 0.122]
Pig7 =expQX0.7) = 17155 (578

Now, with these probability matrices in hand, we can pro-
ceed on to measuring the total probability of the data at the
tips of the tree of Fig. 1. To do this, one more probability
that we need to consider is the (prior) probability that the
global root of the tree was in condition 0 or condition 1—
normally given as z and x,, respectively. There are various
ways we might set 7t (see FitzJohn et al., 2009; Yang, 2014;
Revell & Harmon, 2022). For simplicity here, I’ll just say
7wy = m; = 0.5 (a ‘flat’ root prior); however, identifying a
suitable root prior (7t) has been the subject of more sub-
stantive discussion elsewhere (FitzJohn et al., 2009; Yang,
2014).

Having decided on 7, we can compute the total probabil-
ity of our data by summing the probability of our tip data (A
in condition 1, B in 0, and C in 0, shown here as P(1,0,0)),
across all four possible combinations of states at the root
and internal nodes of our tree, respectively: 0 & 0,0 & 1, 1
&0,and 1 & 1.

P(1,0,0) = my X P(0]0,245) X P(1]0,¢4)

X P(0]0, t5) x P(0]0, #.)

+ 7y X P(1]0,2,5) X P(1]1,2,) X P01, 15) X P(0]0, 2,
+ 7, X P(O|1,2,5) X P(1]0,,) X P(0]0, 5) X P(O|1, 1)
+ 7, X P(1]1,t,5) X P(1]1,2,) X P(0|1,25) X P(O|1,1.)
=0.0267

In which P(1]0, ¢,) is the (1,2)th element of P,_ 5, P(1|1, 1)
is the (2,2)th element of P,_ ;, and so on (Yang, 2014; Har-
mon, 2019).

After we calculate all the relevant quantities of our equa-
tion, we should find that the total probability of our data on
this tree is 0.0267, given our transition matrix (Q) and mod-
eled process. (Importantly, this is the probability of observ-
ing the data pattern [1, 0, O] given our tree and matrix Q, not
the probability of the tree or Q. That means that if we were
to identify all possible data patterns— [0, 0, 0], [0, O, 1],
and so on—compute their probabilities, and then sum these
quantities, this sum should be equal to 1.0.) In this case, for
demonstrative purposes only, I've explicitly enumerated all
of the possible internal node and root states of our tree. This
would become very onerous, however, for even a modestly-
sized phylogeny of five or ten operational taxa: indeed, it’s
virtually impossible for larger trees. Fortunately, Felsenstein
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(1981) described a highly efficient ‘pruning’? algorithm to
compute this exact probability.

So far we’ve treated Q as if it were fixed. In practice, we
invariably estimate Q, typically by identifying the value of
Q that maximizes the probability of our data given the tree:
our Maximum Likelihood estimate, by definition (Lewis,
2001; Pagel, 1994; Revell & Harmon, 2022). Obviously, it
makes little sense to try to estimate Q from a tree contain-
ing only three observations! Consequently, for now we’ll
continue using this same fixed value of Q, but we should at
the same time keep in mind that in any empirical study Q is
nearly invariably estimated from the same data that are being
used to reconstruct ancestral states—rather than set to a fixed
value or known a priori.

Marginal vs. Joint (and Local vs. Global) Estimation

An important consideration when discussing ancestral
state reconstruction of discrete characters is the distinc-
tion between what are known as marginal and joint recon-
struction (Yang, 2006; Revell & Harmon, 2022).4 Marginal
reconstruction involves proceeding from node to node on the
phylogeny, and, at each node, computing the probability of
observing the tip data of our tree conditioned on fixing the
node we’ve visited to each one of the set of distinct values
of our trait. This set of probabilities, referred to as mar-
ginal likelihoods, are normally rescaled such that they add
to 1.0 (doing so merely entails dividing each by the total
likelihood), at which point they’re frequently referred to as
the node marginal scaled likelihoods. Yang (2006, 2014)
has pointed out that these scaled likelihoods are also a type
of empirical Bayes posterior probability. (Empirical Bayes
estimation involve fixing one level of the Bayesian hierar-
chy—in this case, the value of our transition matrix Q—to
its most likely value, and then computing our posterior prob-
abilities while conditioning on this fixed level.) They can
thus be validly interpreted as the (posterior) probabilities
that each node is in each of the observed character states,
while conditioning on our fitted transition process, Q. Joint
reconstruction, on the other hand, involves identifying the
set of all internal node values (among all possible such sets)
that maximizes the probability of our data. As observed by

3 Felsenstein’s procedure is called a pruning algorithm because it
proceeds in a “post-order” fashion—that is, from the tips towards the
root of the tree—performing a calculation based only on the descend-
ant subtree of each internal node, pruning this subtree out of the phy-
logeny, and then using the computed quantities for the next, more
rootward calculation.

4 In theory, the same distinction could be made for continuous

traits—except that, in that case, our marginal and joint estimates are
the same!
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Yang (2006), these needn’t necessarily be the set of states
with the highest marginal scaled likelihoods!

In addition to marginal vs. joint ancestral state recon-
struction, another potentially important distinction applying
specifically to marginal estimation that occasionally appears
in the literature is between global and local reconstruction
(Pagel, 1999). In this case, the difference between global and
local involves the estimation of Q itself. Under global recon-
struction, we estimate our transition matrix Q (using, say,
Maximum Likelihood) only once based on the phylogeny
and all the data at the tips of the tree, without any particu-
lar assumption about the value of our character at any indi-
vidual node of the phylogeny (apart from the root—see my
discussion of the root prior, 7, above). We then proceed to
undertake ancestral state reconstruction for all nodes while
holding Q constant at this value (Yang et al., 1995; Koshi &
Goldstein, 1996; Schluter et al., 1997; Pagel, 1999; Yang,
2006; Revell & Harmon, 2022). Under local ancestral state
reconstruction, on the other hand, a separate value of Q,
and a separate value for the total probability of the data, is
estimated conditioning on each of the k levels of our trait at
every internal node of the phylogeny (Pagel, 1999).

A simple example of a circumstance in which local and
global estimation could yield substantively different results
can be seen if we imagine a scenario where our best global
estimate of Q has a forward transition rate (from O to 1) of
Go1 > 0 (that is, some positive non-zero value), but a back-
ward transition rate (from 1 to 0) of g,y = 0. Under our
standard procedure of global ancestral state estimation, any
node with even a single tip in condition 0 among its descend-
ants must have been in condition 0 with probability 1.0. On
the other hand, with local estimation, we would first assume
that our hypothesis that the node was in condition 1 is cor-
rect, then we’d estimate a value of Q conditioning on this
hypothesis being true and in which a value of g; > 1 would
thus be guaranteed (Pagel, 1999). Our marginal reconstruc-
tion for the node then becomes a ratio of the probability of
our data given that the node state is 0 or 1 divided by their
sum, but not assuming that Q has a constant value for the
two different cases.

Although Pagel (1999) argued fairly persuasively for
the merits of local ancestral state reconstruction, the global
method (in which Q is held constant) has nonetheless come
to overwhelmingly predominate (Revell & Harmon, 2022).
A major factor likely to underlie the near universal adop-
tion of global estimation for ancestral state reconstruction
in comparative biology is how computationally onerous it
would be to estimate Q (itself a challenging task in many
circumstances) separately k times for each internal node of
a large or even medium-sized phylogenetic tree. I'll focus
on global ancestral state estimation in the sections that fol-
low; however, readers can keep in mind that local estima-
tion would merely involve substituting a different value of Q

for each state (normally the value of Q that maximized the
likelihood, conditioned on that state) at each internal nodes
during estimation. All other calculations are unchanged from
what’s shown below, and the computational machinery to
undertake local estimation using existing software is rela-
tively uncomplicated.

Marginal Ancestral State Estimation

Marginal ancestral state reconstruction involves traversing
the tree and at each node calculating the probability of the
tip data in our tree under our model, conditioned on our
current node being in each of our character levels (Pagel,
1999; Yang, 2006). These ‘marginal’ probabilities are then
normalized by dividing by their sum at each node, at which
point they can be interpreted as the (empirical Bayes pos-
terior) probabilities that each node is in each state of the
character (Revell & Harmon, 2022; Yang, 2006). Since
we’ve already calculated all the relevant quantities for our
example of Fig. 1, let’s proceed and evaluate first the mar-
ginal likelihoods at the root, then the marginal likelihoods
for our single internal node.

P(root = 0) =z, x P(0]0,1,5) X P(1]0,1,)
x P(0]0, ) X P(0]0, 1)
+ g X P(1]0,t45) X P(1|1,2,) X P(O|1,15) X P(0|0,2,)
=0.5x%x0.0434 + 0.5 x 0.0035
=0.0234
P(root = 1) = r; X P(0|1,1,5) X P(1]0,1,)
x P(0]0, ) X P(0|1, 0)
+ 7 X P(1]1,t45) X P(1|1,2,) X P(O|1,15) X P(O|1,2.)
= 0.5 % 0.0005 + 0.5 x 0.0060
= 0.0033

Here P(root = 0) gives the probability of our observed
data (conditioning on Q), given that the root is in state 0;
while P(root = 1) gives the probability of our data, given
that the root is in state 1. Importantly, as a sidenote for
clarity, P(root = 0) and P(root = 1) do not give the prob-
ability that the root state was in condition O or condition 1,
respectively. If they did, then we would expect their values
to add to 1.0! If these two quantities are rescaled by their
sum, however (which is also, recall, the total likelihood), we
obtain the marginal scaled likelihoods for states 0 and 1 of
P(0,1) =[0.878,0.122] at the root node of the tree.

Now let’s repeat the same procedure for the single inter-
nal node of our phylogeny of Fig. 1.

@ Springer
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a) marginal reconstruction b) joint reconstruction

A A

{1¢C {1C

Fig.2 a Marginal ancestral state reconstruction based on the tree and
data of Fig. 1. b Joint ancestral reconstruction. Both reconstructions
assume a constant value of Q, as indicated in the text. See main text
for more details

P(internal = 0) = mq X P(0]0,1,5) X P(1]0,14)
X P(0]0,1g) x P(0]0,tc)
+ 7y X P(O|1,245) X P(1]0,4) X P(0]0, 15) X P(0|1,1.)
= 0.5 % 0.0434 4 0.5 x 0.0005
=0.0219
P(internal = 1)— = 7y X P(1]0,t45) X P(1]1,1,)
X P(0[1,1g) X P(0]0, t¢)
+ 7 X P(1]1,145) X P(1]1,24) X P(O|1,15) X P(O|1,tc)
=0.5%0.0035 + 0.5 x 0.0060
= 0.0047

Once again, if these two quantities are rescaled by their sum,
which is also the total likelihood (just as it was for the root
node), we’ll have the marginal scaled likelihoods for condi-
tions 0 and 1 of P(0, 1) = [0.822, 0.178]. Figure 2a gives the
marginal ancestral state reconstruction of our tree and data
in Fig. 1, conditioned on the value of Q indicated earlier
in this article. These states are shown mapped to the cor-
responding nodes of the tree using pie diagrams, as is so
very commonly done in empirical studies that use marginal
ancestral state reconstruction (Fig. 2a).

Just as I did when computing the total likelihood,
above, for demonstrative purposes [’ve enumerated
all the terms of each marginal likelihood. This would
quickly become prohibitively complicated for even mod-
estly-sized phylogenies, so in practice computer imple-
mentations of marginal ancestral state reconstruction use
one of various fast algorithms based on pruning to com-
pute these quantities (Felsenstein, 1981; Yang, 2006).

Joint Reconstruction
The other type of ancestral state reconstruction that we

might perform under the Mk model, in addition to the
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method of marginal ancestral state reconstruction that
we just learned, is what’s typically referred to as joint
reconstruction (Revell & Harmon, 2022; Yang, 2006).
In this case, our estimated ancestral states are merely the
set of such states that jointly maximize the probability of
our data at the tips of the tree.

In our example from Fig. 1, there are a total of four pos-
sible sets of states at the two nodes of the phylogeny: [0, 0],
[0,1],[1,0], and [1, 1] Uncoincidentally, these four sets of
states correspond to the four terms of our equation for the
probability of our data (P(0, 0, 1)), above. In other words:

P([0,0]) = 7y X P(0]0,2,5) X P(1]0,2,) x P(0]0, )
X P(0]0,¢-) = 0.0217

P([0,1]) = =y X P(110,1,5) X P(1]1,24) X P(O[1, )
X P(0]0,1.) = 0.0017

P([1,0]) = m; X P(O|1,2,5) X P(1]0,2,) X P(010, 5)
x P(0]1,¢-) = 0.0002

P([1,1]) = my X P(1]1,t,5) X P(1]1,2,) X P(O|1, )
X P(0|1,¢-) = 0.0030

Here, P([0, 0]) gives the probability of our data at the tips
of the tree, conditioning on both the root and single internal
node of the tree being in states 0 and 0, respectively. The
same interpretation can be made of P([0, 1]), P([1,0]), and
so on. From this set of values we can see that the combina-
tion of states that jointly maximizes the probability of our
data are [0, 0]—in other words, condition O at both the root
and single internal node of the tree (Fig. 1). This set thus
becomes our joint Maximum Likelihood ancestral state esti-
mate. We could also imagine rescaling the set of probability
values by their sum and reporting the probabilities of each
set of states conditioned on Q—though this is not typically
undertaken in joint reconstruction. Figure 2b illustrates the
joint reconstruction from our tree and data of Fig. 1.

Stochastic Character Mapping

In addition to joint and marginal reconstruction, a third
important and popular method of ancestral state estima-
tion under the Mk model is the procedure called stochas-
tic character mapping (Bollback, 2006; Huelsenbeck et al.,
2003; Revell, 2024; Revell & Harmon, 2022). Stochastic
character mapping originally derives from a closely related
approach called ‘mutational mapping’ (Nielsen, 2002) and
was first generalized to phenotypic traits by Huelsenbeck et

5 In general, there will be a number k™ of such sets for k character
levels and m nodes. It goes without saying that computer implemen-
tations of joint ancestral state reconstruction do not comprehensively
enumerate all possible node state combinations to find the set that
maximizes the likelihood!
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al. (2003). Under stochastic character mapping, complete
character histories (including character state changes along
the branches of the tree) are randomly (in other words, “sto-
chastically”—hence the name of the method) sampled from
their probability distribution under a model.

Stochastic character mapping is a computationally inten-
sive method. The most efficient algorithm to generate a sin-
gle stochastic character map minimally involves two travers-
als of the tree. The first of these is a post-order (tip to root)
“pruning” traversal in which a set of conditional likelihoods
of each subtree is calculated for each node of the phylogeny.
These are the set of marginal likelihoods, under our model,
for only the data descended from a given node. Note that if
we generate more than one stochastically mapped history for
a given tree and value of Q, as we nearly invariably should,
these values can be recycled across simulations and do not
need to be recomputed. Once the root node is reached, these
calculated quantities also correspond to the marginal likeli-
hoods at this node and sum to the total probability of our
data under the model. A root state is randomly sampled with
probability equal to its marginal scaled likelihoods.

Next, we undertake a pre-order tree traversal. Looking at
each daughter node from the root, we first calculate a set of
updated probablities (p) that each of the two or more daugh-
ters is in each state of our character. For each daughter, this
vector of probabilities, p, is simply equal to the ith row of the
exponentiated product of Q, the transition matrix, and the
elapsed time of the daughter edge, multiplied element-wise
by the vector of conditional likelihoods of the subtree for
that node (also known as the Hadamard product)—the val-
ues that we computed in our prior post-order tree traversal.
In other words, p = exp(Q1),. © L, in which the subscript i-
indicates the ith row of exp(Q¥), © is the element-wise vector
product, and L is a vector of conditional likelihoods.

We then proceed to the daughter node and randomly sam-
ple a state for it according to the probabilities given by p. We
use simulation and rejection sampling to obtain a discrete
character history along that edge consistent with our sam-
pled parent and daughter node states. Finally, we recursively
traverse the phylogeny in a post-order (root to tip) fashion
repeating this procedure for each pair of parent and daughter
nodes. (Of course, if the daughter node is a tip then typically
the state will be known rather than sampled probabilistically,
but our procedure is otherwise identical.) Fig. 3 gives an
example of ten stochastic character histories, given our phy-
logeny and data of Fig. 1 and the Q transition matrix of our
previous sections in which g, | = ¢, , = 0.2. Normally, we’d
generate many more than ten stochastic character histories!

A single stochastic character map contains almost no
information about evolutionary history, but a set of many
such maps can be used to measure the posterior probabilities
that each node is in each state of our character, as well as
to generate an estimate of the probability distribution of the
number of changes of each type on the tree. Indeed, when
a single, fixed value of Q is used for stochastic mapping,
the relative frequencies of each state at each node and the
marginal scaled likelihoods from our previous section should
exactly converge as the number of stochastic simulations
goes to oo (though normally they will be highly similar after
100 or 1,000 simulations). An advantage of stochastic char-
acter mapping, however, is that it also allows us to take into
account uncertainty in the transition process represented
by Q. For example, it’s straightforward to sample Q from
its Bayesian posterior distribution using MCMC, or to use
a set of transition processes in proportion to their weights
based on model comparison (e.g., Revell & Harmon, 2022;
Revell, 2024).

Fig.3 A set of ten stochastic A A A A A

character maps for the tree and

data of Fig. 1. These stochas-

tic character histories were

sampled in proportion to their B B B B B

probability using a constant

value of the transition matrix Q.

See main text for more details 1C 1C 1C 1C 1C
A A A A A
B B B B B
1C 1C 1C 1C 1C

Ooo0m1
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Fig.4 A set of fitted Mk models
for the evolution of diel activ-
ity pattern in primates. a The
equal-rates (ER) model. b The 0.0028
symmetric (SYM) model. ¢ An
ordered model in which the
cathemeral state is assumed to
be intermediate between the
other two conditions. Finally,

d the all-rates-different (ARD)
model. These models involve
the estimation of 1, 3, 4, and 6
parameters, respectively. Note
that the legend color gradient
differs for each figure panel.
Model-support and Akaike
weights are indicated in each
panel header. The data and phy-
logeny for this analysis derive
from Kirk and Kay (2004). See
main text for more details
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Empirical Examples
Marginal Reconstruction: Diel Activity Pattern in Primates

To demonstrate marginal reconstruction, we’ll study diel
activity pattern, coded as ‘nocturnal,” ‘diurnal,” and ‘cath-
emeral’ (active randomly during the day or night), among 90
species of primates. The phylogeny and data for this example
come from Kirk and Kay (2004; but see a similar analysis
using different data in Santini et al., 2015).

Our first step, in this case, will be to fit a set of four Mk
models to our tree and data. We can begin with a very sim-
ple model in which we assume that the rates of transition
between all three pairs of our states (nocturnal < diurnal,
nocturnal < cathemeral, and diurnal <> cathemeral) are all
equal one to the other, and in both directions. This model is
called the ‘equal-rates’ (ER) model and our matrix, Q, will
have just one parameter to be estimated. Next, we might
proceed to fit a model in which the backward and forward
transition rates between each pair of states are equal (one
to the other), but differ for each character state pair. This
is called the ‘symmetric’ (SYM) model and has a total of
three parameters. We’ll fit a model in which every transi-
tion rate in each direction is permitted to assume a different
rate. This is called the ‘all-rates-different” (ARD) model,
and our Q matrix for this model will include a total of six
parameters to be estimated. (In general the ARD model has
atotal of k X (k — 1) parameters for k states.) Lastly, we’ll fit
a model in which we imagine that the cathemeral condition
is intermediate between the nocturnal and diurnal activity

@ Springer

a) AIC = 62.7; model weight = 0.28
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d) AIC = 62.75; model weight = 0.27
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0.0274

0.003

%,
o
»960

0.0146

0.0078

0.003

evolutionary rate (q)

0.00416

Nocturnal Cathemeral

0.00222

states, whereby any lineage evolving from one to the other
must first pass through the state of cathemeral diel activity.
This set of fitted models, and their AIC values and Akaike
weights, is given in Fig. 4.

Since the weight of evidence is fairly even across each
in our set of four models, I elected to use model-averaged
marginal ancestral state estimation. Model-averaging simply
involves taking the Akaike weights, multiplying them by the
marginal scaled likelihoods for each model, and then sum-
ming across models (Revell, 2024). The resultant marginal
ancestral states are shown in Fig. 5. They reveal that the
common ancestor was most likely nocturnal (under our fit-
ted model), and also suggest multiple transitions to diurnal
diel activity pattern in different parts of the primate tree of
life (Fig. 5).

Joint Reconstruction: Tail Spines in Lizards

To illustrate joint reconstruction, we’ll use a phylogeny from
Pyron et al. (2013) along with a dataset of tail spine presence
and absence in lizards originally published by Ramm et al.
(2020). To commence, we can fit a set of just two Mk models
for this binary trait: the ER model, in which the back-and-
forth transitions between our two states are forced to take
place at the same rate; and the ARD model in which they
can differ. (We might have also considered two irreversible
models: one in which tail spines can only be gained in our
tree; and another in which they are only lost. In this case,
doing so would not have substantively changed our results.)
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Fig.5 Model-averaged marginal ancestral state reconstruction of diel
activity pattern in primates, integrating over the four models of Fig. 4
in proportion to their Akaike weights. Nodes in which no single con-

dition had a model-averaged marginal scaled likelihood > 0.95 are
shown in larger size. The data and phylogeny for this analysis derive
from Kirk and Kay (2004). See main text for more details

Table 1 Estimated transition rates, log-likelihood, number of parameters, AIC, and model weight for two different discrete character evolution
models for the evolution of the presence or absence of tail spines in lizards

do1 dip log(L) d.f AIC Weight
ER model 0.00152 0.00152 —123.5618 249.1235 0.0688
ARD model 0.00059 0.01112 —119.9564 2 2439129 0.9312

The phylogeny used in this analysis is based on Pyron et al. (2013), and the data were compiled by Ramm et al. (2020). See main text for more

details

The fitted model parameters, log-likelihoods, and model
weights are given in Table 1. Our analysis indicates much
higher model weight (0.93 vs. 0.07) for the ARD compared
to the ER model. Consequently, I used only this model for
our subsequent joint ancestral state reconstruction, given in
Fig. 6.

Joint reconstruction involves a key difference in interpre-
tation compared to marginal reconstruction. Now, we can
no longer point to a particular node and say that the most
probable state is ‘spiny’ or ‘non-spiny.” Rather, we might say
that “in the most probable joint reconstruction, the ancestral
condition at the global root was non-spiny,” or something
to that effect. Since researchers more often wish to be able

6 An interesting “footnote’ (get it?) to this result is that the ML joint
reconstruction at the global root of the tree is ‘non-spiny,” but in an
analogous marginal reconstruction the most probable condition for
the same node was ‘spiny.” I haven’t included this analysis here, but
the reader is encouraged to download the data and discover this for
themselves!

to make specific statements about particular nodes (rather
than the most probable set of conditions across all nodes),
marginal reconstruction tends to be the much more popular
of these two techniques among comparative biologists.

Stochastic Character Mapping: Leaf Armature in Palms

To demonstrate stochastic character mapping, I used a recent
dataset and phylogeny published by Onstein et al. (2022).
In this example, the phylogeny contains a total of 2,539 tree
species from the family Arecaceae (the palms), and data for
the presence of absence of leaf armature (spines, hooks, or
prickles on the palm leaves) for all but 120 of these taxa.
The trait data of this study were compiled by Onstein et al.
(2022) from the PalmTraits 1.0 database (Kissling et al.,
2019), and the palm phylogeny is derived from an earlier
tree by Faurby et al. (2016).

To begin, I re-coded all data deficient species (which had
been left out by Onstein et al., 2022) as ambiguous for the
trait of leaf armature, and then I proceeded to fit a total of
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Fig. 6 Joint reconstruction of the presence and absence of tail spines
on a phylogeny of 658 species of lizards. Reconstruction was per-
formed under the best-supported Mk model which featured unequal
back and forth transition rates between the two different character lev-
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els of the trait (the ARD model; Table 1). The phylogeny and data for
this analysis derive from Pyron et al. (2013) and Ramm et al. (2020),
respectively. See main text for more details

Table 2 Estimated transition rates, log-likelihood, number of parameters, AIC, and model weights for four different discrete character evolution
models for the evolution of the presence or absence of leaf armature in palms

90,1 q10 log(L) df AIC Weight
ER model 0.00392 0.00392 —431.5580 1 865.1161 0.57424
absent — present 0.01162 0.00000 —617.2943 1 1236.5886 0.00000
present — absent 0.00000 0.01279 —485.6286 1 973.2573 0.00000
ARD model 0.00338 0.00471 —430.8572 2 865.7145 0.42576

The phylogeny and data for this analysis derive from Faurby et al. (2016), Kissling et al. (2019), and Onstein et al. (2022). See main text for

more details

four Mk trait evolution models: the ER model, the ARD
model, and two irreversible models—one in which leaf
armature could be acquired but not lost, and a second in
which the reverse was true. (Coding for ambiguity simply
involves observing, a priori, that an ambiguous tip could
equally likely be in one condition or the other. The total
probability of the data then becomes the sum of the prob-
ability conditioning first on the tip being in one state and
then in the other. This total probability can be computed
efficiently via the pruning algorithm of Felsenstein 1981.) A
summary of parameter estimates and model support is given
in Table 2. I found almost no support for the two irreversible

@ Springer

models, but roughly similar weights of evidence for the two
different reversible models: ER and ARD (Table 2).

I next generated 500 stochastic character maps in which
each of the four models were sampled randomly with prob-
abilities given by their relative model weights (Table 2).
Note that the sampling algorithm and total sample size of
stochastic character maps is such that it ensures almost no
irreversible (absent — present or present — absent) stochas-
tic character histories will be sampled. A single, randomly
chosen stochastically mapped tree is shown in Fig. 7.

Normally, relatively little can be learned from a single,
stochastic character history such as that shown in Fig. 7. On
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absent
= present

Fig.7 A single stochastically-sampled character history of the
absence or presence of leaf armature (spines or other defensive struc-
tures) in 2,539 species of palms. The phylogeny and data for this

the other hand, neither is anything to be gained by visual-
izing 500 such histories—particularly for large phylogenetic
trees! For this reason, various tactics have been proposed
to summarize the results across a set of stochastic charac-
ter maps (Revell, 2013, 2014b, 2024; Revell & Harmon,
2022). Two such analyses are shown in Fig. 8. In particular,
Fig. 8a shows a posterior density map (Revell, 2013, 2014b)
obtained by measuring the relative frequency of each of the
two states over our set of 500 stochastic simulations across
all edges and nodes of the tree. These frequencies give the
posterior probabilities along all of the edges and nodes of
the phylogeny. (These will be empirical Bayes posterior
probabilities for a fixed value of Q; however, full Bayesian
probabilities are also possible—for example, if the Q matrix
is sampled from its posterior probability distribution using
MCMC.) Fig. 8b, on the other hand, illustrates a visualiza-
tion of the posterior probability distribution of the number
of changes of each type on the phylogeny. These distribu-
tions are obtained simply by counting the changes in each of
the 500 stochastically sampled character maps (e.g., Revell
2024).

analysis derive from Faurby et al. (2016), Kissling et al. (2019), and
Onstein et al. (2022). See main text for more details

Continuous Characters
The Brownian Motion Model

The standard model employed to study the evolution of
continuous traits, as well as (especially) to reconstruct their
ancestral values, is one called the Brownian motion model
(Felsenstein, 1973, 1985; O’Meara et al., 2006; Harmon,
2019). Brownian motion is a continuous time, direction-
less, random walk model (Harmon, 2019; Revell & Harmon,
2022). Under Brownian motion, successive evolutionary
changes are independent and come from a Gaussian distri-
bution with a mean of 0 and variance of ¢2 X ¢, in which o>
is the instantaneous rate of the Gaussian process and ¢ is the
elapsed time (Harmon, 2019). Figure 9 shows a simulation
of Brownian motion evolution (Fig. 9b) on the same simpli-
fied phylogenetic tree of three taxa that we saw earlier in the
article (e.g., Fig. 1), but in which I’ve re-colored the edges
(Fig. 9a) so that they can be matched more easily with the
Brownian trait evolution scenario (Fig. 9b).

Brownian motion evolution will produce a realized trait
vector of phenotypic values among species that has an
expected value (E[x]) equal to the root state (x;), and a
multivariate normal distribution with variance equal to
the total height of each tip above the root multiplied by the
instantaneous Brownian rate, o2 (O’Meara et al., 2006).
In other words x ~ MVN(x,, 6>C) in which C is an N X N
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Fig.8 a Probability density of the absence/presence of leaf armature
based on 500 stochastic character mappings on a phylogenetic tree of
2,539 palm species. The four models of Table 2 were randomly sam-
pled in proportion to their model weights following Revell (2024).
Probability density of changes from leaf armature absent to present

matrix (for N tips in the tree), where each i,jth element
contains the height above the root of the most recent com-
mon ancestor of taxa i and j. This matrix, C, for our phy-
logeny of Fig. 9a would be calculated as follows (Revell
& Harmon, 2022).

A B C A B (C
ATta+tan tAp 0.0 AT0.7 0.4 0.0
C=B tAB tp +taB 0.0:| =B |:0.4 0.7 0.0:|
C 0.0 0.0 tc 0.0 0.0 0.7
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b and present to absent ¢ from 500 stochastic character maps. The
phylogeny and data for this analysis derive from Faurby et al. (2016),
Kissling et al. (2019), and Onstein et al. (2022). See main text for
more details

To compute the probability density of a set of data (x) at
the tips of the tree for any particular value of 62 and x,, we
must evaluate the following density function. If this expres-
sion seems familiar to some readers, they shouldn’t be sur-
prised: it’s just a typical multivariate normal probability
density function!

exp(—1[x — Lx/ (6%C) ™ [x — 1x, )

V27N x det(c2C)

P(x) =
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Fig.9 a Three-taxon phyloge- a)
netic tree of Fig. 1, but in which
each edge of the tree has been
plotted with a different color. b
Single illustrative realization of
Brownian motion evolution on
the tree of figure panel a. See
main text for more details

tAB =04
internal

DFOOT

tc=0.7

ta=0.3

tB =0.3

b)

A 222 A
2.0

B 182

C 036

2.0 —

internal node

root node

Fig. 10 Log-likelihood surface for the numerical values of the root
and internal nodes of the tree and phenotypic trait data of Fig. 9. The
grey line shows an illustration of numerical optimization on this sur-
face which convergences to the Maximum Likelihood values of both
node states. See main text for more details

Finding the set of values for x, and 62 that maximize the
value of this expression would provide us with the Maxi-
mum Likelihood estimates of these model parameters
(O’Meara et al., 2006; Revell & Harmon, 2022).

Ancestral State Estimation Under Brownian Motion

Under Brownian motion evolution of our trait, not only are
the tips distributed as a multivariate normal random vari-
able, so are the values of internal nodes (Rohlf, 2001; Revell
& Harmon, 2022; Schluter et al., 1997). To find those node
values that maximize the probability of our tip data, x, we
merely have to expand the matrix C to include one additional
row and column for each (non-root) internal node of the
tree. In our three-taxon phylogeny of Fig. 9a there is only

[ I I I I I |
0.0 01 02 03 04 05 06

time

one such node (labeled “internal”) and our matrix C thus
looks as follows.

A B C internal
ATta+tas tap 0.0 tap

C— B| tam tg+tap 0.0 tAB
- C 0.0 0.0 to 0.0
internal tAB taB 0.0 tAB

- A B C internal

AT0.7 04 0.0 0.4

B{0.4 0.7 0.0 0.4

- 0.0 0.0 0.7 0.0
internal (0.4 0.4 0.0 0.4

To find the set of ancestral states under Brownian motion
that maximize the probability of our observed data (our ML
states), we simply identify the internal node values and root
state (x) that jointly maximize the probability of the tip data
given our model. Figure 10 gives a log-likelihood surface for
the ancestral values at the root node (on the x-axis) and the
single internal node (on y) of our tree: showing the maxi-
mum likelihood values of x; and x;,,,,,,,; to be 1.29 and 1.82,
respectively. The figure also includes an illustrative course
of numerical optimization on this likelihood surface, though
this result would (naturally) depend on our starting values
and specific optimization routine (Fig. 10).

In practice, rapid algorithms have been identified to find
the set of internal node values that maximize the probability
density of the data under our model (e.g., Rohlf, 2001). For
instance, Rohlf (2001) points out that the Maximum Likeli-
hood ancestral state at any node i can be expressed as a simple
weighted average of the tip taxa values, in which the set of
weights (w;) is given by the following expression.
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wo= ((1C7) "1+ Gy (1- ¢ (re1) ) )

Here, I is the identity matrix and 1 is a conformable vector
of 1.0s (Rohlf, 2001). The only unfamiliar term, C H,00 is the
ith row of the m X N matrix (Cp,) containing the heights
above the root of the most recent common ancestor of each
ith internal node (in rows) and each jth tip (in columns). For
our tree of Fig. 9, the matrix Cg,, would be as follows.

A B C
C _ root (0.0 0.0 0.0
HO =internal |10.4 0.4 0.0

If we apply the equation of Rohlf (2001) to our tree of
Fig. 9a, then we will obtain the following sets of weights.

A B C
. root [0.28 0.28 0.44
W =internal [0.44 0.44 0.12

Finally, using these weights and our original data of Fig. 9,
we’ll get the following two results for x,,,, and x;,,,,,,,,;» Our
estimated root and internal node states, respectively.

oot X =028x2.22+028x1.82
+0.44 %036 =129

ernal = X =044 x2.22 4 0.44 x 1.82
+0.12x0.36 = 1.82

X = Wioot

X W

internal

Not by coincidence, these values are identical to the ones
that we obtained by numerically maximizing the likelihood
in Fig. 10. Although we could imagine obtaining variances
and confidence intervals for our ancestral state estimates
from the curvature of the likelihood surface, Rohlf (2001)
also provides more reliable and efficient analytic standard
errors, which, in turn, have been implemented in widely-
used software for ancestral state estimation of continuous
traits (e.g., Revell, 2024).

Lastly, as was the case for discrete traits, one might logi-
cally think that estimating ancestral states under Brownian
motion for a continuous character jointly (across all nodes)
or marginally (node by node) should result in different esti-
mated states. In fact, this is not the case: under Brownian
motion, marginal and joint ancestral state estimates are
identical.

@ Springer

Empirical Examples

Brownian Motion: Environmental Niche Evolution
in Liolaemid Lizards

To explore ancestral character estimation for continuous
characters under Brownian motion, I began with a dataset of
maximum environmental temperature in degrees Celsius for
lizards of the South American family Liolaemidae derived
from Esquerré et al. (2019). With these data and phylog-
eny in hand, I proceeded to estimate ancestral states under a
Brownian model of evolutionary change, and then projected
the observed (at the tips) and reconstructed (along edges and
at nodes) values onto the tree using a visualization method
described in Revell (2013, 2014b).

Figure 11 shows the result of this analysis. Although the
estimated ancestral value at the deepest nodes of the phylog-
eny are predictably intermediate,’ the projection nonetheless
reveals an interesting pattern of similarity in thermal envi-
ronment (phylogenetic signal, Blomberg et al., 2003; Revell,
2024) between related species (Fig. 11). The ancestral state
reconstruction also helps us to see multiple shifts in envi-
ronmental temperature distributed among the different major
clades of the phylogeny (Fig. 11).

Brownian Motion: Body Size in the Frog Genus Conraua

In addition to environmental temperature in Liolaemidae
(Fig. 11), I also estimated ancestral states for overall body
size (reported as snout-to-vent length, or SVL, in Black-
burn et al., 2020) for African frogs from the genus Conraua,
known commonly as slippery (Blackburn et al., 2020) or
giant (Channing & Rdodel, 2019) frogs.

The Conraua frog clade includes the world’s largest
frog—the Goliath frog, Conraua goliath—making their
evolutionary history of body size particularly interesting
(Blackburn et al., 2020). The tree and data for this example
derive from Blackburn et al. (2020) and Channing and Rédel
(2019), respectively, and a similar ancestral state reconstruc-
tion analysis was undertaken by Blackburn et al. (2020).

To estimate node states in this group, I obtained maxi-
mum body size values of six species of Conraua frog (Chan-
ning & Rodel, 2019), along with a single representative
value of 53 mm for the outgroup clade Petropedetidae (as
in Blackburn et al., 2020), although the latter has been left
out of all plots. I transformed all values using the natural
logarithm for estimation, and then back-transformed my

7 After all, ancestral state estimates under the Brownian motion
model are a simple weighted mean of the species trait values, as
shown above.
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Fig. 11 A phylogenetic tree of the Maximum Likelihood ancestral
states (along edges) and observed values (at the tips) of maximum
environmental temperature among lizards of the South American

estimates and their confidence limits to the linear scale for
graphing.

Figure 12 shows two different visualizations of ancestral
state estimates for Conraua frogs. First, Figure panel 12a
uses a continuous color gradient (similar to that of Fig. 11)
mapped to the nodes and tips of the plotted tree. Figure 12b,
by contrast, shows a projection of the tree into a phenotype
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Conraua goliath @
€
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>
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(@) Conraua alleni Q 2

Conraua crassipes Q
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Conraua beccarii @

Fig. 12 Ancestral state reconstruction of body size in the Conraua
frogs. a Projection of the observed (at the tips) or estimated (at
nodes) ancestral values of body size in mm. b Traitgram projection
of the phylogenetic tree into trait space, based on the ancestral recon-
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family Liolaemidae. The phylogeny and data for this analysis are
based on Esquerré et al. (2019). See main text for more details

space, called a ‘traitgram’ (following Evans et al., 2009;
Revell, 2013; Revell et al., 2018). Overlain shaded poly-
gons give the 95% confidence intervals around estimated
ancestral values. In both graphs, we see the dramatic shift
to large body size in the lineage leading to the Goliath frog,
C. goliath (Fig. 12).

b)

—— observed or reconstructed value
95% confidence interval

Conraua goliath

Conraua beccarii

Conraua robusta

Conraua derooi
+--. Conraua crassipes
"**+-- Conraua alleni

time (mybp)

struction. The superimposed shaded polygons show 95% confidence
limits around estimated values. The body size data and phylogeny are
based on Channing and Rodel (2019) and Blackburn et al. (2020),
respectively. See main text for more details
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Properties of Ancestral State Estimation

Though relentlessly popular, ancestral character estima-
tion has been subject to numerous criticisms over the years
(e.g., Cunningham et al., 1998; Cunningham, 1999; Omland,
1999; Losos, 2011; Gascuel & Steel, 2020). These critiques
have assumed (very roughly) two flavors.

On the one hand, ancestral state estimates, particularly for
nodes close to the root of the tree, tend to have broad uncer-
tainty. Indeed, Ané (2008) shows that the effective sample
size (a measure of the amount of independent information
contained by the data) for an estimate of the root node of the
tree under Brownian motion tends to be much smaller than
the number of tips, and could be as small as 5 or 6 for trees
containing dozens of terminal taxa, or more (Ané, 2008).
Put another way, it’s also been demonstrated that all estima-
tors for both continuous and discrete characters, and across
multiple models of evolutionary change, may be unbiased,
but are frequently statistically inconsistent for deep nodes of
the phylogeny, particularly the global root (Ané, 2008; Fan
& Roch, 2018; Ho & Dinh, 2022; Vu et al., 2023).

Statistical inconsistency of ancestral state estimators
merely means that our estimate is not guaranteed to con-
verge on the true value, even as our number of tips goes to
oo—but instead is a random variable with an expected value
equal to the true root state, and a variance that depends on
the structure of the tree (Ané, 2008). Though research on the
conditions of statistical inconsistency in ancestral state esti-
mation has focused on the root node (e.g., Ané, 2008; Fan &
Roch, 2018; Ho & Dinh, 2022, Vu et al., 2023), these results
are likely to apply to other deep nodes in the phylogeny (if
not to all nodes, depending on the case). The implication of
statistical inconsistency under broad circumstances is not
that we should conclude that our ancestral state estimates are
bad, but merely suggests that we ought to limit our expecta-
tions on how less bad they’ll get by increasing our sample
size of taxa (Ané, 2008).

Relatedly, Gascuel and Steel (2020) point out a paradox,
or tradeoff, between the conditions under which we can esti-
mate the state at the root of the tree for a discretely-valued
trait, and the conditions under which the rates of change
between character levels are estimable—a phenomenon they
denominate the ‘Darwinian uncertainty principle.” In short,
when the rate of evolution is low, relatively few changes of
the trait will have accrued and deep ancestral conditions are
straightforward to estimate. On the other hand, these few
changes of the trait will have provided very little informa-
tion about the rate of change between character levels. When
the rate of change between states is high, on the other hand,
precisely the converse will be true (Gascuel & Steel, 2020).

Observing that the confidence intervals around ances-
tral states are broad (and will tend to stay broad even as
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our sampling is increased, Ané, 2008; Gascuel & Steel,
2020; Vu et al., 2023) is not the same as arguing that they’re
wrong—it’s merely a reminder that phylogenetic compara-
tive methods are ordinary statistical methods too (Revell
et al., 2018; Revell & Harmon, 2022). As such, it would be
incorrect to treat an estimated ancestral state as if it were a
quantity known without error (Losos, 2011). Indeed, when
the underlying model assumptions are valid, ancestral state
estimation has reasonable statistical properties (Revell &
Harmon, 2022).

A more pernicious problem arises when the model is
wrong (Revell & Harmon, 2022)—or, rather ‘badly wrong’
(seeing how, in point of fact, all models are wrong, even if
many are useful®). Under these circumstances, it becomes
possible to confidently estimate wrong ancestral node states.
This, too, one could argue, falls into the category of ances-
tral state reconstruction behaving as do all normal statistical
methods! On the other hand, some evidence suggests that
ancestral reconstruction is particularly sensitive to model
assumption violations.

To investigate ancestral state estimation when model
assumptions are violated, I’ll consider three different case
studies: discrete character evolution under the hidden-rates
model (Beaulieu et al., 2013); discrete trait evolution under
the threshold model (Felsenstein, 2005, 2012; Revell, 2014a)
and bounded Brownian motion evolution (Boucher & Démery,
2016). I'll show that when an incorrect model is used (specifi-
cally, a homogenous-rate Mk model for the discrete data, and
unbounded Brownian motion for continuous characters), bad
statistical behavior emerges. On the other hand, however, I'1l
also show that this effect is substantively diminished when the
correct, generating model is used in estimation for each case.

Ancestral State Estimation When the Model is Right

Before showing that ancestral state estimation can misbe-
have when the model of evolution is wrong, it seems per-
tinent to undertake a very brief exploration of the proper-
ties of ancestral state reconstruction when the model used
for estimation fully captures the generating evolutionary
process: in other words, when the model is “right.” This is
genuinely the best case scenario for ancestral character esti-
mation, so we might expect to find statistical properties that
are optimal in this scenario.

To begin with, I simulated 100 stochastic, pure-birth phy-
logenies, each containing a total of 501 taxa (and thus 500
internal nodes), with a total root to tip height of 10.0. (This
tree depth has no particular meaning. By trial and error I
discovered that it tended to result in a relatively even distri-
bution of marginal scaled likelihoods across simulations.) I

8 To paraphrase the statistician George Box (1976).
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Fig. 13 Accuracy of ancestral state reconstruction of discrete (a) and
continuous (b) characters when the model for estimation is correct.
a Node marginal scaled likelihoods (of state “1”) compared to the
relative frequency that each node was in that condition. If the scaled
likelihoods are an accurate measure of the true probability that each
node was in each character state, then these values should form a 1:1

next generated one binary (0/1) character for each tree. This
discrete character was simulated with a generating value of
Q that matched the illustrative value of Q used earlier in the
article.

Q= [—610,1 d0,1 ] — [—0-2 0.2 }

d9i0 —4910 02 -02
In addition to this discretely-valued character, I also sim-
ulated one continuous trait for each tree under Brownian
motion using a starting value of x, = 0.0 and a Brownian
motion (stochastic diffusion) rate of 2 = 1.0.

To measure the performance of ancestral state reconstruc-
tion for discrete characters when the generating model was
known and used for estimation, I first binned the marginal
scaled likelihoods of the node being in condition “1” into
50 equal-sized intervals, each 0.02 units wide. For each
bin, I then simply counted the number of nodes across all

simulations whose true states were equal to ““1”. This count,
divided by the tofal number of nodes in that bin, would be

° If I'm not mistaken, B. O’Meara originally suggested this to me
as a procedure for measuring the accuracy of a statistical method
designed to compute probabilities during the Evolution conference
some years ago now.

fraction of estimates on 95% Cl

line. Point diameters have been scaled by the natural logarithm of
the sample size (number of nodes) for each bin. b Distribution of the
relative frequency (from 100 simulations) in which the true ancestral
value fell on the 95% confidence interval of each node estimate, aver-
aged across all nodes for each simulation. See main text for additional
details

expected to be equal to the midpoint of the bin if the mar-
ginal scaled likelihoods genuinely correspond to a probabil-
ity that the node is in each state, under the model. So, for
instance, if the marginal scaled likelihood bin spanned 0.19
through 0.21, with a midpoint of 0.2, then we would expect
to find that (on average) 20% of nodes in this bin should be
in condition “1” (and 80% thus in condition “0”), and so on.”

To measure the performance of ancestral state estima-
tion when the generating model was known for continuous
characters, I simply quantified the fraction of node-wise 95%
confidence intervals for which the true value fell within the
interval. (I could’ve also measured the correlation between
the generating and estimated values, or the average differ-
ence between the known values and the estimates.)

Figure 13 summarizes the results of this analysis. In
Fig. 13a, we see that the relative frequency of being in con-
dition “1” closely tracks the marginal scaled likelihoods. In
Fig. 13b, we likewise see that the distribution of true node
values that fall on the 95% confidence intervals, averaged
by simulation, is centered closely on 95%, with a mean of
94.98% and a range of [0.916,0.976] (Fig. 13). In summary,
when the model for estimation is correct, ancestral state
reconstruction can work precisely as intended.
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Fig. 14 A graphical illustration a)
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Ancestral State Estimation When the Model is Wrong

In the previous section, I illustrated how ancestral state
reconstruction can be statistically well-behaved when the
model for estimation is correct. Using a trio of very simple
examples, I’ll now try to demonstrate how ancestral charac-
ter estimation might go astray when the model for estimation
is badly wrong. I’'ll do this by simulating data under three
different trait evolution models that I haven’t yet discussed:
two for discrete characters; and a third for continuous traits.
Note that the purpose of this section is not to prove that we
can recover the good statistical behavior of ancestral state
reconstruction when the correct model is used, though that
is sometimes true and will be true in these particular cases.
To the contrary, my intention is to highlight the substantial
sensitivity or vulnerability to model assumption violations
of our standard reconstruction methods.

Ancestral States Under a Hidden-Rates Model

To show this, I'll first use a model called the hidden-rates
model (Beaulieu et al., 2013; Boyko & Beaulieu, 2021;
Marazzi et al., 2012; Revell, 2024; Revell & Harmon,
2022). The hidden-rates model is one in which, for each
observed level of a discrete trait, there might be one or
more unobserved conditions, each with their own rates of
transition of the observed state. Figure 14 illustrates evolu-
tion under a flavor of the hidden-rates model in which the
observed condition “1” has two hidden levels: “1”” in which
the trait can still transition back to the “0” form; and “1*”
in which it cannot. (The character condition of “1*” is also
then an ‘absorbing’ state for the character.) An attribute of
trait evolution under the hidden-rates model is heterogene-
ity in the rate of transition between states. This is apparent
in Fig. 14b and 14c in which we see that transitions occur
frequently between the two visible conditions of the trait,
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“0” and “1”, until the condition “1” changes to the hidden
state “1*” (Fig. 14). It’s relatively easy to imagine a trait
that could evolve in this way. Consider parity mode in
squamate reptiles, for instance. Perhaps when viviparity
(which, in some squamates might be called ‘ovoviviparity’
and is little more than egg retention through hatching), has
recently evolved, it can still be lost. Over time, however,
additional adaptations or loss of function mutations accu-
mulate and viviparity eventually evolves into a condition
from which oviparity can no longer re-emerge. This evo-
lutionary scenario would be well-captured by the model
illustrated in Fig. 14.

To simulate under this model I used the following tran-
sition matrix, Q, between observed and unobserved levels
of each of the two trait conditions.

0 1 1%

07—0.20 0.20 0.00
Q= 1(020 -0.30 0.10
1| 0.00 0.00 0.00

I used the same one hundred, 501 taxon phylogenies
that were simulated for the previous section. After simula-
tion, I merged the two different hidden levels of character
“1” (that is, “1” and “1*”) into a single, observed character
condition. (This is because in empirical studies the ‘hid-
den’ level of character “1” and its unhidden condition are
the same observed state!) Finally, as opposed to estimating
ancestral states under the correct model, I began by using
an incorrect model of evolution without hidden states, but
in which the back-and-forth transition rates between the
two observed character conditions were allowed to occur
with different rhythms.

The result from this analysis is given in Fig. 15a. Even
though most points fall on the 1:1 line, we also see a large
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Fig. 15 Accuracy of ancestral state reconstruction of discrete char-
acters when the hidden rate model of Fig. 14 was used for simula-
tion. a Node marginal scaled likelihoods (of state “1””) compared to
the relative frequency that each node was in that condition using a
standard Mk model for estimation. b The same as a, but in which the
generating hidden-rates model was used. If the scaled likelihoods are

Fig. 16 Illustration of evolution a)
under the threshold model. a
The evolution of liabilities: the
unobserved continuous charac-
ter whose condition determines
the state of the discrete trait.
The thresholds between discrete
character levels in the thresh-
old trait are shown using the
vertical dotted lines. b The real-
ized evolution of the discrete
character across the branches
and nodes of the phylogeny. See
main text for more details
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an accurate measure of the true probability of that each node was in
each character state, then these values should form a 1:1 line. As in
Fig. 13, point diameters have been scaled by the natural logarithm
of the sample size (number of nodes) for each bin. See main text for
additional details

.

fraction of nodes that are not resolved into one condition
or the other, even though they have a (known) true state
“0” (Fig. 15a).

In addition to simply reconstructing under the standard
Mk model, I also fit and estimated ancestral states using the
hidden-rates model, which was the generating evolutionary
scenario of our data. The results from this analysis are given

in Fig. 15b which more closely resembles panel a of Fig. 13
(in which the true model was known and used for estimation)
than it does Fig. 15a. This suggests that, here, good statisti-
cal properties of estimation are largely recovered when the
correct model is used.
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Ancestral States Under the Threshold Model

The next discrete character evolution model that we’ll con-
sider is one that’s called the threshold model (Felsenstein,
2005, 2012; Wright, 1934). Under the threshold model,
our discrete character is underlain by an unobserved quan-
titative trait called ‘liability.” Every time liability crosses
a pre-defined (but unknown) threshold, our observed dis-
crete character changes state. The model derives originally
from evolutionary quantitative genetics where it was used
by Wright (1934) to describe variation in digit number of
guinea pigs, but was much later adapted by Felsenstein
(2005, 2012) to phylogenetic comparative biology. A simu-
lation of discrete character evolution under the threshold
model is given in Fig. 16. Panel (a) of the figure shows the
Brownian evolution of the normally unobserved liabilities
(and thresholds), whereas panel (b) illustrates the resultant
discrete trait evolution on the branches and nodes of the
phylogeny.

Various features of the evolution of our discrete charac-
ter are manifestly different between Fig. 16b and evolution
under a standard Mk scenario. Most conspicuously, and
not unlike the hidden-rates model of Fig. 14, the tempo
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Fig. 17 Accuracy of ancestral state reconstruction of discrete charac-
ters when the threshold model of Fig. 16 was used for simulation. a
Node marginal scaled likelihoods compared to the relative frequency
that each node was in that condition using a standard Mk model for
estimation. b The same as a, but in which the generating threshold
model was used for estimation. If the scaled likelihoods are an accu-
rate measure of the true probability of that each node was in each
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of evolutionary change for the discrete trait varies from
clade to clade of the phylogeny. This is because in parts
of the tree where the evolutionary process for the liability
is close to a threshold, the character changes frequently in
state. By contrast, when the liability is far from any thresh-
old, the discrete character may experience long periods of
stasis with little to no change at all (Revell, 2014a; Revell
& Harmon 2022).

To simulate evolution under the threshold model, I used
the same one hundred, 501 taxon phylogenies that were
simulated for the previous sections. I next simulated a con-
tinuous trait (liability) evolving via Brownian motion with
a rate equal to 6% = 0.1, an ancestral value of xy = 2.0,
and thresholds between character levels of [0, 1, 3]. This
typically resulted in four levels of the discrete character,
but in a small subset of simulations only three character
levels were observed. For each dataset, I fit an ordered
Mk model (because the threshold model itself is intrinsi-
cally ordered), as well as the threshold model itself. To fit
the threshold model I used the discrete approximation of
Boucher and Démery (2016; Revell, 2024). For each fitted
model, I computed marginal ancestral states in the typical
way. Finally, as in Fig. 15, I compared the marginal scaled
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character state, then these values should form a 1:1 line. Point diam-
eters have been scaled by the natural logarithm of the sample size
(total number of probabilities computed) for each bin. Note that these
don’t sum to the number of nodes because multiple values are calcu-
lated for each node in each simulation, depending on the number of
levels (3 or 4) of the trait. See main text for additional details
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likelihoods that each node was in each state to the genuine
frequency of the node being in the corresponding character
condition. If the ancestral state reconstruction method is
working properly, these values should form a 1:1 line. The
result of this analysis is shown in Fig. 17.

As is evident from the figure, I found marginal ancestral
reconstruction to be quite inaccurate when the Mk model
was used for estimation (Fig. 17a). In particular, marginal
scaled likelihoods tended to overestimate the probability
that a node was in each state when low, and underestimate
the same quantity when high (Fig. 17a). In contrast, when
estimation was performed using the generating threshold
model, good statistical behavior of marginal reconstruc-
tion was fully recovered (Fig. 17b).

Ancestral States Under Bounded Brownian Motion

As discussed earlier in this article, the typical model for
ancestral state reconstruction of continuous traits is one
of unbounded Brownian motion evolution, also known as
stochastic diffusion or a continuous time random walk. To
investigate the sensitivity of continuous character ances-
tral state reconstruction to model misspecification, I first
generated 100 datasets, one for each our 100 simulated
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Fig. 18 Accuracy of ancestral state reconstruction of continuous
characters when data were simulated under Brownian motion evolu-
tion with reflective bounds. a Frequency distribution of the fraction of
nodes falling in within the 95% confidence interval of each node esti-
mate, averaged across all nodes by simulation both when a standard
Brownian model (grey) and bounded model (shading lines) was used

501 taxon trees of the previous two sections. In this case,
however, our generating model is bounded Brownian evo-
lutionary change, with x, = 0.0, > = 1.0, and upper and
lower bounds of [—2, 2]. Bounded Brownian motion (with
reflective bounds) is just like standard Brownian motion, but
in which whenever the boundary condition is reached, the
evolutionary process reflects back into the bounded space
(Boucher & Démery, 2016).

Following simulation, I first reconstructed ancestral states
under a standard (unbounded) Brownian model, and then
under bounded Brownian evolution, the latter utilizing the
method of Boucher and Démery (2016). I measured the sta-
tistical behavior of ancestral state estimation in the same way
as in Fig. 13b; however, since the true value of an estimated
parameter might fall within the confidence interval of the
estimate either because the estimate is accurate or because
the confidence interval is wide, I also measured accuracy of
ancestral estimates by calculating the correlation between
the known generating values and the estimates for each
simulation. The results of this analysis are given in Fig. 18.

We see that when data are simulated under bounded
Brownian evolution, but unbounded Brownian motion is
assumed as a model for estimation, confidence intervals are
too narrow (Fig. 18a), with a mean fraction of true ancestral
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for estimation. b Distribution of correlation between true and esti-
mated ancestral states when the data were generated under bounded
Brownian evolution, and either a standard Brownian motion model
(grey) or bounded model (shading lines) was used for estimation. See
main text for additional details
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states falling within the 95% confidence intervals of the esti-
mates of 80.8% (range: [71.6, 87.6]; Fig. 18a). By contrast,
almost exactly 95% of confidence intervals estimated under
bounded Brownian evolution (Boucher & Démery, 2016)
included the true, generating values of the states (average:
94.6%; range: [92.0, 97.8]; Fig. 18a).

In addition to having the correct confidence intervals,
estimates obtained under bounded Brownian motion were
also more accurate (Fig. 18b). The mean correlation between
generating and estimated ancestral states when unbounded
Brownian evolution was assumed as a model for estimation
was 7 = 0.822—compared to a mean of 7 = (0.843 when the
correct model was used (Fig. 18b).

Software Implementation and Availability

Ancestral character estimation is implemented in the R
statistical computing software (R Core Team, 2024) pack-
age phytools Revell (2012, 2024), as well as in a number
of other R packages and software (e.g., Beaulieu et al.,
2023; Boyko & Beaulieu, 2021; Maddison & Maddison,
2023; Pagel & Meade, 2024; Paradis & Schliep, 2019;
Schliep, 2011). All analyses of this article were conducted
using phytools. phytools in turn depends on the core R
phylogenetics packages ape (Paradis & Schliep, 2019) and
phangorn (Schliep, 2011). phytools, ape, and phangorn
are all publicly available through the Comprehensive R
Archive Network, CRAN (https://cran.r-project.org/).

Conclusions

Ancestral state reconstruction has long been among the most
relentlessly popular analyses of phylogenetic comparative
biology. In this article, I've tried to overview the theoreti-
cal and practical basics of ancestral state reconstruction for
discrete and continuously-valued character traits. I’ve shown
how ancestral state reconstruction can be applied to empiri-
cal datasets of various types, such as estimating the ancestral
conditions of environmental temperature in liolaemid liz-
ards, diel activity pattern in primates, or body size in frogs.

In spite of its popularity, ancestral state estimation has
some limitations. In particular, ancestral node estimates
often come associated with very broad confidence limits,
especially for nodes that lie deep in our phylogenetic tree.
Additionally, ancestral state reconstruction can be highly
sensitive to violations of the assumptions of the evolutionary
model used for estimation. Though both of these attributes
(broad confidence intervals when the amount of information
about a parameter is low; and sensitivity to model assump-
tions) are properties of many statistical inference methods,
enthusiasts of ancestral state reconstruction have sometimes
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failed to sufficiently appreciate the nature and depth of these
limitations.

In an age when phylogenetic data is ever easier to pro-
duce, I have little doubt that the appeal of ancestral character
state reconstruction will continue to grow into the future.
I hope that this article will provide a helpful introductory
guide to those biologists and scientists of other disciplines
who dare to venture into this endeavor.

A Short Postscript on the Origins of this
Article

Some time during 2023 I was asked to contribute a section
on ‘Ancestral Reconstruction: Theory & Practice’ for the
second edition of a compendium entitled the ‘Encyclopedia
of Evolutionary Biology’ (Kliman, 2016). Not having care-
fully read the instructions, but enthusiastic about the task,
I proceeded to write what I expected to be a lengthy book
chapter on the subject, including some original primary
research on the accuracy of ancestral state reconstruction
under different circumstances. As it turns out, and as I real-
ized before submitting my article to the publisher, this was
totally inconsistent with the aims of the project which called
for a much more compact and less detailed treatment of the
subject. Having identified my blunder, I was forced to go
back to the drawing board and produce a much more appro-
priate length piece for the encyclopedia (Revell, 2025). The
present article is the fruit of my original labor and is geared
towards researchers more interested in the technical details
of ancestral reconstruction and its application.'® I hope that
it can serve this purpose here.
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