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ABSTRACT
Phylogenetic comparative methods comprise the general endeavor of using an esti-
mated phylogenetic tree (or set of trees) to make secondary inferences: about trait
evolution, diversification dynamics, biogeography, community ecology, and a wide
range of other phenomena or processes. Over the past ten years or so, the phytools R
package has grown to become an important research tool for phylogenetic comparative
analysis. phytools is a diverse contributed R library now consisting of hundreds of
different functions covering a variety of methods and purposes in phylogenetic biology.
As of the time of writing, phytools included functionality for fitting models of trait
evolution, for reconstructing ancestral states, for studying diversification on trees, and
for visualizing phylogenies, comparative data, and fitted models, as well numerous
other tasks related to phylogenetic biology. Here, I describe some significant features
of and recent updates to phytools, while also illustrating several popular workflows of
the phytools computational software.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Statistics
Keywords Phylogenetic comparative methods, Phylogeny, Computational biology

INTRODUCTION
Phylogenetic trees are the directed graphs used to represent historical relationships among
a set of operational taxa that are thought to have arisen via a process of descent with
modification and branching (Felsenstein, 2004; Harmon, 2019). Operational taxa in a
reconstructed phylogenetic treemight be gene copies, paralogous andorthologousmembers
of a gene family, viral sequences, whole genomes, human cultural groups, or biological
species (Nunn, 2011; Yang, 2014). According to its broadest definition, the phylogenetic
comparative method corresponds to the general activity of using a known or (most
often) estimated phylogenetic tree to learn something else (apart from the relationships
indicated by the tree) about the evolutionary process or past, the contemporary ecology,
the biogeographic history, or the origins via diversification, of the particular taxa of our
phylogeny (Harvey & Pagel, 1991; Felsenstein, 2004; Nunn, 2011; O’Meara, 2012; Harmon,
2019; Revell & Harmon, 2022).

Phylogenetic comparative methods are not new. Perhaps the most important article in
the development of the phylogenetic approach to comparative biology (Felsenstein, 1985)
was first authored nearly 40 years ago, and was even the subject of a recent retrospective
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(Huey, Garland & Turelli, 2019). Nonetheless, it is fair to say that phylogenetic comparative
methods have seen a relatively impressive expansion and diversification over the past
two decades (e.g., Butler & King, 2004; Felsenstein, 2005; O’Meara et al., 2006; Maddison,
Midford & Otto, 2007; Hohenlohe & Arnold, 2008; Revell & Collar, 2009; Morlon, Potts &
Plotkin, 2010; Stadler, 2011; Etienne & Haegeman, 2012; Goldberg & Igić, 2012; Beaulieu,
O’Meara & Donoghue, 2013; Rabosky, 2014; Uyeda & Harmon, 2014; Beaulieu & O’Meara,
2016; Revell, 2021; MacPherson et al., 2022, and many others; reviewed in O’Meara,
2012; Garamszegi, 2014; Harmon, 2019; Revell & Harmon, 2022). This has included the
development of new approaches for studying the generating processes of trees (that
is, speciation and extinction), the relationship between phenotypic traits and species
diversification, and a range of techniques for investigating heterogeneity in the evolutionary
process across the branches and clades of the tree of life (O’Meara, 2012; Harmon, 2019;
Revell & Harmon, 2022).

Phylogenetic comparative methods have also begun to be applied extensively outside
of their traditional domain of evolutionary research. In particular, phylogenies and
the comparative method have made recent appearances in studies on infectious disease
epidemiology, virology, cancer biology, sociolinguistics, biological anthropology,molecular
genomics, and community ecology, among other disciplines (e.g.,Moura et al., 2016; Baele
et al., 2018; Bentz et al., 2018; Beale et al., 2019; Bushman, McCormick & Sherrill-Mix, 2019;
Sánchez-Busó et al., 2019; Valles-Colomer et al., 2019; Freitas et al., 2020; Jezovit et al., 2020;
Blinkhorn & Grove, 2021; McLaughlin et al., 2022; Pepke & Eisenberg, 2022; Pozzi, Voskamp
& Kappeler, 2022; Compton et al., 2023; Mifsud et al., 2023; Van Borm et al., 2023, and
many others).

The scientific computing environment R (R Core Team, 2023) is widely-used in
biological research. One of the major advantages that R provides is that it empowers
computational scientists and independent developers to build functionality on top of the
basic R platform. This functionality often takes the form of what are called contributed
R packages: libraries of related functions built by individuals or research collaboratives
not part of the core R development team. The growth of importance of R in phylogenetic
biology stems entirely from contributed R package. Among these, the most important core
function libraries are ape (Paradis, Claude & Strimmer, 2004; Popescu, Huber & Paradis,
2012; Paradis & Schliep, 2019), geiger (Harmon et al., 2008; Pennell et al., 2014), phangorn
(Schliep, 2011), and my package, phytools (Revell, 2012).

phytools is an R function library dedicated primarily to phylogenetic comparative
analysis, but also including approaches and methodologies in a range of other domains of
phylogenetic biology—especially, but not restricted to, visualization. The original article
describing phytools is now more than ten years old, and though I recently published a
more comprehensive book on the subject of phylogenetic comparative methods in the
R environment (Revell & Harmon, 2022), I nonetheless felt that it was time to provide a
briefer (although this article is by no means brief) update of phytools specifically—for the
primary scientific literature. This is the main purpose of the current article.

The phytools library has now grown to be very large—consisting of hundreds of
functions, a documentation manual that is more than 200 pages in length, and tens
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of thousands of lines of computer code. As such, I thought it would be most useful
to compactly summarize some of the functionality of the phytools R package in a few
different areas, but each time provide a small set of more detailed example analytical
workflows (computational ‘‘vignettes’’) for the current 2.0 version of the phytools
package. A previous version of this article was posted to the preprint server bioRxiv
(https://doi.org/10.1101/2023.03.08.531791).

OVERVIEW
The phytools R package contains functionality in a diversity of different research areas
of phylogenetics and phylogenetic biology. Rather than attempt a comprehensive survey
of this functionality here, what I have elected to do instead is briefly review a smaller
number of methodological areas, and then illustrate each of these with multiple analysis
workflows—including the corresponding R code that can be used to reproduce the analysis
and results presented.

My hope is that this article will serve as more than the typical software note placeholder
for phytools, and may instead aid R phylogenetic users, both new and old, to be inspired
to apply some of the methodologies illustrated herein to their own questions and data.
On the other hand, even though it takes the form of a tutorial or R package vignette, this
article is not intended to cover nor fully enumerate the complete range of functionality of
the package. For that, I would refer readers to the phytools software documentation, my
recent book with Luke Harmon (Revell & Harmon, 2022), and my phytools development
blog (http://blog.phytools.org).

INSTALLING AND LOADING PHYTOOLS
This article assumes that readers already have some familiarity with the R computing
environment, and have previously installed contributed R packages. Nonetheless, to get
started using phytools, the easiest way to install the package locally is by using the R base
function called install.packages (in our case, install.packages("phytools")),
which will download and install phytools from its CRAN page (CRAN is an acronym
for Comprehensive R Archive Network: a network of mirror repositories used both to
archive and distribute R and contributed R packages). Readers undertaking phylogenetic
analysis in the R environment for the first time will note that when we ask R to install
phytools, several other R packages are also downloaded and installed automatically. These
are packages upon which phytools depends—meaning that phytools uses one or multiple
functions exported by each of these packages in its own internal R code. More will be said
later about the dependency relationship between phytools and other packages of the R and
R phylogenetic ecosystems.

Having installed phytools, if we would like to proceed and use it in an interactive R
session, we would normally load it. Loading an R package simply makes the names of the
functions of that package visible and available in our current R session. This can be done
using the base R function library.
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library(phytools)

packageVersion("phytools")

## [1] ’2.0.0’

packageVersion tells us which version of phytools we have installed. Readers hoping
to follow along should ensure that they have a phytools package version that matches or
exceeds the value they see above. The phytools package is now loaded.

DISCRETE CHARACTERS
The phytools R library now contains a wide range of different methods and models for the
analysis of discrete character evolution on trees. For example, phytools can be used to fit and
plot an extended Mk model, the continuous-time Markov chain model usually employed
to study discrete character evolution on trees (phytools function fitMk, Lewis, 2001;
Harmon, 2019), it can fit Pagel’s correlational binary trait evolution model (fitPagel,
Pagel, 1994), it can be used to perform stochastic character mapping and reconstruct
ancestral states under the Mk and threshold models (make.simmap, simmap, ancThresh,
and ancr,Huelsenbeck, Nielsen & Bollback, 2003; Felsenstein, 2005; Felsenstein, 2012; Revell,
2014a), it can fit a polymorphic trait evolution model (fitpolyMk, Revell & Harmon,
2022), it can fit a hidden-rates model (fitHRM, Beaulieu, O’Meara & Donoghue, 2013), it
can compare the rate of discrete character evolution between clades and trees (fitmultiMk
and ratebytree, Revell et al., 2018; Revell & Harmon, 2022), and it can simulate discrete
character data under multiple models (e.g., sim.Mk, sim.history, sim.multiMk).

In this section, I will illustrate the use of just a few of the different discrete character
methods that have been implemented in the phytools software.

Stochastic character mapping
Perhaps the most important and widely-used discrete character analysis of phytools
is a popular technique referred to as ‘‘stochastic character mapping’’ (Nielsen, 2002;
Huelsenbeck, Nielsen & Bollback, 2003; Bollback, 2006). Stochastic character mapping is a
method in which we randomly sample discrete character histories (‘‘stochastic maps’’)
of our trait on the tree under a specified model. By sampling these character histories
from their probability distribution under our trait evolution model, and then integrating
over the set of histories that we obtain, stochastic mapping helps us to develop a more
complete picture of the evolutionary history of our character trait of interest: in terms
of the number and types of evolutionary change the character may have undergone; the
marginal probabilities that each node of the tree may have been in each condition of the
trait; and the branches of the tree with more or fewer character state changes.

Stochastic mapping in phytools can be undertaken in more than one way. An example
of a stochastic character mapping analysis could be to first fit (e.g., using maximum
likelihood) the character transition model (a variant of the Mk discrete character evolution
model of Lewis, 2001; also see, O’Meara, 2012; Harmon, 2019; Revell & Harmon, 2022),
and then proceed to randomly sample a set of perhaps 100 or 1,000 stochastic character
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histories—each consistent with the phenotypic trait observations that we have for the
terminal taxa of our tree, and obtained in proportion to their probability under our fitted
model. (Other workflows are also popular and possible to undertake within R. For instance,
rather than use a single, fixed model of character evolution that has been optimized using
Maximum Likelihood, one might instead sample parameters of the evolutionary process
from their joint posterior probability distribution using Bayesian MCMC. See Revell &
Harmon, 2022 for more details.)

To illustrate stochastic mapping here, I will use a discretely-valued, ecological trait
for a small phylogeny of centrarchid fishes from Near, Bolnick & Wainwright (2005; also
see (Revell & Collar, 2009; Revell, Toyama & Mahler, 2022). Since the trait (which we will
refer to as ‘‘feeding mode’’) is binary, meaning that it only takes two levels, there are a
total of four possible discrete character (extended Mk, see Harmon, 2019) models: equal
back-and-forth transitions between the two character values; different rates; and then the
two different irreversible trait evolution models.

phytools now allows us to fit a single model or any arbitrary set of models, compare them
(if applicable), and pass the model weights and fitted models directly to our stochastic
mapping function. If the input is a set of models, as it will be in our example below, our
function (called simmap) will then proceed to automatically sample stochastic character
histories with probabilities that are proportional to each model weight. Experienced
phytools users may figure out that simmap is just a sophisticated wrapper function of
make.simmap—the traditional method used for undertaking stochastic character mapping
in phytools. A major advantage of sampling stochastic maps across a set of models, rather
than under our single best model, is that it allows us to integrate over model uncertainty
in direct proportion to the weight of evidence favoring each model in our set.

For this example, and all subsequent examples of the article, our data have been packaged
with the phytools library—so we can easily load them in an interactive R session using the
base R data function, as follows.

data(sunfish.tree)

data(sunfish.data)

For our Mk model-fitter (which here will be the phytools function fitMk), and for the
other discrete character methods of the phytools R package, our input phenotypic trait data
typically take the form of a character or factor vector. Personally, I prefer to use factors,
because in that case we can more easily access the levels assumed by the character through
a call of the base R function levels. This can be very handy.

In this example our input data consists of a data frame in which the feeding.mode
column is already coded as a factor. In general, however, had we read this data from an
input text file in, for example, comma-separated-value format, R would have created a
character (rather than factor) formatted column by default. To adjust this we can set the
argument stringsAsFactors=TRUE in our file-reading function, which, in that case,
might be the base R function read.csv.
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sunfish.feed_mode<-setNames(sunfish.data$feeding.mode,

rownames(sunfish.data))

levels(sunfish.feed_mode)

## [1] "non" "pisc"

Here we see that our factor vector has two levels: “non” and “pisc”. These two character
levels refer to non-piscivorous and piscivorous fishes. Since R factors have no particular
character limit on their levels, let us update our data to use these more descriptive names:
once again using the function levels. levels is an odd R method in that it can serve
both as an extractor function, that pulls out the levels of a factor –as well as acting as an
assignment or replacement function, in which the levels of the factor are updated. When we
adjust our factor levels for sunfish.feed_mode, we are using levels in this latter fashion.

levels(sunfish.feed_mode)<-c("non-piscivorous",

"piscivorous")

levels(sunfish.feed_mode)

## [1] "non-piscivorous" "piscivorous"

Nowwe are ready to proceed and fit ourmodels. To do so, I will use the phytools function
fitMk and fit a total of four models, as previously indicated: “ER”, the equal rates model;
“ARD”, the all-rates-different model; and, lastly, the two different irreversible models –one
in which non-piscivory can evolve to piscivory, but not the reverse; and a second in which
precisely the opposite is true.

For these latter two irreversible models, we will tell fitMk how to build the model by
creating and supplying what I will refer to as a ‘‘design matrix’’ for each model that we
want to fit. This design matrix should be of dimensions k × k, for k levels of the trait,
with integer values in the positions of the matrix corresponding to allowed transitions,
and zeros elsewhere. We use different non-zero integer value for each rate that we want to
permit to assume a different value in our fitted model. Since our k = 2, this is very easy;
however, the same principle would apply to any value of k. (See Revell & Harmon, 2022 for
more complex examples.)

sunfish.ER_model<-fitMk(sunfish.tree,sunfish.feed_mode,

model="ER")

sunfish.ARD_model<-fitMk(sunfish.tree,sunfish.feed_mode,

model="ARD")

sunfish.Irr1_model<-fitMk(sunfish.tree,

sunfish.feed_mode,model=matrix(c(0,1,0,0),2,2,

byrow=TRUE))

sunfish.Irr2_model<-fitMk(sunfish.tree,

sunfish.feed_mode,model=matrix(c(0,0,1,0),2,2,

byrow=TRUE))
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Having fit our four models, we can also compare them to see which is best-supported
by our data. To accomplish this I will use a generic anova function call. anova will print
the results of our model comparison; however, it is important that we also assign the value
returned by anova to a new object. In my example, I will call this object sunfish.aov—but
the name is arbitrary.

sunfish.aov<-anova(sunfish.ER_model,sunfish.Irr1_model,

sunfish.Irr2_model,sunfish.ARD_model)

## log(L) d.f. AIC weight

## sunfish.ER_model -13.07453 1 28.14906 0.3486479

## sunfish.Irr1_model -12.98820 1 27.97640 0.3800846

## sunfish.Irr2_model -14.20032 1 30.40064 0.1130998

## sunfish.ARD_model -12.86494 2 29.72987 0.1581677

This table shown above gives each of our fitted model names, their log-likelihoods, the
number of parameters estimated, a value of the Akaike information criterion (AIC), and the
Akaike model weights. Smaller values of AIC indicate better support for the corresponding
model—taking into account its parameter complexity (Burnham & Anderson, 2003).
Model weights can be interpreted as the ‘‘weight of evidence’’ favoring each of our four
trait evolution hypotheses (or even the probability that the model is true, given that all
possible models are in our set, e.g., Link & Barker, 2006).

Based on this analysis, wemight conclude that the first irreversible model (Irr1.model),
in which non-piscivory can evolve to piscivory, but not the reverse, is best supported;
however, we have a very similar weight of evidence favoring the equal-rates model
(ER.model), in which backward and forward transition rates between the two states
are identical.

With the result of our anova call in hand (as the sunfish.aov object), we are ready to
pass it on directly to phytools’ new generic simmap method. By design, doing so will tell
simmap to generate stochastic character maps under each of our four models with relative
frequencies that are equal to the weight of evidence supporting of each model.

Here, I will choose to sample 1,000 stochastic character maps—however, this number is
somewhat arbitrary. How many is enough? Certainly one or ten are too few, and perhaps
a good rule of thumb might be to ask ourselves if we are interested in trait histories that
might be expected to be observed (under our model or models) in fewer than one of 100 or
1,000 realizations of the evolutionary process on our phylogeny. If not, then 100 or 1,000
stochastic maps may be enough. There is no harm in generating more, but this can require
significant computational effort (depending on the size of our tree), and many empirical
studies use a number of stochastic character histories that ranges on this 100–1,000 interval.
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sunfish.simmap<-simmap(sunfish.aov,nsim=1000)

sunfish.simmap

## 1000 phylogenetic trees with mapped discrete characters

If we preferred, we could have generated stochastic character maps for just the best-
supported of our four models. Using the simmap generic method, this would be done either
by supplying our anova result and setting the optional argument weighted=FALSE—or
simply by passing our favored Mk model directly to the function.

In spite of the significant number of stochastic simulations involved, this analysis should
run fairly quickly (obviously, depending on the speed of our computer). In part this is
because we saved computation time by circumventing the need to re-estimate our Mk
transition matrix, Q, separately for each sampled model. An additional advantage of this
approach is that it has also allowed us to (partly) account for variation in our modeled
process of evolution that has due to uncertainty in model selection.

Figure 1 shows a set of six, randomly chosen stochastic character histories for our trait
(feeding mode) on our input tree. Readers should see that each of these are consistent with
our observed value of the binary trait at the tips of the tree, but that each one differs from
the others in the specific hypothesis of trait evolution that it represents.

cols<-setNames(viridisLite::viridis(n=2),

levels(sunfish.feed_mode))

par(mfrow=c(2,3))

plot(sample(sunfish.simmap,6),ftype="i",fsize=0.6,

colors=cols,offset=0.2)

To create my color palette for plotting I used another contributed R package that
we have not seen yet called viridisLite by Garnier et al. (2022). viridisLite implements
a color palette (known as the ‘‘viridis’’ palette and originally devised by van der Walt
and Smith, 2015) that was designed to be both attractive and colorblind-friendly. To
replicate Fig. 1 exactly, users should first install viridisLite from CRAN by running
install.packages("viridisLite") –but they do not need to load it. Calling the
contributed package function using the double colon syntax, ::, takes care of that (i.e.,
viridisLite::viridis).

Although Fig. 1 already gives us a general sense of the uncertainty of our ancestral
character history on the tree for our trait, most commonly we do not want to simply
graph a subset (or all) of our stochastically mapped trees. Typically, instead, we would first
summarize our stochastic character maps (in multiple ways), and then proceed to plot or
analyze these summarized findings.

Often, phytools users undertaking stochastic character mapping will compute the
posterior probabilities of each value of the character trait at each internal node of the tree,
which one can obtain by simply counting the fraction of stochastic maps for which each
node is in each of the observed states of our character trait. These values correspond to a
form of ancestral state estimation, giving us an approximation of the marginal probabilities
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Figure 1 Six randomly chosen stochastic character maps of feeding mode (non-piscivorous, in dark
blue, vs. piscivorous) on a phylogeny of 28 centrarchid fish species. Stochastic character mapping in-
volves randomly sampling character histories that are consistent with our tip data in proportion to their
probability under a model. In this case, histories were sampled under the set of four alternative Mk models
of a binary trait, with relative frequencies proportional to the weight of evidence supporting each model.
Data are from Near, Bolnick & Wainwright (2005), Revell & Collar (2009), and Revell, Toyama & Mahler
(2022). See main text for additional details.

Full-size DOI: 10.7717/peerj.16505/fig-1

that each hypothetical ancestor at each node of the tree was in each of our observed states.
We have conditioned on our transition model and its Maximum Likelihood parameter
estimates—although in this instance we also integrate across a set of four evolutionary
models in proportion to the weight of evidence in support of each one. In phytools, these
marginal posterior probabilities values can be obtained using the generic summarymethod
for our object class, which is then easily plotted as follows.

plot(summary(sunfish.simmap),ftype="i",fsize=0.7,

colors=cols,cex=c(0.6,0.3))

legend("topleft",levels(sunfish.feed_mode),pch=21,

pt.cex=1.5,pt.bg=cols,bty="n",cex=0.8)

A correct interpretation of the graph of Fig. 2 is that it shows the observed discrete
character states (at the tips of the tree) and the posterior probabilities from stochastic
mapping that each internal node is in each state–all while integrating over our four
different transition models in proportion to the weight of evidence for each model.

In addition to node probabilities, phytools users undertaking a stochastic character
mapping analysis are often interested in the number of changes of each type that are

Revell (2024), PeerJ, DOI 10.7717/peerj.16505 9/75

https://peerj.com
https://doi.org/10.7717/peerj.16505/fig-1
http://dx.doi.org/10.7717/peerj.16505


Acantharchus pomotis
Lepomis gibbosus
Lepomis microlophus
Lepomis punctatus
Lepomis miniatus
Lepomis auritus
Lepomis marginatus
Lepomis megalotis
Lepomis humilis
Lepomis macrochirus
Lepomis gulosus
Lepomis symmetricus
Lepomis cyanellus
Micropterus coosae
Micropterus notius
Micropterus treculi
Micropterus salmoides
Micropterus floridanus
Micropterus punctulatus
Micropterus dolomieu
Centrarchus macropterus
Enneacantus obesus
Pomoxis annularis
Pomoxis nigromaculatus
Archolites interruptus
Ambloplites ariommus
Ambloplites rupestris
Ambloplites cavifronsnon−piscivorous

piscivorous

Figure 2 Posterior probabilities at each ancestral node of the centrarchid tree of Fig. 1 from stochas-
tic character mapping using model weights to sample across four different extendedMk trait evolution
models. See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-2

implied by the evolutionary process and our data. The procedure of stochastic mapping
samples full character histories (not just states or probabilities at nodes) and can thus be
deployed to produce estimates of the posterior probability distribution of the character
changes of each type on specific edges, in specific clades, or across the entire phylogeny,
conditioning on our sampled model or models.

To obtain these distributions, we will first call the generic method densitywhich (when
applied to an object from stochastic mapping) computes the relative frequency distribution
of changes of each type over the whole tree. We can then proceed to graph our results using
a different generic plot method, as follows. Remember, our character is binary, so there
are only two types of character state changes: from non-piscivorous→ piscivorous, and
the reverse.

sunfish.density<-density(sunfish.simmap)

sunfish.density

##

## Distribution of changes from stochastic mapping:

## non-piscivorous->piscivorous piscivorous->non-piscivorous

## Min. :0 Min. :0

## Median :5 Median :2

## Mean :4.13 Mean :2.24

## Max. :10 Max. :9

##

## 95% HPD interval(non-piscivorous->piscivorous): [0, 8]
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Figure 3 Posterior probability distributions of changes from either (A) non-piscivory to piscivory, or
(B) piscivory to non-piscivory, obtained from an analysis of stochastic mapping.HPD indicates the 95%
high probability density interval for changes of each type. See main text for additional details.

Full-size DOI: 10.7717/peerj.16505/fig-3

## 95% HPD interval(piscivorous->non-piscivorous): [0, 6]

par(mfrow=c(1,2),las=1,cex.axis=0.7,cex.lab=0.8)

COLS<-setNames(cols[2:1],sunfish.density$trans)

plot(sunfish.density,ylim=c(0,0.6),

transition=names(COLS)[1],colors=COLS[1],main="")

mtext("a) transitions to piscivory",line=1,adj=0,

cex=0.8)

plot(sunfish.density,ylim=c(0,0.6),

transition=names(COLS)[2],colors=COLS[2],main="")

mtext("b) transitions to non-piscivory",line=1,adj=0,

cex=0.8)

The distributions shown in Fig. 3 give the relative frequencies of changes of each type
across our set of mapped histories, as well as Bayesian 95% high probability density (HPD)
intervals calculated using the R pakage coda (Plummer et al., 2006). For a binary trait like
that of this example (and thus with only two types of transitions), we could have instead
overlain the distributions of backwards and forwards transitions in character state in a
single plot panel. In this particular instance, however, I found that overplotting the two
different distributions resulted in a figure that was too difficult to read, and preferred
instead to show the distributions in separate panels as in Fig. 3. For multistate characters
with more than two types of changes between states, the same plot method will produce
a k × k matrix of figure panels, each i, jth panel of which will contain the posterior
distribution of changes from character state i to j.

An interesting attribute of the character state change distributions for this centrarchid
feeding mode analysis is that they are both markedly bi-modal. This is due, in part, to our
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Figure 4 Posterior probability density of each of the two character levels, piscivory and non-piscivory,
based on stochastic character mapping, graphed along the edges of a tree of centrarchid fishes using a
color gradient. See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-4

specific procedure of model-averaging in which we sampled both reversible and irreversible
character evolution models in proportion to their weights, and is not something we would
have seen had we chosen to analyze just one model or the other. (Recall that the weight
of evidence was highly similar between our equal-rates model and the irreversible model
in which piscivory is acquired from non-piscivory, but never the reverse. See above.) This
pattern is also appropriately captured by the broad HPD intervals on each of the two types
of transitions.

Lastly, in addition to these analyses, phytools also makes it quite straightforward to
visualize the posterior probabilities of each of the two trait conditions not only at nodes,
but also along the branches of the phylogeny. This is accomplished using the phytools
function densityMap (Revell, 2013), which creates a graph showing the probability density
of stochastic histories in each of our mapped states. By design, in phytools this object can
be first created (using the densityMap function), updated (using the method setMap to
adjust our color palette for plotting), and then graphed (using a generic plot method
that was created for this specific object class). I will illustrate this set of procedures in the
following code block. The resultant plot is shown in Fig. 4.

sunfish.densityMap<-densityMap(sunfish.simmap,plot=FALSE,

res=1000)

sunfish.densityMap
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## Object of class "densityMap" containing:

##

## (1) A phylogenetic tree with 28 tips and 27 internal nodes.

##

## (2) The mapped posterior density of a discrete binary character

## with states (non-piscivorous, piscivorous).

sunfish.densityMap<-setMap(sunfish.densityMap,

viridisLite::viridis(n=10))

plot(sunfish.densityMap,lwd=3,outline=TRUE,

fsize=c(0.6,0.7),legend=0.1)

Having enthusiastically demonstrated the model-averaging feature of the new phytools
simmap method, I would be remiss if I failed to note that this is not (as yet) the standard
workflow for ancestral state reconstruction of discrete characters in general, nor for
stochastic mapping in particular. More typically, researchers select the best model and then
proceed to hold this model (and its parameters) constant through subsequent calculations
(e.g., Yang, 2014), or they sample parameter values for a single model from their joint
posterior distribution using MCMC (e.g., shown in Revell & Harmon, 2022). I think,
however, that there is a very strong case to be made that if, for example, 51% of the weight
of evidence points to a model in which a specific node has a high conditional probability of
being in state a, while 49% of the weight of evidence points to a model wherein the same
node has a high probability of being in state b, then the correct marginal probability that
the node is actually in state a is probably closer to 0.5 than 1.0. Indeed, this would be our
exact interpretation of this result if we consider the model weights as the probability that
each model is correct (assuming that all possible models are in our set, e.g., Link & Barker,
2006).

Apart from the analyses shown, stochastic mapping as implemented in phytools is a very
flexible method via which we might sample the matrix of transition rates from its posterior
distribution under a model, incorporate uncertainty in the character state values for
different species, take into account polymorphic character conditions and hidden-rates of
trait evolution, and integrate over phylogenetic uncertainty. A comprehensive survey of this
functionality is beyond the scope of the present article; however, considerable additional
information about stochastic mapping in R can be found in the phytools documentation
pages as well as elsewhere online.

The polymorphic trait evolution model
Another important, but much more recently-added, tool in the phytools R package is a
method (called fitpolyMk) that is designed to fit a discrete character evolution model to
trait data containing intraspecific polymorphism (Revell & Harmon, 2022). In this case, our
model is one in which an evolutionary transition from (say) character state a to character
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Figure 5 Example structures of two alternative polymorphic trait evolutionmodels for characters
with four monomorphic conditions: (A) an ordered model with states 0 to 3; (B) an unordered model,
with states a, b, c, and d. The maximum parameter complexity of each model corresponds to 2× the
number of double-ended arrows in the panel. See main text for additional details.
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state bmust first pass through the intermediate polymorphic condition of a + b. This model
starts off very simply –but will become increasingly complicated for increasing numbers
of monomorphic conditions of our trait. Not only that, but as soon as we have more
than two monomorphic states, we must also consider whether our character is evolving
in an ordered (Fig. 5A) or unordered (Fig. 5B) fashion (Revell & Harmon, 2022). Figure 5
shows the general structure of an ordered and unordered polymorphic trait evolution
model—both for the same, underlying number of monomorphic conditions of our trait
(four).

par(mfrow=c(1,2))

graph.polyMk(k=4,ordered=TRUE,states=0:3,

mar=rep(0.1,4))

mtext("a) ordered polymorphic model",line=-1,adj=0.2,

cex=0.8)

graph.polyMk(k=4,ordered=FALSE,states=letters[1:4],

mar=rep(0.1,4),spacer=0.15)

mtext("b) unordered polymorphic model",line=-1,

adj=0.2,cex=0.8)

Obviously, the potential parameter complexity of the unordered polymorphic trait
evolution model is higher than the ordered model. Since there exists an unordered model
that also has all ordered models as a special case, ordered and unordered models can be
compared using likelihood-ratio tests (if nested) or information criteria.

To try out our polymorphic trait evolution model, let us use an excellent, recently-
published dataset from Halali et al. (2020) consisting of a phylogenetic tree containing 287
Mycalesina butterfly species and data for butterfly habitat use. Halali et al. (2020) coded
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habitat as a polymorphic trait in which, for example, a species using both ‘‘forest’’ and forest
‘‘fringe’’ habitat would be recorded as "forest+fringe". In this case, our polymorphic
trait evolution model will assume that to evolve from forest specialization to fringe
specialization, a species must first (at least transiently) evolve through the polymorphic
condition of using both habitats at once. This seems logical.

The Halali et al. (2020) dataset and tree now come packaged with the phytools library,
so both can be loaded using the data function, just as we saw for the centrarchid data and
tree of our previous example.

data(butterfly.tree)

data(butterfly.data)

Let us begin by inspecting our data.

head(butterfly.data)

## habitat

## Myc_francisca_formosana? forest+fringe+open

## Bic_cooksoni open

## Bic_brunnea forest

## Bic_jefferyi fringe+open

## Bic_auricruda_fulgida forest

## Bic_smithi_smithi forest+fringe

fitpolyMk requires us to separate the different states in each polymorphic condition
using the + symbol, but does not demand that our states be ordered in a consistent manner.
In other words, a+b and b+a would be considered (properly) to be same polymorphic
condition. As a first preliminary step in our analysis, we can proceed to extract the column
of habitat use data (habitat in our data frame) as a vector, and then print the different
levels that it takes.

butterfly.habitat<-setNames(butterfly.data$habitat,

rownames(butterfly.data))

print(levels(butterfly.habitat))

## [1] "forest" "forest+fringe" "forest+fringe+open"

## [4] "fringe" "fringe+open" "open"

Now, let us proceed to fit our polymorphic trait evolution model to these data. In this
instance, I will fit a grand total of six different models. This is not a comprehensive set of the
conceivable models for polymorphic data with these levels, but it seemed like a reasonable
selection for illustrative purposes.

The first three of these models all suppose that the evolution of my discrete character is
totally unordered. Among this set, we will imagine, first, equal transition rates between all
monomorphic states or polymorphic conditions. For our second model, we will permit all
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possible transition rates between states or state combinations to assume different values.
Finally, for our third model we will assume that the acquisition of polymorphism (or its
increase) occurs with one rate, whereas the loss (or decrease) of polymorphism occurs with
another, separate rate. We refer to this last scenario as the ‘‘transient model’’ following
Revell & Harmon (2022). This name for the model comes from the general notion that
if the rate of loss exceeds the rate of gain, then polymorphism will typically be relatively
transient in nature. Since polymorphism tends to be less frequently observed in the types
of data that typify many phylogenetic comparative studies, including this model in our set
seems like a reasonable idea.

To get our remaining three models, and reach the six total models that I promised at
the outset of this section—for each of the three listed above in which character evolution is
unordered, we will simply add a second ordered model in which we assume that character
evolution for our three monomorphic conditions tends to proceed as follows: forest ↔
fringe ↔ open –not forgetting, of course, about the intermediate polymorphic conditions
found between each pair of monomorphic states.

To fit our first three models in R, we will use the function fitpolyMk from the phytools
package as follows.

butterfly.ER_unordered<-fitpolyMk(butterfly.tree,

butterfly.habitat,model="ER")

##

## This is the design matrix of the fitted model.

## Does it make sense?

##

## forest fringe open

## forest 0 0 0

## fringe 0 0 0

## open 0 0 0

## forest+fringe 1 1 0

## forest+open 1 0 1

## fringe+open 0 1 1

## forest+fringe+open 0 0 0

## forest+fringe forest+open fringe+open

## forest 1 1 0

## fringe 1 0 1

## open 0 1 1

## forest+fringe 0 0 0

## forest+open 0 0 0

## fringe+open 0 0 0

## forest+fringe+open 1 1 1

## forest+fringe+open

## forest 0
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## fringe 0

## open 0

## forest+fringe 1

## forest+open 1

## fringe+open 1

## forest+fringe+open 0

By default, fitpolyMk begins by printing out the design matrix of the model for
us to verify. The design matrix is of dimensions dictated by the number of states and
polymorphic conditions of our character, with integers populating the different types of
transitions, from row to column, that should be permitted under our model—and zeros
indicating disallowed transition types. The specific integer values do not mean anything;
however, different integer values imply that the corresponding transitions will be allowed
to take place with different rates under our model.

This can be helpful, because we should find that it corresponds with the design matrix
that was discussed under the simpler Mk model of the previous section—as well as with
the graphed models of Fig. 5. If we do not want the design matrix to print, though, we can
turn off this behavior simply by setting the optional argument quiet=TRUE. Let us do that
for our remaining two unordered models.

butterfly.ARD_unordered<-fitpolyMk(butterfly.tree,

butterfly.habitat,model="ARD",quiet=TRUE,

opt.method="optimParallel",rand_start=TRUE)

butterfly.transient_unordered<-fitpolyMk(

butterfly.tree,butterfly.habitat,

model="transient",quiet=TRUE,

opt.method="optimParallel",rand_start=TRUE)

Astute readers may notice that I added two additional arguments that did not
feature in my previous fitpolyMk function call: opt.method=“optimParallel” and
rand_start=TRUE. The former tells my optimizer to use the optimParallel package
(Gerber & Furrer, 2019) for optimization. The latter says ‘‘choose random starting values.’’
Both of these, and sometimes multiple optimization replicates, may be required to find our
Maximum Likelihood solution for these complex models. In fact, I virtually guarantee it.

Now we can proceed to do the same thing, but this time updating the argument value
ordered to ordered=TRUE. When we switch from fitting an unordered polymorphic
trait evolution model to our ordered model, it suddenly becomes critical that we specify
the order levels using the optional function argument order. If order is not indicated,
fitpolyMk will simply assume that our characters are ordered alphanumerically –but this
is very rarely likely to be correct. (By chance, it happens to be true of our butterfly dataset.
I assigned the argument order anyway, just to be safe.)
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levs<-c("forest","fringe","open")

levs

## [1] "forest" "fringe" "open"

butterfly.ER_ordered<-fitpolyMk(butterfly.tree,

butterfly.habitat,model="ER",ordered=TRUE,order=levs,

quiet=TRUE)

butterfly.ARD_ordered<-fitpolyMk(butterfly.tree,

butterfly.habitat,model="ARD",ordered=TRUE,

order=levs,quiet=TRUE,opt.method="optimParallel",

rand_start=TRUE)

butterfly.transient_ordered<-fitpolyMk(butterfly.tree,

butterfly.habitat,model="transient",ordered=TRUE,

order=levs,quiet=TRUE,opt.method="optimParallel",

rand_start=TRUE)

Now, with all six models in hand, let us compare them using an anova call as follows. I
will save my results from our model comparison to the object butterfly.aov.

butterfly.aov<-anova(butterfly.ER_ordered,

butterfly.ER_unordered,

butterfly.transient_ordered,

butterfly.transient_unordered,

butterfly.ARD_ordered,

butterfly.ARD_unordered)

## log(L) d.f. AIC weight

## object -329.0390 1 660.0779 1.472873e-09

## butterfly.ER_unordered -355.8122 1 713.6244 3.472845e-21

## butterfly.transient_ordered -329.0205 2 662.0409 5.519508e-10

## butterfly.transient_unordered -353.4496 2 710.8991 1.356691e-20

## butterfly.ARD_ordered -297.7376 12 619.4753 9.658773e-01

## butterfly.ARD_unordered -295.0807 18 626.1614 3.412273e-02

A quick word of caution to readers is probably merited here. These models can be quite
difficult to optimize, meaning that it is not inconceivable to imagine that (in spite of our
best efforts) fitpolyMk has not converged on the true Maximum Likelihood solution for
one model or another. Although the true best solution may be unknowable (this is why
we use numerical optimization to try and ascertain it), common sense can be a valuable
defense against very obvious failures of optimization. For instance, had we found that the
most complex model (in our case, butterfly.ARD_unordered) had a lower likelihood
than any of its nested counterparts (for instance, butterfly.ARD_ordered), this would
give us very strong cause to believe that one or both models had not converged, and that
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Figure 6 Best-fitting polymorphic trait evolutionmodel for the evolution of habitat use inMycalesina
butterflies.Data and phylogeny are from Halali et al. (2020). See main text for more details.
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we should perhaps try different random starts or alternative optimization routines to try
to find better solutions.

Nonetheless, taking our fitted models at face value, model comparison shows that
(among the models in our set) the best supported by far (accounting for parameter
complexity) is the ordered, all-rates-different model. phytools has a function to graph this
model, so let us go ahead and use it (Fig. 6).

plot(butterfly.ARD_ordered,asp=0.65,mar=rep(0.1,4),

cex.traits=0.8)

legend("bottomleft",legend=c(paste("log(L) =",

round(logLik(butterfly.ARD_ordered),2)),

paste("AIC =",round(AIC(butterfly.ARD_ordered),2))),

bty="n",cex=0.8)

Just as with our fitted Mk models from the prior section, we can also pass this model
object to our generic stochastic character mapping method, simmap. When we do, simmap
will automatically generate a set of 100 stochastic character maps under our fitted model.
We could have likewise passed simmap our anova results, just as we did with our “fitMk”
objects in the centrarchid example, above. In this case, however, nearly all the weight of
evidence fell on one model, so this wouldn’t really make much difference anyway.

butterfly.simmap<-simmap(butterfly.ARD_ordered)

butterfly.simmap

## 100 phylogenetic trees with mapped discrete characters

Now that we have our stochastically mapped trees, let us compute a summary, just as
we did in the prior section.
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butterfly.summary<-summary(butterfly.simmap)

Much as we saw earlier, the object from our generic summary call can be conveniently
plotted using phytools. In this case, rather than using the viridis palette we saw earlier, I
will use the base graphics function rgb to attempt to select colors for plotting that are
evenly spaced in a red-green-blue color space in which the ‘‘corners’’ (red, green, and
blue) correspond to the three monomorphic states of our data. Does that make sense?
I am colorblind, so it is hard for me to be sure how the rgb color space captures the
‘‘intermediacy’’ of the polymorphic conditions between the corresponding monomorphic
states. Nonetheless, I hope the reader can use this demonstration as an example of how to
specify custom palettes, rather than an endorsement of a specific palette.

hab.cols<-setNames(c(rgb(0,1,0),rgb(0,0.5,0.5),

rgb(1/3,1/3,1/3),rgb(0,0,1),rgb(0.5,0.5,0),

rgb(1,0,0)),levels(butterfly.habitat))

par(fg="transparent")

h<-max(nodeHeights(butterfly.tree))

plot(butterfly.summary,type="arc",ftype="off",

colors=hab.cols,cex=c(0.4,0.2),part=0.5,lwd=1,

arc_height=0.4,ylim=c(-3,35))

par(fg="black")

legend("topleft",names(hab.cols),pch=21,pt.bg=hab.cols,

pt.cex=1.5,cex=0.8,bty="n")

axis(1,pos=-1,at=h-seq(0,h,by=5)+0.4*h,

labels=seq(0,h,by=5),cex.axis=0.8)

axis(1,pos=-1,at=-h+seq(0,h,by=5)-0.4*h,

labels=seq(0,h,by=5),cex.axis=0.8)

Excellent. Figure 7 shows both the observed (at the tips) and reconstructed (at the
internal nodes) marginal posterior probabilities for each of our states and polymorphic
conditions.

Lastly, let us graph the posterior distribution of the accumulation of lineages in each
state over time, using the phytools function ltt as follows. We can even do this while
retaining the same color palette as we used for Fig. 7. (We will learn more about ltt
in a subsequent section.) The resultant plot in Fig. 8 simultaneously shows not only the
accumulation of lineages in each mono- or polymorphic state, but also the variation
attributable to uncertainty in the evolutionary history of our group from our stochastic
character maps. Even though Fig. 8 looks very cool—to be fair, this type of graph is only
especially meaningful for the situation in which the taxa of our phylogeny have been
completely or close to completely sampled. In this example, we have around 85% of
described species for the group (Halali et al., 2020)—a high enough sampling fraction,
perhaps, to make this plot meaningful. Sampling fractions in phylogenetic comparative
biology, however, are often much lower.
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Figure 7 Posterior probabilities of monomorphic or polymorphic conditions at internal nodes from
stochastic mapping under an ordered, ARD polymorphic model of trait evolution.Data and phylogeny
are from Halali et al. (2020). The horizontal axis is in millions of years before the present. See main text
for additional details.
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Figure 8 Lineage-through-time plot showing the reconstructed accumulation of lineages in each poly-
morphic condition or monomorphic state over time, from 100 stochastic character maps.Data and
phylogeny are from Halali et al. (2020). See main text for additional details.
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butterfly.ltt<-ltt(butterfly.simmap)

par(mar=c(4.1,4.1,1.1,1.1))

ave_butterfly.ltt<-plot(butterfly.ltt,show.total=FALSE,

bty="n",las=1,cex.axis=0.7,cex.lab=0.8,colors=hab.cols,
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legend=FALSE,xlim=c(0,1.05*max(nodeHeights(butterfly.tree))))

k<-length(levels(butterfly.habitat))

legend("topleft",paste(1:k,". ",levels(butterfly.habitat),sep=""),

bty="n",pch=22,pt.bg=hab.cols,pt.cex=1.2,cex=0.7)

nn<-length(ave_butterfly.ltt$times)

text(x=rep(ave_butterfly.ltt$times[nn],k),

y=ave_butterfly.ltt$ltt[nn,1:k],

labels=paste(1:k,".",sep=""),pos=4,cex=0.7)

As with stochastic mapping under the standard Mk model, implementation of the
polymorphic trait evolutionmodel in phytools also allows us to take into account uncertainty
in the data or in the phylogeny as well as variation in the rate of evolution between different
clades and branches of the tree under the hidden rates model of Beaulieu, O’Meara &
Donoghue (2013, also see below). Covering all of this functionality here is not possible;
however, additional information is available via phytools documentation pages and online.

Hidden rate models
In addition to fitpolyMk, another relatively recent addition to the phytools package for
discrete character analysis has been the function fitHRM. fitHRM implements the hidden-
rates trait evolution model of Marazzi et al. (2012) and Beaulieu, O’Meara & Donoghue
(2013). Under this model, which is closely related to the covarion model from phylogenetic
inference (Galtier, 2001; Penny et al., 2001), each observed state of our discrete trait may
have one or more unobserved levels. These different hidden trait levels are each free, in
turn, to possess different rates of transition to the other observed character conditions in
our trait space. An important aspect of this model is that it allows us to explicitly capture
heterogeneity in the evolutionary process of trait evolution—not only between different
observed conditions of our character, but also across different branches and clades of the
phylogeny (e.g., Beaulieu, O’Meara & Donoghue, 2013; King & Lee, 2015). Note that both
hidden-rate models and ancestral character estimation, which we will see more of below,
are also implemented in the excellent corHMM package of Beaulieu et al. (2022).

To illustrate use of the hidden-rates model in phytools, we can load a phylogenetic tree
of lizards from the diverse South American family Liolaemidae, along with a dataset for
parity mode (oviparity vs. viviparity) and different environmental trait measures. Both the
phylogeny and the trait data were obtained from Esquerré et al. (2019) and, like the other
datasets used in this article, are now packaged with the phytools R library.

data(liolaemid.tree)

data(liolaemid.data)

We can start by inspecting our data object.

head(liolaemid.data)

Revell (2024), PeerJ, DOI 10.7717/peerj.16505 22/75

https://peerj.com
http://dx.doi.org/10.7717/peerj.16505


## parity_mode max_altitude temperature

## Ctenoblepharys_adspersa O 750 23.05

## Liolaemus_abaucan O 2600 20.20

## Liolaemus_albiceps V 4020 12.38

## Liolaemus_andinus V 4900 11.40

## Liolaemus_annectens V 4688 5.10

## Liolaemus_anomalus O 1400 23.78

We should see that the two levels of our discrete character of interest, parity mode,
have been coded as ‘‘O’’ (oviparity) and “V” (viviparity), respectively. To proceed and use
fitHRM to fit hidden-rate models with phytools, we must next extract the parity mode of
our liolaemid species. An easy way to do that, as we have seen in prior sections, is via the
handy function setNames.

liolaemid.parity<-setNames(liolaemid.data$parity_mode,

rownames(liolaemid.data))

One flavor of hidden-rates model, as described in Revell & Harmon (2022), in which we
call it the ‘‘umbral’’ model, from umbral meaning threshold in Spanish), allows transitions
only between specific, labile conditions of the trait. Transitions in observed state are not
permitted, on the other hand, any time a lineage finds itself in the hidden, inert level. (This
model is also closely related to what was referred to as the ‘‘precursor model’’ by Marazzi
et al., 2012.) Let us try to fit this model to our data using two rate categories per observed
state of our character. This is specified using the function argument ncat =2. (We could
have chosen to model more than two levels per observed trait value, or even a different
number of levels for the ‘‘O’’ and “V” conditions, respectively.)

Since this model class can be quite difficult to fit to data, fitHRM is designed to use
multiple optimization iterations (10 by default, but this can be adjusted by modifying
the optional function argument niter) with different random starting values. These
optimization iterations can also be parallelized across our computer cores by specifying
parallel=TRUE. Just as was true of fitMk and fitpolyMk, optimization in fitHRM can
also be parallelized using optimParallel (Gerber & Furrer, 2019)—however, we must not try
to set parallel = TRUE and opt.method =“optimParallel” at the same time.

lliolaemid.hrm<-fitHRM(liolaemid.tree,liolaemid.parity,

ncat=2,umbral=TRUE,pi="fitzjohn",parallel=TRUE)

Does it make sense?

O O* V V*

O 0 1 2 0

O* 3 0 0 0

V 4 0 0 5

V* 0 0 6 0
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Opened cluster with 10 cores.

Running optimization iterations in parallel.

Please wait....

Much as we saw with fitpolyMk, by default fitHRM starts by printing the model
design matrix to screen for users to inspect. This default setting can be turned off using
quiet=TRUE.

Let us review our fitted model.

liolaemid.hrm

## Object of class "fitHRM".

##

## Observed states: [ O, V ]

## Number of rate categories per state: [ 2, 2 ]

##

## Fitted (or set) value of Q:

## O O* V V*

## O -1.431683 0.000000 1.431683 0.000000

## O* 0.041029 -0.041029 0.000000 0.000000

## V 2.267185 0.000000 -2.812138 0.544953

## V* 0.000000 0.000000 0.000000 0.000000

##

## Fitted (or set) value of pi:

## O O* V V*

## 0 1 0 0

## due to treating the root prior as (a) nuisance.

##

## Log-likelihood: -59.117373

##

## Optimization method used was "optim"

##

## R thinks it has found the ML solution.

The structure of the transition matrix Q ought to match our design matrix in that
optimized transition rates should only be found in matrix cells populated by non-zero
integers in our printed design. (Except for the matrix diagonal which always contains a
value equal to the negative row sum, O’Meara, 2012; Revell & Harmon, 2022.) Here we
see that it does—although some Maximum Likelihood transition rate values, such as the
transition rate from O (the labile condition of oviparity) to O* (the inert condition) are not
different from zero in the fitted model (also see Fig. 9).

A conventional analysis workflow would typically involve comparing this fitted model
to a standard Mk model (discussed above, also see Harmon, 2019), as well as, perhaps,
other variants of the hidden-rates model (Beaulieu, O’Meara & Donoghue, 2013; Revell &
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Figure 9 Marginal ancestral state reconstruction of parity mode (oviparity vs. viviparity) in liolaemid
lizards under the hidden-rates model. Phylogeny and data based on Esquerré et al. (2019). Inset panel
shows best-supported hidden-rates model. See main text for additional details.

Full-size DOI: 10.7717/peerj.16505/fig-9

Harmon, 2022). Here, I will compare our umbral model to both a standard extended Mk
model with different backward and forward rates of transitions (the “ARD”model), as well
as to a slightly more complex hidden-rates model in which transitions are allowed between
the hidden condition levels, just at different rates. We could fit the Mk model using the
phytools function fitMk, as we did earlier—but here I will do it using fitHRM by setting
ncat (the number of rate categories for each level of the trait) to ncat=1. This also helps
us see that standard Mk models are special cases of the hidden-rates model—just without
hidden rate categories.

liolaemid.mk<-fitHRM(liolaemid.tree,liolaemid.parity,

ncat=1,pi="fitzjohn",parallel=TRUE,quiet=TRUE)

liolaemid.full<-fitHRM(liolaemid.tree,liolaemid.parity,

ncat=2,pi="fitzjohn",parallel=TRUE,quiet=TRUE)

anova(liolaemid.mk,liolaemid.hrm,liolaemid.full)

## log(L) d.f. AIC weight

## object -64.27046 2 132.5409 0.21754700

## liolaemid.hrm -59.11737 6 130.2347 0.68917781

## liolaemid.full -59.11732 8 134.2346 0.09327518

By comparing these three models we see that there is relatively little support for the
extended Mk (“ARD”) model and for the full hidden-rates model, compared to our
best-supported model: the original, umbral model. Indeed, the full hidden-rates model
actually has virtually the same likelihood as our umbral model, but with two additional
parameters to be estimated.
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phytools now makes it very easy to undertake joint or marginal ancestral state
reconstruction (e.g., Yang, 2014; Revell & Harmon, 2022) under a hidden-rate model,
as well as under other models we have seen in this article (such as the standard extended
Mk model and the polymorphic trait evolution model) via the phytools generic method
ancr. Much as with the simmapmethod described previously, all we need to do is pass our
fitted model object to the method, and ancr will do the rest. Although I will not show it
here, ancr is also capable of computing model-averaged ancestral states if we simply supply
it with a set of models (in lieu of a single model) in the form an object computed using
an anova method call. It can also perform joint reconstruction, rather than the marginal
ancestral state estimation shown here. (For more information on the difference between
marginal and joint ancestral state estimation for discrete characters, see Yang, 2014; Revell
& Harmon, 2022.)

liolaemid.hrm_asr<-ancr(liolaemid.hrm,tips=TRUE)

print(liolaemid.hrm_asr,printlen=12)

## Marginal ancestral state estimates:

## O O* V V*

## 258 0.000000 1.000000 0.000000 0

## 259 0.000000 1.000000 0.000000 0

## 260 0.000000 1.000000 0.000000 0

## 261 0.000000 1.000000 0.000000 0

## 262 0.000000 1.000000 0.000000 0

## 263 0.000000 1.000000 0.000000 0

## 264 0.000000 1.000000 0.000000 0

## 265 0.000000 1.000000 0.000000 0

## 266 0.000025 0.999967 0.000009 0

## 267 0.005267 0.993303 0.001430 0

## 268 0.005649 0.992315 0.002037 0

## 269 0.140376 0.820768 0.038856 0

## ...

##

## Log-likelihood = -59.117373

Lastly, this marginal ancestral state reconstruction can easily be plotted on the tree
using a phytools plot method for the object class. Here, just for fun, I have also inset a
visualization of our fitted umbral hidden-rates model. We can see from this best-supported
model that although the observed condition of parity mode may not satisfy Dollo’s Law
(Lee & Shine, 1998) in liolaemid lizards, under the umbral model parity mode evolution
does appear to have a hidden, absorbing (i.e., irreversible) viviparous condition (Fig. 9),
from which oviparous reproductive mode can no longer re-evolve.
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cols<-setNames(c("#FFE5B4","#F0EAD6","#E97451",

"#880808"),colnames(liolaemid.hrm_asr$ace))

plot(liolaemid.hrm_asr,legend=FALSE,

args.plotTree=list(type="arc",arc_height=0.5,

fsize=0.25,offset=5,xlim=c(-65,65),ylim=c(0,65)),

args.nodelabels=list(piecol=cols,cex=0.3),

args.tiplabels=list(cex=0.15))

pp<-plot(liolaemid.hrm,add=TRUE,xlim=c(-4,2),

ylim=c(-1.3,4.7),spacer=0.2,offset=0.1)

invisible(mapply(plotrix::draw.circle,x=pp$x,y=pp$y,

col=cols,MoreArgs=list(radius=strheight("0"),

border="transparent")))

text(pp$x,pp$y,pp$states,col=c("black","black","white",

"white"))

CONTINUOUS CHARACTERS
Numerous continuous trait methods exist in the phytools package. For example, phytools
can be used to measure phylogenetic signal (phylosig, Pagel, 1999; Blomberg, Garland
& Ives, 2003; Revell, Harmon & Collar, 2008), it can fit multi-rate Brownian evolution
models (brownie.lite, brownieREML, evol.rate.mcmc, multirateBM, ratebytree,
and rateshift, O’Meara et al., 2006; Revell et al., 2012; Revell et al., 2018; Revell, 2021;
Revell & Harmon, 2022), it can perform phylogenetic canonical correlation and principal
components analysis (phyl.cca and phyl.pca, Revell & Harrison, 2008; Revell, 2009),
it can reconstruct ancestral states under multiple evolutionary models (anc.Bayes,
anc.ML, anc.trend, and fastAnc, Schluter et al., 1997; Revell & Harmon, 2022), it can
use continuous trait data to place a fossil or missing lineage into a reconstructed
tree (locate.fossil and locate.yeti, Felsenstein, 2002; Revell et al., 2015), it can
fit a multivariate Brownian model with multiple evolutionary correlations on the tree
(evol.vcv and evolvcv.lite, Revell & Collar, 2009; Revell, Toyama & Mahler, 2022), and
it can perform various types of continuous character numerical simulation on phylogenies
(e.g., branching.diffusion, fastBM, sim.corrs, sim.rates).

Here I will start by illustrating the measurement of phylogenetic signal (phylosig),
then I will demonstrate Bayesian ancestral state estimation (anc.Bayes). I will show how
to fit a variable-correlation multivariate Brownian trait evolution model (evolvcv.lite),
and, finally, I will demonstrate a relatively new multi-rate trait evolution model that uses
the estimation technique of penalized likelihood (multirateBM).

Phylogenetic signal
Perhaps the simplest phylogenetic comparative analysis that we could choose to undertake
for a continuous trait data in R is the measurement of phylogenetic signal (Pagel, 1999;
Blomberg, Garland & Ives, 2003; Revell, Harmon & Collar, 2008). Phylogenetic signal has
been defined in a number of different ways, but could be considered to be the basic
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tendency of more closely related species to bear more similarity (one to another) than
they do to more distant taxa (Revell, Harmon & Collar, 2008). Apart from its definition,
phylogenetic signal can likewise be quantified in various manners; however, undoubtedly
the two most popular metrics are Blomberg, Garland & Ives (2003) K statistic, and Pagel’s
(1999) λ. Conveniently, both of these can be calculated using the phytools package.

To get started in this undertaking, let us load some data from phytools consisting of
a phylogenetic tree of elopomorph eels and a data frame of phenotypic traits. Both tree
and data were obtained from an article by Collar et al. (2014) and are now packaged with
phytools.

data(eel.tree)

data(eel.data)

head(eel.data)

## feed_mode Max_TL_cm

## Albula_vulpes suction 104

## Anguilla_anguilla suction 50

## Anguilla_bicolor suction 120

## Anguilla_japonica suction 150

## Anguilla_rostrata suction 152

## Ariosoma_anago suction 60

Having loaded these data, we will next extract one variable from our data array.
Phylogenetic signal can be measured for any continuous trait, so we will use maximum
total length: here represented by the column of our data frame called "Max_TL_cm". As is
often the case, we will transform our data to a log scale. (There are multiple reasons log
transformations are favored by comparative biologists working on interspecies data. One
is that it makes a, say, 10% change equal, regardless of whether it occurs in an elephant or
a mouse. See Revell & Harmon, 2022 for more details.)

eel.lnTL<-setNames(log(eel.data$Max_TL_cm),

rownames(eel.data))

Next, we will compute a value of the K statistic of Blomberg, Garland & Ives (2003)
using the phytools function phylosig. phylosig calculates K by default (that is, without
specifying an argument for method), but if I add the argument value test=TRUE, phylosig
will also conduct a statistical test of the measured value of K by comparing it to a null
distribution of K obtained by permuting our observed trait values randomly across the
tips of the phylogeny.

eel.Blomberg_K<-phylosig(eel.tree,eel.lnTL,test=TRUE)

eel.Blomberg_K

##

## Phylogenetic signal K: 0.362879

## P-value (based on 1000 randomizations): 0.036
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K has an expected value of 1.0 under Brownian motion (Blomberg, Garland & Ives,
2003). The lower value that we observe here thus indicates less phylogenetic signal than
expected under Brownian evolution; whereas a value higher than 1.0 would’ve indicated
more. Our significance test shows us that this value of K, though numerically modest, is
nonetheless significantly greater than we would expect to find in data that were entirely
random with respect to the tree.

In addition to Blomberg, Garland & Ives (2003) K, phytools also can be used to estimate
Pagel’s (1999) λ statistic. λ measures phylogenetic signal as a scalar multiplier of the
correlations of related taxa in our tree (Revell & Harmon, 2022). That is to say, if λ has a
value less than 1.0, this would indicate that related species in our phylogeny have a lower
degree of ‘‘autocorrelation’’ than expected under Brownian evolution. In fact, a value
of λ close to zero could be taken to indicate that related species are not phenotypically
correlated at all.

We use Maximum Likelihood to find the value of λ that makes our observed data most
probable. Since it is straightforward to compute a likelihood for any allowable value of λ,
including λ = 0, we can very easily proceed to test a null hypothesis of no phylogenetic
signal in our data by simply calculating a likelihood ratio in which we compare λ = 0
to our Maximum Likelihood estimate. Indeed, this is the test performed by phytools if
method=“lambda” and test=TRUE.

eel.Pagel_lambda<-phylosig(eel.tree,eel.lnTL,

method="lambda",test=TRUE)

eel.Pagel_lambda

##

## Phylogenetic signal lambda: 0.673729

## logL(lambda): -54.3016

## LR(lambda=0): 5.18173

## P-value (based on LR test): 0.0228256

This result tells us that we have found significant phylogenetic signal in our trait by both
measures. Although K and λ tend to be correlated, it is entirely possible that we could have
found significant K and non-significant λ, or vice versa. This is not a contradiction. The
concept of phylogenetic signal is one of phenotypic similarity among related species—but
K and λ measure this concept via two entirely different procedures.

Along with the simple calculation of phylogenetic signal, phytools also contains several
methods to visualize our results. In particular, for Blomberg, Garland & Ives (2003) K we
can plot the permutation distribution of K alongside our observed measure. For Pagel’s λ,
we can plot the likelihood surface, our Maximum Likelihood solution, and the likelihood
of λ = 0: the null hypothesis of our statistical tests. Both of these plots are illustrated in
Fig. 10 for our eel body length data.
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Figure 10 (A) Blomberg, Garland & Ives (2003)measured value of theK statistic for phylogenetic sig-
nal, compared to a null distribution ofK obtained via randomization. (B) Pagel’s (1999) λ statistic for
phylogenetic signal, also showing the likelihood surface. Data consist of maximum body length (on a
log scale) from 61 species of elopomorph eels (Collar et al., 2014). See main text for additional details.

Full-size DOI: 10.7717/peerj.16505/fig-10

par(mfrow=c(1,2),cex=0.9)

plot(eel.Blomberg_K,las=1,cex.axis=0.9)

mtext("a)",adj=0,line=1)

plot(eel.Pagel_lambda,bty="n",las=1,cex.axis=0.9,

xlim=c(0,1.1))

mtext("b)",adj=0,line=1)

Bayesian ancestral state estimation
The phytools package contains several different functions for discrete and continuous
character ancestral state estimation under multiple models. Earlier, we reviewed the
method of stochastic character mapping (Huelsenbeck, Nielsen & Bollback, 2003) and
marginal ancestral character estimation, both of which are important tools for ancestral
state reconstruction of discretely-valued traits.

Among the variety of approaches for ancestral character estimation of continuous
characters that are implemented in the phytools package is the function anc.Bayes. As
its name suggests, anc.Bayes performs ancestral state estimation using Bayesian MCMC.
Just as any proper Bayesian approach should, the implementation of this method allows
us to include prior information about the states at internal nodes. Here, I will illustrate the
simplest type of analysis that we can undertake with the function in which I will simply
accept the default node priors and MCMC conditions. anc.Bayes, however, will be most
useful when we intend to explicitly incorporate prior knowledge about internal nodes of
the tree—based on, for instance, observations from the fossil record.
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To demonstrate the method, I will load a dataset (now packaged with phytools) that
consists of a phylogeny and phenotypic trait information for a set of lizards from the family
Cordylidae, originally published by Broeckhoven et al. (2016).

data(cordylid.tree)

data(cordylid.data)

head(cordylid.data)

## pPC1 pPC2 pPC3

## C._aridus 0.59441 -0.40209 0.57109

## C._minor 0.65171 -0.32732 0.55692

## C._imkeae 0.19958 -0.08978 0.56671

## C._mclachlani 0.62065 0.03746 0.86721

## C._macropholis 0.44875 -0.75942 0.09737

## C._cordylus -0.07267 0.48294 -0.54394

Our trait data in this case are species scores for three different principal component
(PC) axes from a phylogenetic principal components analysis undertaken using the
phytools phyl.pca function (Revell, 2009). Cordylid lizards are known for their body and
tail armor, consisting of large, rectangular scales called osteoderms. Principal component
1 in Broeckhoven et al. (2016) separated the most lightly armored cordylids (large negative
values), from those cordylids with the heaviest body armor (large positive values of PC
1). Why don’t we extract this principal component from our data frame and rename it, as
follows?

cordylid.armor_score<-setNames(cordylid.data$pPC1,

rownames(cordylid.data))

With this named trait vector at the ready, we are prepared to undertake our Bayesian
MCMC. As noted above, we will use the default conditions but update the number of
generations that we want our MCMC to run to ngen=500000. Depending on the size
of our phylogenetic tree, we may want to run more (or fewer) generations in a genuine
empirical study.

cordylid.mcmc<-anc.Bayes(cordylid.tree,

cordylid.armor_score,ngen=500000)

## List of 7

## $ sig2 : num 0.713

## $ a : num [1, 1] 0.000422

## $ y : num [1:26] 0.000422 0.000422 0.000422 0.000422 ...

## $ pr.mean: num [1:28] 1000 0 0 0 0 0 0 0 0 0 ...

## $ pr.var: num [1:28] 1e+06 1e+03 1e+03 1e+03 1e+03 ...

## $ prop : num [1:28] 0.00713 0.00713 0.00713 0.00713 ...

## $ sample: num 100
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## Starting MCMC...

## Done MCMC.

We can see that themethod starts by printing out a summary of the ‘‘control parameters’’
of the MCMC. These include: initial values for the Brownian rate, σ 2 (sig2), the root state
(a), and the internal node values (y); information about our prior probability distributions
(pr.mean and pr.var); the variances of the proposal distributions on each variable in
the model (prop); and, finally, the interval that we will use to sample from our posterior
distribution during the MCMC (sample). All of these parameters can be adjusted by the
phytools user.

The object class that results from this function call ("anc.Bayes") has a summary

method in phytools that prints the mean from the posterior distribution, automatically
excluding the first 20% of our samples as burn-in (though we can adjust this percentage
if we would like). Though a thorough review of Bayesian MCMC is beyond the scope
of this article, burn-in refers to the number of generations required for our MCMC to
converge on the posterior probability distribution, and will depend on numerous factors
including (but not limited to) our starting values, the parameter complexity of our model,
and the proposal distribution. (See Roy, 2020 for a recent review of burn-in, convergence
diagnostics, and related topics.) Convergence can be diagnosed quantitatively viamultiple
methods, including using the R package coda (Plummer et al., 2006). In addition to printing
our results to screen, summary also passes the estimates (normally invisibly, but we can
save them to a new variable in our workspace as we have done here) back to the user.

cordylid.ace<-summary(cordylid.mcmc)

##

## Object of class "anc.Bayes" consisting of a posterior

## sample from a Bayesian ancestral state analysis:

##

## Mean ancestral states from posterior distribution:

## 29 30 31 32 33 34

## 0.059277 -0.099027 -0.106452 0.057220 0.153671 0.201722

## 35 36 37 38 39 40

## 0.225081 0.297659 0.392992 0.493316 0.015503 -0.006053

## 41 42 43 44 45 46

## 0.435309 0.392526 0.300532 0.210391 -1.505181 -1.857682

## 47 48 49 50 51 52

## -0.136014 -0.520322 -0.829181 -0.985510 -1.040208 0.385293

## 53 54 55

## 0.511646 0.159943 0.028358

##

## Based on a burn-in of 1e+05 generations.
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Figure 11 Reconstructed ancestral values from BayesianMCMC projected onto the nodes and edges
of the tree.Numerical values at internal nodes are node indices from our input phylogeny. Data consist
of PC 1 from a phylogenetic principal components analysis of cordylid morphological traits, and sepa-
rate highly armored (high values) from lightly armored (low values) lizards (Broeckhoven et al., 2016). See
main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-11

Now that we have obtained our estimated Bayesian ancestral states for internal nodes,
it is a straightforward task to visualize them on the branches and nodes of the tree. For
this undertaking we will use the popular phytools plotting function contMap (Revell, 2013).
By default, contMap uses Maximum Likelihood to compute ancestral states at all of the
internal nodes of the tree—but it can also be supplied with user-specified values. Since we
want to use our Bayesian estimates from anc.Bayes, that is what we will do here.

cordylid.contMap<-contMap(cordylid.tree,

cordylid.armor_score,anc.states=cordylid.ace,

plot=FALSE)

cordylid.contMap<-setMap(cordylid.contMap,

viridisLite::viridis(n=10,direction=-1))

plot(cordylid.contMap,ftype="i",fsize=c(0.6,0.7),

leg.txt="PC 1 (increasing armor)",lwd=3)

nodelabels(frame="circle",bg="white",cex=0.6)

For fun, compare Figs. 11 to 2 of Broeckhoven et al. (2016) in which estimated ancestral
state values were assigned to each branch using a similar color gradient.

In addition to this simple analysis, we can (naturally) extract and plot posterior
probability densities from any of our internal nodes of the tree. To see this, let us focus
on the node labeled ‘‘49’’ in Fig. 11 and do exactly that. Node 49 corresponds to the
common ancestor of the Pseudocordylus clade. The Pseudocordylus are among the most

Revell (2024), PeerJ, DOI 10.7717/peerj.16505 33/75

https://peerj.com
https://doi.org/10.7717/peerj.16505/fig-11
http://dx.doi.org/10.7717/peerj.16505


lightly armored of all cordylid lizards in this analysis, so we would expect our posterior
distribution for this node to be centered on a relatively low value of our armor score.

cordylid.node49<-density(cordylid.mcmc,what=49)

cordylid.node49

##

## Call:

## density.anc.Bayes(x = cordylid.mcmc, what = 49)

##

## Data: node 49 (4001 obs.); Bandwidth ’bw’ = 0.05679

##

## x y

## Min. :-2.1658 Min. :0.000023

## 1st Qu.:-1.5270 1st Qu.:0.022415

## Median:-0.8883 Median:0.187932

## Mean :-0.8883 Mean :0.391002

## 3rd Qu.:-0.2495 3rd Qu.:0.784591

## Max. : 0.3893 Max. :1.187968

par(mar=c(5.1,4.1,1.1,2.1))

plot(cordylid.node49,las=1,bty="n",main="",cex.lab=0.8,

cex.axis=0.7,xlab="PC 1 (increasing armor)",

ylab="Posterior density",

xlim=range(cordylid.armor_score))

Figure 12 shows our estimate of the posterior probability distribution of the ancestral
node 49 state, and should be centered precisely on the value we projected onto the tree of
Fig. 11.

As given here, Bayesian MCMC ancestral state reconstruction will yield (in nearly
all circumstances) point estimates that are highly similar to the values that we might
have obtained using Maximum Likelihood. Nonetheless, Bayesian inference provides the
additional benefit of supplying a natural framework for incorporating prior information
about the states at one or various internal nodes in the tree (by adjusting pr.mean, pr.var,
or both: see above), as well as for measuring the substantial uncertainty that can be
associated with ancestral trait estimates (in particular, by providing not just confidence
intervals around each node, but sets of ancestral values across all nodes of the tree that
have been sampled in proportion to their posterior probability under the model).

Multivariate trait evolution
Along with the various univariate methods we have seen so far, phytools also contains a
handful of different multivariate trait evolution models, designed for both continuous and
discrete characters.

One of these is an interesting model (described in Revell & Collar, 2009; Revell, Toyama
& Mahler, 2022) in which the rates and evolutionary correlations between traits are allowed
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Figure 12 Posterior probability density at node 49 of Fig. 11 from BayesianMCMC ancestral state re-
construction of PC 1 from amorphological analysis on a phylogenetic tree of cordylid lizards. Node 49
corresponds to the common ancestor of the Pseudocordylus: a relatively lightly armored cordylid clade. See
main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-12

to vary as a function of a set of mapped regimes on the tree. (Similar to O’Meara et al.,
2006, but for more than one trait at a time.) The underlying motivation of this method is
to test hypotheses about phylogenetic heterogeneity in the evolutionary relationship (i.e.,
correlation) between different traits on our phylogeny. This approach is also used to study
quantitative traitmodularity and integration duringmacroevolution (e.g.,Damian-Serrano,
Haddock & Dunn, 2021).

Note that closely related analyses have been implemented in the R packagesmvMORPH
by Clavel, Escarguel & Merceron (2015), and ratematrix by Caetano & Harmon (2017).
The packages mvSLOUCH (Bartoszek et al., 2012), PhylogeneticEM (Bastide et al., 2018),
and PCMFit (Mitov, Bartoszek & Stadler, 2019) also feature phylogenetic multivariate
quantitative trait analysis methods.

To illustrate our approach, however, I will use a phylogenetic tree and dataset of
tropidurid lizard species from Revell, Toyama & Mahler (2022).

data(tropidurid.tree)

data(tropidurid.data)

In this case, our phylogeny is already a tree with mapped regimes. We can see this by
merely printing the model object that we loaded. (In an empirical study we might imagine
using a set of such trees sampled in proportion to their probabilities using stochastic
mapping—and then averaging the result e.g., see Revell & Harmon, 2022.)

print(tropidurid.tree,printlen=2)

##
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## Phylogenetic tree with 76 tips and 75 internal nodes.

##

## Tip labels:

## Leiocephalus_raviceps, Leiocephalus_carinatus, ...

##

## The tree includes a mapped, 2-state discrete character

## with states:

## n_rock, rock

##

## Rooted; includes branch lengths.

This tells us that our phylogenetic tree contains 76 taxa and a mapped regime with two
states: "n_rock" (non-rock dwelling) and “rock” (rock-dwelling). Since phytools permits
mapped regimes to have arbitrarily lengthy names, let us rename these two regime levels
in a more informative way. To do so, I will use the phytools function mergeMappedStates.
mergeMappedStates, as readers can probably guess, is designed to merge the mappings of
two or more traits into one –but can also be employed to simply substitute one mapping
name for another.

tropidurid.tree<-mergeMappedStates(tropidurid.tree,

"n_rock","non-rock dwelling")

tropidurid.tree<-mergeMappedStates(tropidurid.tree,

"rock","rock-dwelling")

Let us plot this updated tree. To do so, I am going to use the recent phytools function
sigmoidPhylogram that will plot our tree using curved (‘‘sigmoidal’’) linking lines (Fig. 13).
phytools contains lots of cool tree plotting functions like this one.

cols<-setNames(c("white","black"),c("non-rock dwelling",

"rock-dwelling"))

sigmoidPhylogram(tropidurid.tree,direction="upwards",

outline=TRUE,colors=cols,direction="upwards",

outline=TRUE,lwd=2,fsize=0.4,ftype="i",offset=1)

legend("bottomright",c("non-rock dwelling",

"rock-dwelling"),pch=22,pt.bg=cols,cex=0.8,

pt.cex=1.2)

Our quantitative phenotypic trait data in tropidurid.data consist of a single measure
of overall body size (as trait 1, “newsize”), and a secondmetric traitmeasuring dorsoventral
depth (vs. flattening, "body_height").

head(tropidurid.data)

## newsize body_height

## Leiocephalus_raviceps 2.358317 0.05768818
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Figure 13 Phylogenetic tree of rock- and non-rock dwelling tropidurid lizard species from Revell,
Toyama &Mahler (2022). Mapped colors correspond to a hypothesis of the history of habitat use across
the clade. See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-13

## Leiocephalus_carinatus 2.931721 0.30216220

## Leiocephalus_psammodromus 2.700397 0.19667083

## Leiocephalus_personatus 2.535315 0.32216983

## Leiocephalus_barahonensis 2.473666 0.30266917

## Stenocercus_ochoai 2.549010 0.29067644

Our hypothesis of multivariate trait evolution in this clade is that these two traits (size
and body depth) should generally scale together in non-rock dwelling lizard species: bigger
lizards also tend to have larger body depths. We hypothesize, however, that this general
relationship may become decoupled in rock-dwelling lineages where the force of selection
is predicted to favor increased flattening, relative to their non-rock dwelling kin. (There are
biomechanical and behavioral reasons to suspect this could be so. For more information,
see Revell et al., 2007; Revell, Toyama & Mahler, 2022.)

To test this hypothesis, we will use the phytools function evolvcv.lite which fits a
hierarchical set of models for the evolutionary rates (of each character) and evolutionary
correlations (between them, Revell & Collar, 2009; Revell, Toyama & Mahler, 2022).
Following Revell & Collar (2009), these models are: (1) a model with common rates and
correlations between the two discrete traits; (2) a model with different rates of evolution
depending on our mapped state, but a common correlation; (3) a model with common
rates, but a different evolutionary correlation, depending on the mapped discrete character;
and, finally, (4) amodel of different rates and correlations between the two discrete mapped
character states.
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tropidurid.fits<-evolvcv.lite(tropidurid.tree,

tropidurid.data)

## Fitting model 1: common rates, common correlation...

## Best log(L) from model 1: 52.3056.

## Fitting model 2: different rates, common correlation...

## Best log(L) from model 2: 54.3968.

## Fitting model 3: common rates, different correlation...

## Best log(L) from model 3: 55.1105.

## Fitting model 4: no common structure...

## Best log(L) from model 4: 56.2877.

Having fit each of four models (in this case: evolvcv.lite actually includes several
additional models that we will not review here, see Revell, Toyama & Mahler, 2022 for more
details), we can most easily compare all of the models in our set using a generic anova
function call as follows.

anova(tropidurid.fits)

## log(L) d.f. AIC weight

## model 1 52.30560 5 -94.61119 0.09221085

## model 2 54.39681 7 -94.79362 0.10101737

## model 3 55.11048 6 -98.22096 0.56057434

## model 4 56.28765 8 -96.57530 0.24619744

This comparison shows us that our third model ("model 3": remember, with common
rates but different evolutionary correlation between rock and non-rock dwelling species)
is the best-supported explanation of our data in this set, with the lowest AIC score and
highest model weight. We can print out a summary of our set of four models to review the
estimated parameter values of each.

tropidurid.fits

## Model 1: common rates, common correlation

## R[1,1] R[1,2] R[2,2] k log(L) AIC

## fitted 0.2224 0.0154 0.0589 5 52.3056 -94.6112

##

## (R thinks it has found the ML solution for model 1.)

##

## Model 2: different rates, common correlation

## R[1,1] R[1,2] R[2,2] k log(L) AIC

## non-rock dwelling 0.2025 0.0187 0.0456 7 54.3968 -94.7936

## rock-dwelling 0.3043 0.0382 0.1263

##

## (R thinks it has found the ML solution for model 2.)
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##

## Model 3: common rates, different correlation

## R[1,1] R[1,2] R[2,2] k log(L) AIC

## non-rock dwelling 0.2256 0.0394 0.0588 6 55.1105 -98.221

## rock-dwelling 0.2256 -0.0354 0.0588

##

## (R thinks it has found the ML solution for model 3.)

##

## Model 4: no common structure

## R[1,1] R[1,2] R[2,2] k log(L) AIC

## non-rock dwelling 0.2108 0.0325 0.0485 8 56.2877 -96.5753

## rock-dwelling 0.2794 -0.0564 0.101

##

## (R thinks it has found the ML solution for model 4.)

Here we see that model 3 is one in which the evolutionary covariance between overall
body size and dorsoventral flattening is negative among rock-dwelling lineages –compared
to the positive evolutionary covariance in non-rock species and across all other models.
Just as we had predicted, size and body depth are evolutionarily decoupled in rock-dwelling
specialists.

Variable rate Brownian motion
Lastly, I recently added a function to phytools that permits us to fit a variable-rate Brownian
evolution model using penalized likelihood (Revell, 2021). Related methods have been
implemented both outside (e.g., Venditti, Meade & Pagel, 2011) and inside (e.g., Uyeda &
Harmon, 2014;Martin et al., 2022) R.

In our model, we will assume that the phenotypic trait evolves via a standard Brownian
motion process—but that the rate of evolution (σ 2) itself also changes through time and
among the clades of our tree via a process of geometric Brownianmotion. (That is, Brownian
motion on a log scale.) As one might expect for a penalized likelihood method, when we go
ahead and fit this model to data, the degree to which the evolutionary rate is permitted to
vary from edge to edge in the tree is controlled by our λ penalty or ‘‘smoothing’’ coefficient
(Revell, 2021).

Although a relatively new addition to the phytools package, this method has already
been used to, for example, investigate rate heterogeneity differences in body size evolution
between cetaceans and plesiosaurs (Sander et al., 2021), and tomeasure rate variation in the
evolution of the mechanical properties of woody plant tissue (Higham, Schmitz & Niklas,
2022). Here, I will apply it to the analysis of skull size evolution in a phylogenetic tree
of primates. My data for this example (now packaged with phytools) come from a book
chapter authored by Kirk & Kay (2004).

data(primate.tree)

data(primate.data)
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Our data frame, primate.data, contains a number of different variables. Let us pull
out just one of these, Skull_length, and (as we do) convert it to a logarithmic scale.

primate.lnSkull<-setNames(

log(primate.data$Skull_length),

rownames(primate.data))

head(primate.lnSkull)

## Allenopithecus_nigroviridis Alouatta_palliata

## 4.590057 4.698661

## Alouatta_seniculus Aotus_trivirgatus

## 4.682131 4.102643

## Arctocebus_aureus Arctocebus_calabarensis

## 3.901973 3.985273

With just this input data vector and our tree, we are already ready to run our penalized
likelihood analysis. As I mentioned earlier, however, penalized likelihood requires the user
to specify a smoothing parameter—normally denominated λ. λ determines the weight that
is assigned to the penalty term of the fitted model, in our case a measure of how much (or
how little) the evolutionary rate evolves from edge to edge in the phylogeny (Revell, 2021).
A large value of λ will more stringently penalize high rate variation between edges and thus
cause us to fit a model with relatively low rate heterogeneity across the tree. Smaller values
of λ, on the other hand, should have the converse effect.

A number of approaches, such as cross-validation (e.g., Efron & Gong, 1983), have been
suggested to help us identify suitable values of λ in penalized likelihood for our data and
question—however, I’dminimally recommend testing multiple values of λ and comparing
the results. Let us do exactly that for our analysis of primate skull length: first using λ =

1.0, and then swapping it for a much smaller λ = 0.1 and much larger λ = 10. This will
allow us to pretty quickly see how these different values of our smoothing parameter affect
our findings, and thus how sensitive any inference we draw might be to the specific value
of λ we assigned.

Before continuing, however, we will try to get a better sense of our data by creating a
simple projection of our phenotypic trait (log skull length) onto the tree. Visual inspection
may help give us a preliminary sense of where in our tree our penalized likelihood method
could end up showing the rate of primate skull length evolution to vary the most –and the
least. In this case, I will use two different plotting methods.

First, I will use the phytools function edge.widthMap which sizes the thickness of our
plotted branches in proportion to the observed or reconstructed trait values. (This is one
of my favorite phytools functions, but, compared to the contMapmethod we saw earlier, so
far as I can tell it has been used very little in published literature.) We can see the result in
Fig. 14A. In addition to this visualization, I will also undertake a simple projection of our
phylogeny into the trait space. This is done using a very popular phytools plotting method
called phenogram (Evans et al., 2009; Revell, 2013; Revell, 2014b). In the typical style of this
kind of plot, our phylogeny is graphed in a space defined by time since the root of the tree
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Figure 14 (A) Primate skull lengths (on a log scale) projected onto the edges and nodes of the phy-
logeny. The width of each edge of the tree is proportional to the observed or reconstructed value of the
trait. See main text for more details. (B) A projection of the phylogeny of (A) into a space defined by
time since the root (on the horizontal axis) and log skull length. Phylogeny and data are derived from
Kirk & Kay (2004). See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-14

(on our horizontal axis), and the observed or reconstructed values of our phenotypic trait
(on the vertical, Revell, 2013). The result of this projection is shown in Fig. 14B.

par(mfrow=c(1,2))

primate.widthMap<-edge.widthMap(primate.tree,

primate.lnSkull)

plot(primate.widthMap,color=palette()[4],

legend="log(skull length)",border=TRUE,fsize=0.4,

mar=c(4.1,1.1,2.1,0.1))

mtext("a)",adj=0,line=0,cex=1.4)

phenogram(primate.tree,primate.lnSkull,fsize=0.4,

ftype="i",spread.cost=c(1,0),mar=c(4.1,4.1,2.1,0.1),

quiet=TRUE,las=1,cex.axis=0.8,
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ylab="log(skull length)")

mtext("b)",adj=0,line=0,cex=1.4)

The function we will use to fit our rate-variable model, multirateBM, performs a
computationally intensive optimization. Setting the optional argument parallel=TRUE
will help distribute this burden across multiple processors of our computer, if possible. Let
us start our analysis using a smoothing parameter, λ, equal to λ = 1.0.

primate.mBM_1<-multirateBM(primate.tree,

primate.lnSkull,lambda=1,parallel=TRUE)

## Beginning optimization....

## Using socket cluster with 16 nodes on host ’localhost’.

## Optimization iteration 1. Using "L-BFGS-B" (parallel)

## optimization method.

## Best (penalized) log-likelihood so far: -267.108

## Done optimization.

Now we can do the same with λ = 0.1 and 10. Readers should take special care to
note that the specific values of the penalized log likelihoods are not comparable between
analyses with different values of the penalty coefficient, λ. This time I will turn off printing
by updating the optional argument to quiet=TRUE.

primate.mBM_0.1<-multirateBM(primate.tree,

primate.lnSkull,lambda=0.1,parallel=TRUE,quiet=TRUE)

primate.mBM_10<-multirateBM(primate.tree,

primate.lnSkull,lambda=10,parallel=TRUE,quiet=TRUE)

Finally, let us visualize the differences and similarities between each of our three fitted
models.

par(mfrow=c(1,3))

plot(primate.mBM_1,ftype="off",lwd=2,

mar=c(0.1,0.1,2.1,0.1))

mtext(expression(paste("a) ",lambda," = 1")),adj=0.1,

line=0.5,cex=1.1)

plot(primate.mBM_0.1,ftype="off",lwd=2,

mar=c(0.1,1.1,2.1,0.1))

mtext(expression(paste("b) ",lambda," = 0.1")),adj=0.1,

line=0.5,cex=1.1)

plot(primate.mBM_10,ftype="off",lwd=2,

mar=c(0.1,1.1,2.1,0.1))

mtext(expression(paste("c) ",lambda," = 10")),adj=0.1,

line=0.5,cex=1.1)
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Figure 15 Estimated rates of log (skull length) evolution in primates under a variable-rate Brownian
evolutionmodel for different values of the smoothing parameter, λ. Increasing values of λ should corre-
spond to less variation in the rate of evolution across the tree. Phylogeny and data are based on Kirk & Kay
(2004). See main text for additional details.

Full-size DOI: 10.7717/peerj.16505/fig-15

We can see from the plot of Fig. 15 that even though the specific range of rate variation
depends strongly on our specified values of λ, the pattern from clade to clade on the tree is
relatively robust. This should give us some measure of confidence that the our inferred rate
heterogeneity may be a product of real variability in the evolutionary rate for our character
on the phylogeny.

DIVERSIFICATION
In addition to the methods that we have seen so far, phytools also contains a handful
of different techniques for investigating diversification on reconstructed phylogenies.
Diversification has never been the primary focus of the phytools R package (to that end, I
would recommend the powerful diversitree package, FitzJohn, 2012), but these methods are
popular, and the phytools implementations can be relatively easy to use. Various additional
R packages include interesting diversification models and methods, such as hisse (Beaulieu
& O’Meara, 2016), RPANDA (Morlon et al., 2016), TreeSim (Stadler, 2019), DDD (Etienne
& Haegeman, 2023), and others.

phytools containsmethods to compute and visualize the accumulation of lineages through
time, including with extinction (ltt), to calculate and test the γ statistic (gammatest, mccr,
Pybus & Harvey, 2000), to fit pure-birth and birth-death models, including with random
missing taxa (fit.yule and fit.bd, Nee, May & Harvey, 1994; Stadler, 2013), to compare
diversification rates between trees (ratebytree, Revell, 2018), and to simulate stochastic
trees under various conditions (pbtree).

Lineage through time plots
One of the most rudimentary phylogenetic methods for studying diversification is to
simply graph the accumulation of new lineages in our reconstructed phylogeny over time
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since the global root of the tree. This visualization method is called a lineage-through-time
plot. A great appeal of this visualization is that if we graph the number of lineages through
time in a fully-sampled pure-birth (that is, constant-rate speciation, but no extinction)
phylogenetic tree, the accumulation curve should be exponential –or exactly linear on a
semi-logarithmic scale. This means that the lineage-through-time plot gives us a handy
tool that we can use to compare the real lineage accumulation in our reconstructed tree to
this simple, neutral expectation (Pybus & Harvey, 2000; Revell & Harmon, 2022).

To see how the number of lineages through time are calculated and graphed using
phytools, let us load a phylogenetic tree of snakes from the venomous family Elapidae. This
phylogeny is now packaged with phytools but derives from a study by Lee et al. (2016).

data(elapidae.tree)

print(elapidae.tree,printlen=2)

##

## Phylogenetic tree with 175 tips and 174 internal nodes.

##

## Tip labels:

## Calliophis_bivirgata, Calliophis_melanurus, ...

##

## Rooted; includes branch lengths.

We are going to create our lineage-through-time graph with phytools over two steps.
First, we will use the phytools function ltt to compute an object of class “ltt” containing
our tree and a count of the number of lineages through time from the root of the tree to
the tips.

elapidae.ltt<-ltt(elapidae.tree,plot=FALSE)

elapidae.ltt

## Object of class "ltt" containing:

##

## (1) A phylogenetic tree with 175 tips and 174 internal

## nodes.

##

## (2) Vectors containing the number of lineages (ltt) and

## branching times (times) on the tree.

##

## (3) A value for Pybus & Harvey’s "gamma" statistic of

## gamma = -3.3244, p-value = 9e-04.

From the print-out we see that in addition to the tree and the lineages through time,
our object also contains a value of (and a P-value for) Pybus & Harvey’s (2000) Pybus
& Harvey’s (2000) γ statistic. γ is a numerical value used to describe the general shape
of the lineage through time curve. If the curve is straight (on a semi-log scale), then γ
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should have a value close to zero. This is what we expect under a pure-birth (speciation
only) diversification process. On the other hand, significantly positive or significantly
negative γ mean that the lineage through time graph curves upward or downward towards
the present day (Pybus & Harvey, 2000). Significant positive or negative curvature of the
lineage-through-time plot might mean that the rate of diversification has changed over
time, but it could also be due to past extinction or incomplete taxon sampling (Revell &
Harmon, 2022). Note that since the pull of the present (Nee, Mooers & Harvey, 1992) means
that our lineage through time plot is expected to curve upwards towards the present day
for any non-zero rate of extinction, some have argued that γ should only be interpreted
when negative (i.e., that statistical tests of γ are properly one-tailed). I do not subscribe to
that view, inasmuch as I see γ as a phenomenological measure of lineage accumulation in
our reconstructed tree whose positive or negative deviation from the statistic’s expected
value under pure-birth could have multiple underlying causes. At first look, the value of γ
from our elapid snake phylogeny would seem to be highly significantly negative.

To proceed and graph our object created in the previous step, we merely need to execute
a generic plot method function call as follows. A simple plot call would have done the
trick; however, in this case I decided to first leave off the axes of my plot, and then re-plot
them so that I could make our horizontal (x) axis run backwards in time (i.e., right to
left) from the present day into the past. I have also super-imposed the phylogeny itself on
our plot so that we can more easily visualize the relationship between the structure of our
phylogenetic tree and the accumulation of lineages over time.

par(mar=c(5.1,4.1,1.1,2.1))

plot(elapidae.ltt,show.tree=TRUE,lwd=2,

log.lineages=FALSE,log="y",bty="n",cex.lab=0.9,

transparency=0.1,axes=FALSE,

xlab="millions of year bp")

h<-max(nodeHeights(elapidae.tree))

axis(1,at=h-seq(0,35,by=5),labels=seq(0,35,by=5),las=1,

cex.axis=0.8)

axis(2,las=1,cex.axis=0.8)

In general, accounting for incomplete taxon sampling in the measurement of the γ

statistic is important because missing taxa will tend to pull our lineage-through-time curve
downwards as we approach the tips of the tree –in other words, towards more negative
values of γ , just like the value that we see for our lineage through time plot of Fig. 16.

Fortunately, there is a simple way to address this bias. If we know the true species
richness of our clade of interest, we can simply simulate trees that match this richness under
pure-birth, randomly prune taxa to the level of ‘‘missingness’’ in our reconstructed tree,
and then use the distribution of γ values across this set of simulated (and then randomly
pruned) trees as our null distribution for hypothesis testing. This exact procedure is called
the ‘‘Monte Carlo constant rates’’ (MCCR, Pybus & Harvey, 2000) test and is implemented
in the phytools function mccr.
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Figure 16 Lineage through time plot for phylogeny of snakes from the family Elapidae (Lee et al.,
2016). See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-16

Of course, since the MCCR test accounts for randomly missing taxa from our tree, we
must know or hypothesize a true species richness of our clade. In this instance, we are not
too preoccupied about the precise value for Elapidae, but Lee et al. (2016) purported that
their phylogeny included approximately 50% of known elapids at the time. Even though
it is likely that elapid diversity has changed a bit in the intervening years, for illustrative
purposes only, let us just go with this 50% figure. In both mccr and the birth-death
model-fitting function we will use later, sampling fraction is specified via the argument
rho (for the Greek letter ρ).

elapidae.mccr<-mccr(elapidae.ltt,rho=0.5,nsim=1000)

elapidae.mccr

## Object of class "mccr" consisting of:

##

## (1) A value for Pybus & Harvey’s "gamma" statistic of

## gamma = -3.3244.

##

## (2) A two-tailed p-value from the MCCR test of 0.446.

##

## (3) A simulated null-distribution of gamma from 1000

## simulations.

This tells us that, having accounted for missing taxa, our observed value of γ (previously
highly significantly negative) becomes indistinguishable from what we would expect under
pure-birth. We can plot our results to see what I mean.
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Figure 17 Distribution of simulated values of γ for the MCCR test, and observed value for the lineage
through time curve of the phylogeny of elapid snakes given in Fig. 16. Phylogenetic tree based on Lee et
al. (2016). See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-17

par(mar=c(5.1,4.1,0.6,2.1))

plot(elapidae.mccr,las=1,cex.lab=0.8,cex.axis=0.7,

main="")

Figure 17 shows that the measured value of γ by the MCCR test is no longer significant,
demonstrating the vital importance of accounting for incomplete taxon sampling in this
(and other) diversification analyses using phylogenies.

Modeling speciation and extinction
In addition to these analysis, phytools can also fit simple speciation and extinction models
followingNee, May & Harvey (1994), Stadler (2013),Harmon (2019). This is done primarily
using the function fit.bd, which also allows us to take into account an incomplete
taxonomic sampling fraction (Stadler, 2013).

Just as with γ , incomplete sampling has the potentially to substantially distort our
estimated rates of speciation (normally given asλ—adifferentλ frombefore) and extinction
(µ). In this case, ignoring (or underestimating) the missing lineages in our tree will tend
to cause us to underestimate the rate of extinction, as nearly all of the information we have
about extinction comes from the most recent parts of our phylogeny. (See Stadler, 2013;
Harmon, 2019; Revell & Harmon, 2022 for more details.)

Fitting a birth-death model using phytools is very easy. For this example, we will use
phylogenetic tree of lizards from the diverse South American family Liolaemidae. Just as in
the other examples this phylogeny is packaged with phytools, but was originally published
by Esquerré et al. (2019). (This is the same phylogeny that was used to study parity mode
evolution under the hidden rates model in an earlier section.)
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data(liolaemid.tree)

print(liolaemid.tree,printlen=2)

##

## Phylogenetic tree with 257 tips and 256 internal nodes.

##

## Tip labels:

## Liolaemus_abaucan, Liolaemus_koslowskyi, ...

##

## Rooted; includes branch lengths.

Wewill pass our liolaemid tree to the fit.bd function, and the only additional argument
to be assigned is rho (for ρ), the sampling fraction, just as we did for the MCCR test in
the function mccr. The Reptile Database (Uetz et al., 2023) puts the total species richness
of Liolaemidae at 341, so we can set rho to have a value equal to the number of tips in our
tree divided by this quantity.

liolaemid.rho<-Ntip(liolaemid.tree)/341

liolaemid.bd<-fit.bd(liolaemid.tree,rho=liolaemid.rho)

liolaemid.bd

##

## Fitted birth-death model:

##

## ML(b/lambda) = 0.352

## ML(d/mu) = 0.1781

## log(L) = 526.451

##

## Assumed sampling fraction (rho) = 0.7537

##

## R thinks it has converged.

Other R packages (such as the aforementioned diversitree) might allow us to compare
our fitted birth-death model to a range of other hypotheses about diversification, such
as that the speciation and extinction rates change through time or as a function of our
phenotypic traits (e.g., Maddison, Midford & Otto, 2007; FitzJohn, 2010; Morlon, Potts &
Plotkin, 2010; Revell & Harmon, 2022). In phytools we can compare our fitted birth-death
model to only one alternative model: the simpler, pure-birth model—also called a ‘Yule’
model.

liolaemid.yule<-fit.yule(liolaemid.tree,

rho=liolaemid.rho)

liolaemid.yule
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##

## Fitted Yule model:

##

## ML(b/lambda) = 0.2502

## log(L) = 521.1832

##

## Assumed sampling fraction (rho) = 0.7537

##

## R thinks it has converged.

anova(liolaemid.yule,liolaemid.bd)

## log(L) d.f. AIC weight

## liolaemid.yule 521.1832 1 -1040.366 0.01381943

## liolaemid.bd 526.4510 2 -1048.902 0.98618057

This result tells us that, in the context of the two very simple models that we have fit to
our reconstructed tree, a two-parameter birth-death (speciation and extinction) model is
much better supported than our simpler Yule model.

Lastly, the phytools function fit.bd exports a likelihood function as part of the fitted
model object. This, in turn, makes it very straightforward for phytools users to (for
example) compute and graph the likelihood surface. Here, I will illustrate this using the
base R graphics function persp. (But R and contributed R packages contain lots of even
fancier 3D plotting methods that readers might be more interested in trying.)

ngrid<-40

b<-seq(0.25,0.45,length.out=ngrid)

d<-seq(0.10,0.25,length.out=ngrid)

logL<-matrix(NA,ngrid,ngrid)

for(i in 1:ngrid) for(j in 1:ngrid)

logL[i,j]<-liolaemid.bd$lik(c(b[i],d[j]))

logL[is.nan(logL)]<-min(logL[!is.nan(logL)])

par(mar=rep(0.1,4))

persp(b,d,exp(logL),shade=0.3,phi=45,theta=20,

xlab="speciation rate",ylab="extinction rate",

zlab="likelihood",border=palette()[4],expand=0.3)

Some astute readers will notice the line logL[is.nan(logL)] <- min(...) (etc.) in
my script of above. This is because during our grid evaluation of the likelihood function,
sometimes the function was being evaluated in parameter space where the likelihood is
not defined. To account for this I set all parts of the likelihood surface that could not be
computed to the numerical minimum of the graph.

Figure 18 shows the very strong ridge in the likelihood surface (from low λ and low µ,
to high λ and high µ) that almost invariably tends to characterize the likelihood surfaces
of birth-death models.

Revell (2024), PeerJ, DOI 10.7717/peerj.16505 49/75

https://peerj.com
http://dx.doi.org/10.7717/peerj.16505


speciation rate

ex
tin

ct
io

n 
ra

te

likelihood
Figure 18 Visualization of the likelihood surface for speciation and extinction rates estimated for a
phylogenetic tree of Liolaemidae. The ridge of values with similar likelihoods is typical of this class of
model. Phylogenetic tree from Esquerré et al. (2019). See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-18

VISUALIZATION
After phylogenetic comparative analysis, phytools is perhaps best known for its phylogeny
visualization methods, and we have seen a number of these approaches already deployed
throughout this article. For example, in Figs. 1, 2, 3, 4, 7 and 13 I illustrated custom
phytools plottingmethods for stochastic charactermapping and the analysis of stochastically
mapped trees. Likewise, in Figs. 5, 6 and 9 I demonstrated phytools plotting methods for
fitted discrete character evolution models. In Figs. 10, 11, 14 and 15 I showed a variety of
custom methods for visualizing continuous trait evolution. Finally, in Figs. 8, 16 and 17
I illustrated several different approaches for graphing diversification or the results from
an analysis of diversification on the tree. This is a sparse sample of the variety of plotting
methods for phylogenies, phylogenetic comparative data, and the results of phylogenetic
analysis that are implemented in the phytools package.

In this final section, I will illustrate just a few more popular plotting methods of the
package that we have not already seen in prior bits of the present article.

Co-phylogenetic plotting
Among the most popular plotting method of the phytools package is the function cophylo,
which creates co-phylogenetic plots (often referred to as ‘‘tanglegrams,’’ Page, 1993).
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The purpose of tanglegrams varies widely from study to study. Classically, for instance,
tanglegrams have been used to visually illustrate the topological similarity between two
groups that are hypothesized to co-speciate: for instance, an animal host and its parasites,
or a plant and its pollinators (e.g., Page, 1993; Medina & Langmore, 2016; Endara et al.,
2018; Caraballo, 2022).

Equally often, however, tanglegrams are put to different purposes. For instance,
tanglegrams are frequently employed to show the similarity or differences between
alternative phylogenetic hypotheses (e.g., Amarasinghe et al., 2021), to identify
incongruence among gene trees (e.g., Stull et al., 2020), and even to compare a phylogenetic
history to a non-phylogenetic cluster dendogram based on phenotypic or ecological data
(e.g., Atkinson, Ee & Pfeiffer, 2020; Huie et al., 2021). To illustrate the phytools tanglegram
method, Iwill use a phylogenetic tree of bat species and another of their betacoronaviruses—
both based on Caraballo (2022).

data(bat.tree)

data(betaCoV.tree)

Assuming that our tip labels differ between our different trees (and they do in this
instance), we need more than just two phylogenies to create a tanglegram–we also need a
table of associations linking the tip labels of one tree to those of the other. Again, based
on Caraballo (2022), our association information for the two trees that we have loaded is
contained in the phytools data object bat_virus.data. Let us load and review it.

data(bat_virus.data)

head(bat_virus.data)

## Bats betaCoVs

## 1 Artibeus lituratus KT717381

## 2 Artibeus planirostris MN872692

## 3 Artibeus planirostris MN872690

## 4 Artibeus planirostris MN872691

## 5 Artibeus planirostris MN872689

## 6 Artibeus planirostris MN872688

Inspecting just the first part of this object reveals its general structure. We can see that
it consists of two columns: one for each of our two trees. The elements of the first column
should match the labels of our first tree, and those of the second column the labels of our
second tree. There is no problem at all if one or the other column has repeating names: a
host can (of course) be associated with more than one parasite, and vice versa.

Now let us run our co-phylogenetic analysis. This will create, not a plot, but a “cophylo”
object in which the node rotation has been optimized to maximize the tip alignment of the
two trees.
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bat.cophylo<-cophylo(bat.tree,betaCoV.tree,

assoc=bat_virus.data)

## Rotating nodes to optimize matching...

## Done.

We can print this object, as follows.

bat.cophylo

## Object of class "cophylo" containing:

##

## (1) 2 (possibly rotated) phylogenetic trees in an object of class

## "multiPhylo".

##

## (2) A table of associations between the tips of both trees.

To plot it, we will use the a generic phytools plot method for the object class. I will go
ahead and adjust a few settings of the method to make our graph look nice—and I will
use species-specific linking line colors so that we can more easily visualize all the different
virus sequences that are associated with each bat host. (My color palette comes from the
RColorBrewer function brewer.pal Neuwirth, 2022. I chose to use RColorBrewer here,
rather than the viridis palette from earlier in the article, because it creates aesthetic divergent
color palettes—whereas viridis will create a color gradient. RColorBrewer can be installed
from CRAN in the typical way.)

cols<-setNames(RColorBrewer::brewer.pal(n=7,

name="Dark2"),bat.tree$tip.label)

par(lend=3)

plot(bat.cophylo,link.type="curved",fsize=c(0.7,0.6),

link.lwd=2,link.lty="solid",pts=FALSE,

link.col=make.transparent(cols[bat_virus.data[,1]],

0.5),ftype=c("i","reg"))

pies<-diag(1,Ntip(bat.tree))

colnames(pies)<-rownames(pies)<-names(cols)

tiplabels.cophylo(pie=pies,

piecol=cols[bat.cophylo$trees[[1]]$tip.label],

which="left",cex=0.2)

In general, our plot of Fig. 19 reveals a surprisingly strong association between the
topology of the phylogenies of the bats and their viruses—a pattern that Caraballo
(2022) also reported (and that happened to contrast with what Caraballo found for
alphacoronaviruses, for what it is worth).
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Figure 19 Co-phylogenetic plot of bat species (left) and their associated betacoronaviruses (right, la-
beled by GenBank accession number). Associations and GenBank accession numbers from Caraballo
(2022). See main text for more details.

Full-size DOI: 10.7717/peerj.16505/fig-19

Projecting a tree onto a geographic map
phytools can also be used to project a phylogenetic tree onto a geographic map, a
visualization technique that has been used in numerous published studies since it was added
to the package (e.g., Csosz & Fisher, 2016; Quach, Reynolds & Revell, 2019; Hermanson et
al., 2020; Huang & Morgan, 2021; Osuna-Mascaró et al., 2023).

To see how this is done in R, we will load two datasets that come with the phytools
package. The first is a phylogenetic tree of Galapagos giant tortoises (genus Chelonoidis,
tortoise.tree) based on nucleotide sequence data published Poulakakis et al. (2020).
The second is a corresponding geographic dataset that I obtained from Fig. 1 of the same
study (Poulakakis et al., 2020).

data(tortoise.tree)

data(tortoise.geog)

Our geographic data (tortoise.geog), which contain latitude and longitude measures
in two columns, can be a data frame or matrix. In the event that any of the operational taxa
of our tree are represented more than once in our geographic data, then our coordinate
datamust take the form of a matrix. This is important to note because our plotting function
requires that our taxon labels be supplied as row names. The most common ways to read
data into R (for instance, using read.table or read.csv) create data frames, rather than
a matrices—and R data frames do not permit repeating row names. In the case of our
tortoise data, the labels of our data and tree match without duplication, so our input data
can be provided in either acceptable format.

Let us review our locality data frame, tortoise.geog, to understand precisely how it
has been structured.

Revell (2024), PeerJ, DOI 10.7717/peerj.16505 53/75

https://peerj.com
https://doi.org/10.7717/peerj.16505/fig-19
http://dx.doi.org/10.7717/peerj.16505


tortoise.geog

## lat long

## C._duncanensis_1 -0.611014 -90.66008

## C._abingdonii 0.583058 -90.75376

## C._niger -1.291984 -90.42749

## C._vicina_1 -0.915375 -91.38897

## C._chathamensis -0.818184 -89.41856

## C._becki 0.031506 -91.39121

## C._darwini -0.268896 -90.70471

## C._donfaustoi -0.642738 -90.20561

## C._hoodensis -1.378876 -89.67889

## C._duncanensis_2 -0.611014 -90.66008

## C._porteri -0.697202 -90.48687

## C._vicina_2 -0.915375 -91.38897

## C._guntheri -0.800044 -91.03839

## C._vanderburghi -0.447016 -91.10362

## C._microphyes -0.250360 -91.32202

We should see that it consists of species names as rownames, as promised, and geographic
locality points in the form of decimal latitude (in the first column) and longitude (in the
second) coordinates.

Our next step will be to build the map projection that we intend to plot. This is done
using the phytools function phylo.to.map. In addition to combining our phylogenetic
tree and map data, phylo.to.map, much like the cophylomethod of the previous section,
performs a series of node rotations designed to optimize the alignment of our phylogeny
with the geographic coordinates of our tip data. As node rotation is arbitrary anyway, this
can be helpful to facilitate a more convenient visualization.

Before running this code section, we will load the R package mapdata (Becker, Wilks &
Brownrigg, 2022b), which can be installed from CRAN in the usual way). This will allow
us to access a higher resolution base map of the geographic region we intend to plot. We
should also specify direction=“rightwards”. This indicates that we intend to graph our
phylogeny to the left of our plotted map facing right, and thus permits phylo.to.map to
optimize its node rotations of the tree accordingly.

library(mapdata)

tortoise.phymap<-phylo.to.map(tortoise.tree,

tortoise.geog,plot=FALSE,direction="rightwards",

database="worldHires",regions="Ecuador")

## objective: 64

## objective: 52

## objective: 52
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## objective: 52

## objective: 52

## objective: 52

## objective: 52

## objective: 52

## objective: 52

## objective: 46

## objective: 46

## objective: 46

## objective: 44

## objective: 44

The object we have created is of class "phylo.to.map" and contains both our optimized
tree, the geographic coordinates of our observations, and our underlying base map for
plotting.

tortoise.phymap

## Object of class "phylo.to.map" containing:

##

## (1) A phylogenetic tree with 15 tips and 14 internal nodes.

##

## (2) A geographic map with range:

## -5.01N, 1.44N

## -91.67W, -75.22W.

##

## (3) A table containing 15 geographic coordinates (may include

## more than one set per species).

##

## If optimized, tree nodes have been rotated to maximize alignment

## with the map when the tree is plotted in a rightwards direction.

Finally, we were ready to plot our tree. Here, we must remember to specify the x and
y axis limits (via the arguments xlim and ylim, respectively) based on the geographic
coordinates of our geolocality data.

plot(tortoise.phymap,direction="rightwards",pts=FALSE,

xlim=c(-92.25,-89.25),ylim=c(-1.8,0.75),ftype="i",fsize=0.8,

lty="dashed",map.bg="lightgreen",colors="slategrey")

The results can be seen in Fig. 20. Although the base map from mapdata is sufficiently
high resolution for our purposes here, higher resolution maps are available for some
regions, and it is even possible to import and use a custom map—should we be so inclined
(e.g., Quach, Reynolds & Revell, 2019).
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Figure 20 A phylogenetic tree of Galapagos tortoises projected onto a geographic map. Phylogenetic
data and geographic locality information are based on Poulakakis et al. (2020). See main text for more de-
tails.

Full-size DOI: 10.7717/peerj.16505/fig-20

Projecting trees into phenotypic space
Along with projecting a phylogenetic tree onto a geographic map (as we just saw), and
projecting traits onto the edges and nodes of a plotted tree, the phytools package also
contains multiple methods to project a tree into a space defined by our traits. Undoubtedly,
the most popular of these are phylomorphospace, which projects a tree into a bivariate
quantitative trait space (Sidlauskas, 2008; e.g., Friedman et al., 2016; Martins et al., 2021),
and phenogram, which projects a tree into a space defined by time since the root on the
horizontal and phenotype on the vertical (typically called a ‘‘traitgram,’’ see Evans et al.,
2009; e.g., Martinez et al., 2020; Chazot et al., 2021). We saw how phenogram works in
Fig. 14B of any earlier section of this article. Here, I will focus on the phytools method
phylomorphospace.

For this example I will be using a time-calibrated phylogeny of 11 vertebrate species
from the TimeTree website (Hedges, Dudley & Kumar, 2006), and a phenotypic trait dataset
of body mass (in kg) and mean litter size. (The latter dataset was generated fromWikipedia
and other sources: i.e., ‘‘Googling it.’’)

data(vertebrate.tree)

data(vertebrate.data)

head(vertebrate.data)

## Mass Length Litter_size

## Carcharodon_carcharias 2268.00 6.100 10.0

## Carassius_auratus 0.91 0.380 200.0

## Latimeria_chalumnae 80.00 2.000 15.0
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## Iguana_iguana 8.00 2.000 50.5

## Turdus_migratorius 0.28 0.094 4.0

## Homo_sapiens 80.00 1.700 1.1

We should see that our data frame actually has three columns–but henceforward I will
just use the first and the third of these.

Normally, we could pass our data frame or matrix and phylogeny directly to the
phylomorphospace function and obtain a plot. phylomorphospace would then undertake
to project the tree, usingMaximumLikelihood reconstructed ancestral values for both traits
as the positions for internal nodes. In this case, however, I would prefer to first reconstruct
ancestral states on a log scale, back-transform my estimated values to the original space,
and then use these back-transformed reconstruction as my node positions. Fortunately,
phylomorphospace allows that. (In addition to the reasoning I provided in an earlier
section, the logic of reconstructing ancestral states on a log scale is because quantitative
traits in general, and morphometric data in particular, often satisfy the Brownian motion
assumption better on a logarithmic than linear scale. The reasoning of back-transforming
before plotting or reporting our results is simply because most human brains, mine
included, are more adept at interpreting values on an additive rather than multiplicative
scale.)

For the first step, I will use the phytools ancestral state estimation function fastAnc.
fastAnc computes Maximum Likelihood ancestral states for one input character vector at
a time, so we just need to iterate across the two columns (of interest) in our data frame
using an apply call as follows.

vertebrate.ace<-exp(apply(log(vertebrate.data[,c(1,3)]),

2,fastAnc,tree=vertebrate.tree))

vertebrate.ace

## Mass Litter_size

## 12 25.571594 15.552422

## 13 17.834793 16.114126

## 14 16.827622 14.481309

## 15 8.801275 8.791375

## 16 20.362215 1.653955

## 17 17.335294 1.442396

## 18 24.604666 1.610416

## 19 152.078728 1.737334

## 20 301.219076 1.582780

## 21 6.329908 9.613237

This gives us a set of reconstructed values on our original (linear) scale, but in which
the reconstruction was performed on a log scale, and then back-transformed. Finally, let
us create our phylomorphospace plot.
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par(mar=c(5.1,4.1,0.6,2.1))

phylomorphospace(vertebrate.tree,

vertebrate.data[,c(1,3)],A=vertebrate.ace,log="xy",

xlim=c(1e-4,1e6),ylim=c(0.5,200),bty="n",label="off",

axes=FALSE,xlab="Mass (kg)",ylab="Litter size",

node.size=c(0,0))

axis(1,at=10ˆseq(-3,5,by=2),

labels=prettyNum(10ˆseq(-3,5,by=2),big.mark=","),

las=1,cex.axis=0.6)

axis(2,at=10ˆseq(0,2,by=1),

labels=prettyNum(10ˆseq(0,2,by=1),big.mark=","),

las=1,cex.axis=0.7)

cols<-setNames(RColorBrewer::brewer.pal(

nrow(vertebrate.data),"Paired"),

rownames(vertebrate.data))

points(vertebrate.data[,c(1,3)],pch=21,bg=cols,cex=1.2)

ind<-order(rownames(vertebrate.data))

legend("topleft",gsub("_"," ",

rownames(vertebrate.data))[ind],pch=21,pt.cex=1.2,

pt.bg=cols[ind],cex=0.6,bty="n",text.font=3)

Here, I chose to graph the projection without taxon labels, then add different colored
points and a legend to put the label information back on the plot (sorting my labels
alphabetically as I did this). The result can be seen in Fig. 21. As readers can probably
imagine, taxon labels on a phylomorphospace plot can easily become very messy–
particularly for larger trees.

Plotting phenotypic data at the tips of the tree
In addition to projecting phylogenies into trait spaces, and plotting observed or
reconstructed trait values on the tree, phytools possesses a number of different plotting
methods that can also help us undertake the (at least, conceptually) simple task of visualizing
comparative trait data for species at the tips of the tree.

This might be done in various ways. For instance, we could graph the values of a
quantitative trait adjacent to the tip labels using a bar or box, or we might plot the presence
or absence of different lineages from a habitat type next to the tips of the tree (Revell,
2014b). Numerous such approaches have been developed and implemented in the phytools
package, and many of these are shown in my recent book (Revell & Harmon, 2022).

Here, I will illustrate just one such method in which a color gradient is used to visualize
trait values for a set of quantitative characters at the tips of the tree (Revell, 2014b). The
phytools implementation of this plotting method is called phylo.heatmap, and it has
been used in numerous published articles (e.g., Goelen et al., 2020; Hultgren et al., 2021;
Molina-Mora et al., 2021; Huang et al., 2022; Morales-Poole et al., 2022). For this example,
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Figure 21 Phylomorphospace of body mass and litter size for a selection of vertebrate species. The un-
derlying phylogenetic tree was obtained from Hedges, Dudley & Kumar (2006). See main text for addi-
tional details.

Full-size DOI: 10.7717/peerj.16505/fig-21

we will use a phylogenetic tree and log-transformed morphological trait dataset for Anolis
lizards fromMahler et al. (2010). To load these data, readers should run the following.

data(anoletree)

data(anole.data)

head(anole.data)

## SVL HL HLL FLL LAM TL

## ahli 4.03913 2.88266 3.96202 3.34498 2.86620 4.50400

## allogus 4.04014 2.86103 3.94018 3.33829 2.80827 4.52189

## rubribarbus 4.07847 2.89425 3.96135 3.35641 2.86751 4.56108

## imias 4.09969 2.85293 3.98565 3.41402 2.94375 4.65242

## sagrei 4.06716 2.83515 3.85786 3.24267 2.91872 4.77603

## bremeri 4.11337 2.86044 3.90039 3.30585 2.97009 4.72996

Our trait data object, anole.data, is a data frame with six trait columns for various
phylogenetic traits.

We could visualize our data directly; however, the effect of overall size (data column
“SVL”) would tend to obscure any interesting patterns of residual variation and covariation
in body shape among the species in our tree. As such, primarily in an effort to control for
overall size, I will first run a phylogenetic principal components analysis (Revell, 2009) using
the phytools function phyl.pca. A phylogenetic principal components analysis (mentioned
earlier with respect to the Broeckhoven et al., 2016 dataset) is similar to a regular PCA except
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that we account for non-independence of the information for different species in our data
rotation (Revell, 2009).

anole.ppca<-phyl.pca(anoletree,anole.data,mode="corr")

anole.ppca

## Phylogenetic pca

## Standard deviations:

## PC1 PC2 PC3 PC4 PC5 PC6

## 2.2896942 0.6674345 0.4381067 0.2997973 0.1395612 0.1026573

## Loads:

## PC1 PC2 PC3 PC4 PC5

## SVL -0.9782776 -0.01988115 0.14487425 -0.11332244 0.0781070110

## HL -0.9736568 -0.03879982 0.13442473 -0.15596460 -0.0852979941

## HLL -0.9711545 0.14491400 0.02151524 0.17058611 -0.0588208480

## FLL -0.9759133 -0.02087140 0.14486273 0.14149988 0.0475205990

## LAM -0.8299594 -0.50437051 -0.23796010 0.01194704 0.0004983465

## TL -0.8679195 0.40956428 -0.27350654 -0.05871034 0.0195584629

## PC6

## SVL -0.051442939

## HL 0.028570939

## HLL -0.053257988

## FLL 0.062386141

## LAM -0.003133966

## TL 0.018373275

Our PC loadings show us the the first principal component dimension is strongly
negatively correlated with all of the traits in our analysis. We could consider this the ‘‘size’’
axis. Principal component 2 is most strongly (negatively) correlated with the character
“LAM”, number of adhesive toepad scales called lamellae; and most positively correlated
with “TL”, tail length.

Let us compute the principal component scores for all of our species.

anole.pc_scores<-scores(anole.ppca)

head(anole.pc_scores)

## PC1 PC2 PC3 PC4 PC5

## ahli -0.1747576 0.8697064 1.52379491 1.6029659 -0.23955421

## allogus 0.1646585 1.4017806 1.74506491 1.5358005 -0.08089546

## rubribarbus -0.4925001 1.0413268 1.45866163 1.4180850 -0.05716104

## imias -1.1608049 0.7514380 0.75822327 1.7127381 0.35013533

## sagrei -0.3486332 1.2632997 -0.05102313 0.7317455 0.37217463

## bremeri -0.9714818 0.6943196 0.11689334 0.9290039 0.43486041

## PC6
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## ahli -0.1626049

## allogus -0.1245855

## rubribarbus -0.1797060

## imias -0.1340347

## sagrei -0.1484157

## bremeri -0.2304513

Since the sign of each principal component is arbitrary (principal components are
vectors), we will now ‘‘flip’’ the sign of PC 1 –so that it switches from negative size to
simply ‘‘size.’’

anole.pc_scores[,1]<--anole.pc_scores[,1]

Finally, let us graph our results using the phylo.heatmap function. Seeing as the variance
in our different principal component dimensions are quite different from PC to PC, we
will standardize them to have a constant variance using standardize=TRUE. As we have
done in other exercises of this article, we can update the default color palette of the plot
using the argument colors. Here, I will use the colorblind-friendly viridis color palette
from the viridisLite package (Garnier et al., 2022) that we learned about earlier.

phylo.heatmap(anoletree,anole.pc_scores,

standardize=TRUE,fsize=c(0.4,0.7,0.7),pts=FALSE,

split=c(0.6,0.4),colors=viridisLite::viridis(n=40,

direction=-1),mar=rep(0.1,4))

In Fig. 22 we can already begin to discern some of the interesting ecomorphological
phenotypic patterns of Anolis lizards (Losos, 2009). For instance, the largest species (known
as ‘‘crown-giants,’’ Losos, 2009), that is, those species with the highest values of PC 1, tend
to have moderate or low values for PC 2: meaning they have larger lamellae and shorter
tails, controlling for their body size. By contrast some of the smallest species (on PC 1)
have among the highest values for PC 2 (tail length). These are the ‘‘grass-bush’’ anoles
that perch on grass and bushes near the grown, and use their long tails to control body
pitch while jumping. We can likewise see that this combination of phenotypic traits (large
body size and large lamellae; small body size and long tail) has evolved independently in
different parts of the phylogenetic tree. Just by visualizing our data and learning this, we
are already doing phylogenetic comparative methods. Neat!

RELATIONSHIP OF PHYTOOLS TO OTHER PACKAGES
The phytools package has grown to become (along with ape, phangorn, and geiger) among
the most important core packages for phylogenetic analysis in the R environment. As of
the time of writing, the original publication describing phytools (Revell, 2012) had been
cited more than 7,300 times on Google Scholar and continues to be cited over 1,000 times
per year.

In many respect, however, phytools owes its existence to a number of other packages
making up the R phylogenetics ecosytem and fromwhich it imports crtical functionality. In
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Figure 22 Phylogenetic heatmap showing principal components from a phylogenetic PCA of six mor-
phological traits of Anolis lizards. Tree and data are fromMahler et al. (2010). See main text for addi-
tional details.

Full-size DOI: 10.7717/peerj.16505/fig-22

particular, phytools depends on the object classes and methods of the core R phylogenetics
package, ape (Paradis, Claude & Strimmer, 2004; Popescu, Huber & Paradis, 2012; Paradis
& Schliep, 2019). In addition, phytools relies on a number of different methods from the
multifunctional phylogenetic inference package, phangorn (Schliep, 2011). Finally, phytools
is designed to interact with a variety of other function R phylogenetics libraries, especially
the geiger package (Harmon et al., 2008; Pennell et al., 2014), which phytools ‘‘suggests’’ but
does not import.
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Outside of the phylogenetics ecosystem, phytools also presently depends on or imports
from a number of other R packages including clusterGeneration (Qiu & Joe, 2023), coda
(Plummer et al., 2006), combinat (Chasalow, 2012), doParallel (Microsoft Corporation &
Weston, 2022a), expm (Maechler, Dutang & Goulet, 2023), foreach (Microsoft Corporation
& Weston, 2022b), maps (Becker et al., 2022a), MASS (Venables & Ripley, 2002), mnormt
(Azzalini & Genz, 2022), nlme (Pinheiro & Bates, 2000; Pinheiro, Bates & R Core Team,
2022), numDeriv (Gilbert & Varadhan, 2019), optimParallel (Gerber & Furrer, 2019; Lemon,
2006), and scatterplot3d (Ligges & Mächler, 2003), although dependency relationships are
dynamic as packages evolve and may change.

CONCLUSIONS
More than a decade has passed since the original and only article describing phytools was
published (Revell, 2012). Since that time, the phytools package has both evolved into one
of the core function libraries of the R phylogenetics ecosystem, and expanded manyfold in
size and scope. As such, I decided the literature reference for phytools was sorely in need of
updating. In creating one, however, I was determined to make something that could serve
as more than a placeholder to capture citations of the phytools package. I hope that what I
have provided here will help guide some new phytools users towards interesting analytical
tools, as well as perhaps inspire experienced phytools and R phylogenetics researchers
to generate new types of questions and data that will in turn help motivate continued
development of the phytools package into the future.

SOFTWARE AND DATA AVAILABILITY
The phytools R package is free and open source, and can be downloaded from its CRAN
(https://CRAN.R-project.org/package=phytools) or GitHub (https://github.com/liamrevell/
phytools) pages. More information about the phytools package can be obtained from the
software documentation pages, my phytools blog (http://blog.phytools.org), or viamy recent
book with Luke Harmon (Revell & Harmon, 2022).

This article was written in Rmarkdown (Xie, Allaire & Grolemund, 2018; Xie, Dervieux
& Riederer, 2020; Allaire et al., 2023), and developed with the help of both bookdown
(Xie, 2016; Xie, 2023) and the posit Rstudio IDE (RStudio Team, 2020). All data used
in the analyses of this article are packaged with the phytools R library versions on
CRAN and GitHub (links above). Markdown code necessary to exactly rebuild the
submitted version of this article (including its analyses and figures) are available at
https://doi.org/10.5281/zenodo.10067375. A previous version of this article was posted to
the preprint server bioRxiv (https://doi.org/10.1101/2023.03.08.531791).
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