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Abstract: Literature on the probability distribution function �PDF� of annual maximum flood discharges is extensive, yet the literature
on the PDF of the flood of record �FOR� is sparse. This is partially due to two facts: �1� the PDF for record events is more complex than
the PDF for annual maxima; and �2� data sets for observed FORs are much smaller than for the annual maximum flood series from which
they derive. We show that, if annual floods arise from a generalized extreme values �GEV� distribution, then the FOR also arises from
another GEV distribution, which we term GEVmax. We also derive the moments and L-moments for the PDF of GEVmax. Using record
flood observations at over 1,500 basins in the United States, we compared theoretical and empirical properties of observed values of the
FOR. We found that, at both regional and national scales, the FOR values are on average more extreme than would be expected if they
occurred randomly, and that they tend to form spatial clusters.
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Introduction

A record, in the context of this study, is defined as the largest
recorded value in a time series. For example, a flood of record
�FOR� is the largest recorded flood in a time series of annual
floods measured at a particular site. In addition to the oft quoted
observation that “in this world, nothing is certain but death and
taxes” �attributed to Benjamin Franklin in a letter written in
1789�, there is at least one other thing of which we can be certain:
a record, no matter how large or long standing, will eventually be
broken �Glick 1978�.

The literature available on estimation of the magnitude and
frequency of floods is enormous. In contrast, relatively little has
been written on the behavior of the FOR. This is due to at least
two factors: �1� the probability theory used to describe record
events such as the FOR is much more complex than the theory
which describes annual maximum floods; and �2� the sample size
of an observed FOR is small for the simple fact that, while the
number of observed annual floods at a site is equal to the number
of years of data, there can be only one observed FOR for a given
site.

Estimation of properties of the FOR in a region has been of
fundamental interest in hydrology for well over a century. Enve-
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lope curves, which are derived from plots of the FOR versus their
drainage area, have had widespread application in hydrology.
Cudworth �1989� and England �2005� describe how envelope
curves are used �1� in traditional flood hydrology studies; �2� in
studies which compare design flood peaks for new and existing
dams; and �3� as a way to judge the adequacy of estimates of the
probable maximum flood. However, with the exception of a re-
cent study by Castellarin et al. �2005�, previous envelope curve
applications have not provided a probabilistic interpretation of the
envelope curve or the FOR. The impetus behind this study is
primarily to derive a probability distribution function �PDF� of
the FOR to better enable future probabilistic interpretations of
regional envelope curves. After deriving a PDF of the FOR, we
summarize the characteristics of observed FORs for large basins
across the United States.

Previous Work

Conventional flood frequency analysis involves estimating the
probability of extreme events based on historical stream gauge
data for a site or a region. A major limitation to applying this
method to evaluating the frequency of the FOR is the length of
the historical data set; typical annual flood time series from
gauged sites range from 50 to 100 years in length, and yet a flood
near the upper bound of flood experience for a region may occur
over a much greater time interval. Jarrett �1990�, Jarrett and
Tomlinson �2000�, and others have developed methods for ex-
tending existing flood data with paleoflood estimates. Conover
and Benson �1963�, Carrigan �1971�, and Wahl �1982� extended
flood frequency analysis to FORs by scaling the FOR at each site
within a region so that they could be assumed to have the same
underlying PDF and therefore be grouped together. Malamud et
al. �1996� applied power-law �fractal� extreme-value statistics and
partial-duration series to flood flow frequency analysis and found
they were better able to match maximum flood discharges esti-
mated from paleoflood data for the Mississippi and Colorado riv-

ers using power-law scaling than the log-Pearson type 3 PDF.
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Several recent studies have attempted to broadly characterize
the behavior of the FOR. Vogel et al. �2001� introduced the prob-
ability distribution and moments for the expected number of
record events in an n-year period. They found that the average
number of record flood events in the United States behaved as one
would expect serially independent floods to behave, as long as the
effect of spatial correlation was accounted for. Benestad �2004�
performed a similar analysis to the one by Vogel et al. �2001� but
for global temperatures; however, their analysis did not correct
for spatial correlation of the records. An intriguing study by
Yongquan �1993� evaluates the relationship between solar activity
and maximum floods �discharge greater than 10,000 cubic meters
per second� for 141 rivers throughout the world. He found that the
majority of flood maxima occurred within the period of three
years prior to the sunspot minima and one to two years before and
after the sunspot maxima. More recently, Castellarin et al. �2005�
introduced an estimator of the exceedance probability associated
with a regional envelope curve �REC�, which accounts for the
impact of intersite cross-correlation of floods. Monte-Carlo ex-
periments were performed to assess the performance of their es-
timator, and generalized regional envelope curves were presented
for assessing the impact of regional intersite cross-correlation on
the likelihood of exceeding an observed REC. Troutman and
Karlinger �2003� introduce an approach for determining the prob-
ability that at least one site in a region will experience a T-year
flood in any given year. Although Troutman and Karlinger �2003�
did not focus attention on the FOR, the foundation of their analy-
sis is the determination of the joint distribution of annual maxi-
mum floods for all sites in a region, which is very closely related
to the problem addressed by Castellarin et al. �2005� and this
study.

Estimating the Exceedance Probability of the Flood
of Record

The literature on the theoretical behavior of records is growing, so
much so that a book �Arnold et al. 1998� has recently been
published on the subject. In it, PDFs for records arising from
exponential, Weibull, Pareto, and power-function distributions are
presented, as well as methods of parameter estimation and statis-
tical inference. Ang and Tang �1990� present exact distributions
for maxima and minima generated from exponentially and uni-
formly distributed series of finite length, n. They and Lambert and
Li �1994� provide asymptotic forms, following the Type I, Type
II, and Type III extremal functions categorized by Gumbel
�1958�, for approximating the distribution of maxima and minima
for large n taken from normal, Rayleigh, exponential, and ex-
treme value PDFs. We are not aware of anyone who has derived
similar expressions for the maxima generated from a generalized
extreme value �GEV� distribution. Vogel and Wilson �1996� sum-
marize investigations around the world and show that a consensus
is emerging that the distribution of annual maximum floods is
perhaps best approximated by a generalized extreme value �GEV�
PDF. They also document that the GEV PDF provides a good fit
to annual flood series at 1,490 sites across the continental United
States. For this reason, we derive the PDF, moments, and
L-moments for maxima �i.e., FOR� from a series of finite length n

generated by a GEV distribution.
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Derivation of CDF, Quantile Function, Moments,
and L-moments of the Flood of Record

Let X be a random variable with a known cumulative density
function �CDF� FX�x�. The maximum value from the independent
series Xi, i=1, . . . ,n is

Ymax = max�X1,X2, . . . ,Xn� �1�

For any value of y, Ymax is less than or equal to y if and only if all
the Xs are less than or equal to y. The CDF for Ymax is then

Fmax�y� = P�Ymax � y�

=P�X1 � y,X2 � y, . . . ,Xn � y�

=P�X1 � y�P�X2 � y� . . . P�Xn � y�

=F1�y�F2�y� . . . Fn�y�

=�FX�y��n �2�

Therefore, the CDF of the maximum value from an independent
sample of length n is a function of both the CDF of the parent
distribution, FX�y�, and n. This is convenient, because the maxi-
mum value of a sample of independent random variables can be
estimated from the parameters of the distribution of the original
random variable, X.

If X arises from a generalized extreme value �GEV� distribu-
tion, then its CDF is

FX�x� = exp�− exp� 1

�
· ln�1 − � ·

�x − ��
�

�	
 for � � 0

�3�

where ��location parameter; ��scale parameter; and ��shape
parameter �Jenkinson 1955�. The range of x in Eq. �3� is −�
�x��+ �a /�� for ��0 and �+ �a /���x�� for ��0, so that
the annual flood series �as well as the FOR, as is shown later� will
have an upper bound when ��0, as suggested by Enzel et al.
�1993�. As the shape parameter � approaches zero, the GEV dis-
tribution approaches a Gumbel �extreme value type I� distribu-
tion. Further details on the GEV distribution, such as its product
moments, L-moments, parameter estimators, and goodness-of-fit
tests, can be found in Hosking and Wallis �1997�, Stedinger
et al. �1993�, and Chowdhury et al. �1991�.

Combining Eqs. �2� and �3� leads to the CDF for the maxima
Ymax generated from GEV samples of length n:

Fmax�y� = �exp�− exp� 1

�
· ln�1 − � ·

�y − ��
�

�	
�n

�4�

The inverse or quantile function for Ymax is

y�p� = � +
�

�
�1 − �− ln�p�

n
	�� �5�

where p=Fmax�y�. Eq. �5� is similar in form to the quantile func-
tion for the original GEV variate X:

x�p� = � +
�

�
�1 − �− ln p��� �6�

Note that if �→0, then n�→1; therefore, if the distribution of
floods follows a Gumbel distribution, the distribution of the FOR
will also be Gumbel. This is consistent with the findings of Ang

and Tang �1990�, Lambert and Li �1994�, and others.

OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2006 / 483



In this study, we are interested in the exceedance probability of
the FOR, so the quantile function was expressed as a function of
the exceedance probability for Ymax, pn=1− p, by substituting pn

into Eq. �5�. The quantile function can be used to generate the rth
ordinary moment about the origin, 	r, using

	r =�
0

1

�y�p��rdp �7�

Combining Eqs. �6� and �7�, the mean, 	max, and variance, 
max
2 ,

of Ymax are

	max = 	1 =�
0

1

�y�p��dp = � +
�

�
�1 −

��1 + ��
n� � �8�


max
2 = 	2 − �	1�2 =�

0

1

�y�p��2dp − 	max
2

= � �

� · n�	2

���1 + 2�� − ���1 + ���2
 �9�

Similar to the quantile function, the first two moments of Ymax

differ in form from those of the GEV only by the additional term,
n�. Hosking and Wallis �1997�, Hosking �1990�, and Stedinger et
al. �1993� recommended the use of L-moments for fitting the
GEV distribution. L-moments are similar in concept to ordinary
moments except that L-moments are computed from linear com-
binations of order statistics rather than from the square or the
cube of residuals �deviations from the mean�. The first two
L-moments for Ymax are

�1max = 	max = � +
�

�
�1 −

��1 + ��
n� � �10�

�2max =
�

�

��1 + ��
n� �1 − 2−�� �11�

Again, the expressions of L-moments for the Ymax differ from
those for X only by the term n�. Interestingly, expressions for the
L-moment ratios of Ymax, L-skewness �
3� and L-kurtosis �
4�, are
the same as for the original GEV variate X, as presented in Hosk-
ing and Wallis �1997�. The equivalence of the relationship be-
tween 
3 and 
4 for both X and Ymax was confirmed using a Monte
Carlo experiment �see Douglas �2002� for details�. Thus, if X
follows a GEV distribution, then the FOR generated from X is
also GEV and the tail behavior of the FOR is identical to the tail
behavior of X. It is only their means and coefficients of variation
that differ. Hence, to describe the distribution of the FOR, all one
needs to do is to estimate its mean and variance, because esti-
mates of 
3 and 
4 can be estimated from the original observations
of X.

Probabilistic Behavior
of Observed Floods of Record

Regional Analysis

We investigated the regional behavior of floods of record �FORs�
across the United States by first grouping them into nine superre-
gions �as defined in Douglas et al. �2000� and shown in Fig. 1�
and then estimating the exceedance probabilities associated with
observed FORs at each site using Eq. �4�. Analyses in this study

were performed using data contained in the Hydro-Climatic Data
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Network �HCDN�, a data set compiled by Slack et al. �1993�,
which is comprised of average streamflow values recorded on a
daily, monthly, and annual basis at 1,571 gauging stations across
the continental United States. Only stations with records suitable
at a daily timescale �Time_Scale equal to D� were used in this
study, which reduced the total number of usable stations to 1,474.
We selected stations that had 41 years of continuous annual peak
streamflows �1948–1988� so that the analysis would not be con-
founded by missing data and varying time series lengths. The
41-year length maximized the number of site-years of continuous
data used from the overall HCDN. For completeness, we also
analyzed all sites within each region regardless of record length
or data continuity.

We estimated the GEV parameters, �, �, and �, associated
with each annual flood series x, using the L-moment estimators
presented in Stedinger et al. �1993� and Hosking and Wallis
�1997�

�̂ = 7.8590c + 2.9554c2 where c =
2�2

�3 + 3�2
−

ln�2�
ln�3�

�̂ =
��2

��1 + ���1 − 2−��

�̂ = �1 +
�

�
���1 + �� − 1� �12�

The maximum flood, y, for each annual flood series was se-
lected and its exceedance probability was estimated as pn=1
−Fmax�y� using Eq. �4�. Figs. 2�a and b� are box plots of the
regional exceedance probabilities pn, computed in this manner for
the sites with continuous 41-year time series and for all sites,
respectively. If the FOR are independent across sites, pn will be
uniformly distributed within each region, with a median of 0.50
and upper and lower quartiles at 0.25 and 0.75, respectively. In
general, p-values arising from any set of independent experi-
ments, such as a set of hypothesis tests, are distributed uniformly
on the interval �0,1� �Casella and Berger 1990�. For further dis-
cussion of this result, see Loucks et al. �1981; p. 109� and Dou-
glas �2002�. Figs. 2�a and b� demonstrate that the pn values are
not uniformly distributed, as expected, and that in most regions
the median pn is lower than the expected value of 0.50. The fact
that the regional median values are substantially lower than the
expected regional median of 0.5 �Fig. 2�a�� in CB �Pacific North-

Fig. 1. Regional delineations �superregions as defined in Douglas
et al. �2000�� used in this analysis
west�, LM �Lower Midwest�, and NE �Northeast� indicates that
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the FOR in these regions have been more extreme than would be
expected if they were strictly random �independent� events.

Analysis Over the Entire Continental United States

To investigate the influence of the small number of sites in each
region in the analysis, the regional pn values were combined and
evaluated as a single group �entire United States�. Time series
lengths at all HCDN sites range from 9 to 115 years, with a
median of 44 years. Box plots �Fig. 3� and histograms �Figs. 4�a
and b�� show the distribution of all pn values calculated at HCDN
sites in the United States. The box plots �Fig. 3� again illustrate
that the distribution of exceedance probabilities is not uniform
and that the median values are slightly below the expected me-
dian of 0.5 for a uniform distribution. The histograms �Figs. 4�a
and b�� document that the mode of these distributions is signifi-
cantly lower than 0.5.

Our analysis of the distribution of pn values at regional and
national scales suggests that, on average, FORs tend to be more
extreme than would be expected if they occurred randomly �in-
dependently� in space. This pattern persisted even when randomly
selected subsets of the pn data were plotted. Interestingly, the
nonuniform distribution of pn shows a much lower than expected
number of FORs in the tails of the distribution �very high or very

Fig. 2. Distribution of exceedance probabilities for observed floods
of record, pn: �a� for sites with continuous time series between 1948
and 1988 within each superregion; �b� for all sites within each
superregion
low exceedance probabilities�. Such a result could be an indica-

JOURNAL OF HYDROL
Fig. 3. Distribution of all pn values across the United States:
“continuous”�combination of all sites with continuous time series
between 1948 and 1988; “all”�combination of all HCDN sites
regardless of time series length
Fig. 4. Histogram of pn values: �a� for combined HCDN sites with
continuous 41-year time series; �b� for all HCDN sites in the United
States
OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2006 / 485



tion of an invalid distributional assumption associated with the
original annual peak streamflow series. To test this, we fit the
Wakeby �WAK�, Log-Pearson type III �LP3�, and three-parameter
lognormal �LN3� distributions to all HCDN annual flood series
using L-moments and computed pn values using the relationship

pn = 1 − �1 − pe�n �13�

where n�length of the annual flood series; and pe�exceedance
probability of the FOR at each site computed from the distribu-
tion fit to each annual flood series. Fig. 5 shows box plots of pn

computed from the four different distributions. Although the
shape of the distribution of pn values does appear to depend on
the distribution of the flood series from which they are generated,
all are nonuniform, with median values less than the expected
median value of 0.5. The histograms �not shown� for these distri-
butions confirmed the lack of high and low pn values in three of

Fig. 5. Comparison of pn values computed using generalized extreme
value �GEV�, Wakeby, Log-Pearson type III �LP3�, and
three-parameter lognormal �LN3� distributions

Fig. 6. Spatial distribution of pn values
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the four distributions �GEV, Wakeby, and LN3�. The LP3 results
in a more uniform looking distribution than the others, suggesting
that the observed nonuniformity in pn values may, in part, be due
to our assumption of a GEV annual flood distribution, but the fact
that, in all cases, the pn distributions are thicker in the middle and
thinner at the tails indicates that other factors may be contributing
to this behavior as well. To better understand the apparent non-
random behavior of FORs in the United States, we next turned
our attention to the spatial and temporal behavior of the FOR.

Spatial and Temporal Distribution of Floods
of Record across the United States

It does not seem unreasonable to hypothesize that a storm of
sufficient magnitude to generate the FOR at one site would be
large enough in areal extent to generate the FOR at nearby sites as
well. If true, then one would expect to see FORs at adjacent sites
within the same year and with similar exceedance probability
values, given the assumption of regional homogeneity. We sus-
pected that the nonuniformity of the pn distribution was due, at
least in part, to the fact that some of the FORs were related in
both space and time. Because there is only one FOR at each site,
we could not perform traditional multivariate analysis, such as
estimation of the spatial correlation coefficient or principal com-
ponents analysis, which would require having more than one FOR
at each site. Instead, to gain a qualitative understanding of spatial
and temporal relationships between the FORs, we plotted the sta-
tion locations and estimated pn values and the year in which each
FOR occurred on separate maps of the United States. Figs. 6 and
7 show values of pn and the year in which the FOR occurred,
respectively, generated from the 623 sites with continuous annual
maximum flood series between 1948 and 1988. In Fig. 6, pn val-
ues between 0.35 and 0.65 are plotted with open circles; more
extreme pn values ��0.35� are plotted in gray and black triangles
and less extreme ��0.65� are plotted in squares.

tes with continuous 41-year time series
for si
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If FORs were randomly generated and spatially independent,
then one would expect to see values interspersed and evenly dis-
tributed across the maps. This type of pattern is apparent in Fig. 6
in the central portions of the country, and more so for less ex-
treme events �squares�. However, the more extreme pn values
�gray triangles� exhibit both spatial and temporal clustering, es-
pecially in the northeast, along the Gulf coast, and in the Pacific
Northwest. For instance, there is a cluster of sites with more
extreme pn values that extends through central Pennsylvania and
into western New York State. All the FORs at these sites occurred
in 1972 and were probably a result of Hurricane Agnes. Hurricane
Agnes reached landfall in North Carolina and appears to have
generated FORs as it moved northward through the mid-Atlantic
states, as indicated by the line of gray diamonds �1971-1975� in
Fig. 7 extending from North Carolina into western New York. The
storm ceased its northerly progression over western New York
and reversed direction, traveling southward over central Pennsyl-
vania again before finally dissipating. This is likely the reason
why the sites in central Pennsylvania and western New York pos-
sess more extreme pn values than those in Maryland, Virginia, and
North Carolina �see Fig. 6�. This cluster of more extreme FORs is
located entirely in the NE �northeast� region. Also within NE is a
cluster of extreme pn values over Connecticut and southeastern
New York that are associated with FORs generated in 1955, prob-
ably by Hurricane Diane. These two clusters of sites with more
extreme pn values, along with another over eastern West Virginia
and western Virginia and Maryland at which the FORs occurred
in 1986 and 1987, appear to explain the much lower than ex-
pected average pn for this region.

Conclusions

In this study, we summarized the literature on the FOR and de-

Fig. 7. Spatial distribution for FOR year for si
rived a probability distribution with which to evaluate its exceed-
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ance probability, pn, when annual maximum floods follow a GEV
distribution. We showed that, when annual floods are GEV, the
FOR is also GEV with the same shape parameter. To describe the
distribution of the FOR �from the PDF of the GEV annual floods�,
one need only compute its mean and variance. Using the theory
introduced here, we computed the exceedance probability pn for
observed floods of record in the United States and found that they
are not uniformly distributed as would be expected if they oc-
curred independently across space. Instead, we found that in
many regions, and in the United States as a whole, floods of
record are on average more extreme than would be expected if
they occurred randomly. We found instances where more extreme
floods of record �pn�0.35� are spatially clustered and can be
temporally related to storm events that appear to have produced
floods of record over large areas. This may explain the nonuni-
form distribution of the values of pn and the fact that the regional
median and average pn values were less than the expected value
of 0.5.
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