Surface water/energy budget coupling over heterogeneous terrain

 $LE = f_{veg} LE_{veg} + (1 - f_{veg}) LE_{soil}$ $LE = f(R_n, T, g_c, g_a, g_{soil}, VPD)$ $g_a = f(canopy structure, wind, ...)$ $g_c = f(soil water, VPD, PAR, T, LAI)$ $g_{soil} = f(soil water, ...)$

 T_s lower with greater LE (evaporative cooling) as a function of soil water (other factors), greater canopy cover (higher NDVI)

T_s and NDVI estimated by a set of operational remote sensors

Satellite Imagery - Sensing EMR

• Digital data obtained by sensors on satellite platforms

Solar Electromagnetic Radiation

•The sun emits EMR across a **broad spectrum** of wavelengths:

AVHRR Bands

Sensing Vegetation and Temperature

- Can take ratios or other **combinations of multiple input bands** to produce indices, e.g.:
- Normalized Difference Vegetation Index (NDVI)
 - Designed to contrast heavily-vegetated areas with areas containing little vegetation, by taking advantage of vegetation's strong absorption of red and reflection of near infrared:
 - NDVI = (NIR-R) / (NIR + R)
- Surface temperature (T_s) from IR bands using Price (1984):
 - $-T_s = TIR1 + 3.33 (TIR1 TIR2)$
 - Wavelengths: $TIR1 = 10.8 \ \mu m$, $TIR2 = 11.9 \ \mu m$

Normalized Difference Vegetation Index

•Vegetation has a **strong contrast in reflectance** between red and near infrared EMR, and NDVI takes advantage of this to **sense the presence/density of vegetation** **Study Climate Divisions**

David Tenenbaum - EEOS 383 - UMB Spring 2008

MODIS LULC In Climate Divisions

AVHRR Satellite Imagery - NDVI

David Tenenbaum - EEOS 383 - UMB Spring 2008

AVHRR Satellite Imagery - T_s

Maryland Climate Division 6 1996 – Compositing Period 18 Aug. 30, 1996 – Sept. 13, 1996

> T_s: Split-Window Algorithm (Price 1984) T_s = TIR1 + 3.33 (TIR1 – TIR2) <u>TIR1 = 10.8 μ m, TIR2 = 11.9 μ m</u>

Interpretation of the VI-T_s Space

VI

Adapted from Sandholt et al. 2002

David Tenenbaum – EEOS 383 – UMB Spring 2008

Dry Line Slope – Sigma (σ)

- Nemani and Running (1989) suggested, and later Nemani, Pierce, Running, and Goward (1993) demonstrated, that the slope of the dry line (symbolized using σ) is a good overall indicator of the surface moisture condition of a region (where the T_s and VI pixels that are drawn from to form the 2-D T_s-VI distribution) on the occasion when the imagery was collected
 - Steeper, more negative slopes represent drier conditions (where T_s disparities are greater)
- So **how** do we form the 2-D T_s-VI distribution and find the slope of the dry line?

Finding the Dry Line (σ) Slope

Obtaining Per Pixel Dryness Info

- The slope of the dry line (symbolized using σ) is a good overall indicator of the surface moisture condition of a region (where the T_s and VI pixels that are drawn from to form the 2-D T_s-VI distribution)
 - But it is just that, a single number that is a regional descriptor of the surface moisture condition of the overall aggregate set of pixels
- What if we want to know something about the **surface moisture condition of individual pixels**? How can we do this?
 - One way is to take an approach that **describes each pixel's position** in the distribution

Temperature Vegetation Dryness Index

NDVI

Adapted from Sandholt et al. 2002

David Tenenbaum – EEOS 383 – UMB Spring 2008

Generating TVDI Values

David Tenenbaum - EEOS 383 - UMB Spring 2008

AVHRR Satellite Imagery - TVDI

Temperature Vegetation Dryness Index

- The procedure for creating TVDI initially requires all lacksquarethe steps required to obtain σ :
 - 1. Form the 2-D T_s VI distribution
 - 2. Calculate/find σ

followed by a few further steps:

- 3. Define the wet line along the bottom the triangle (which can usually be safely done in a fairly unsophisticated fashion)
- 4. Calculate TVDI as described (where is the point/pixel of interest positioned between the dry and wet lines at the given NDVI)
- 5. Take the resulting values and map them back to their respective pixels

2001 MODIS Yearday 241 Climate Division 3 Ts-NDVI Plot

David Tenenbaum – EEOS 383 – UMB Spring 2008

TVDI Composites – NC CD3 Nov. 2000 -Sept. 2001

David Tenenbaum – EEOS 383 – UMB Spring 2008

MODIS

- •AVHRR has been superceded by **MODIS (Moderate Resolution Imaging Spectrometer**) which is a project being run by NASA, in partnership with the USGS (US Geological Survey)
- •The MODIS sensors are the 'centerpiece' sensors on two new satellites that have been called Earth Observing Systems (EOS-AM and EOS-PM), codenamed **Terra and Aqua**

•Terra was designed to focus on land-based applications and has an equatorial overpass time of about 10:30 AM, while Aqua was designed for more sea-oriented applications and has an equatorial overpass time of about 2:30 PM, and the MODIS sensors on them are known as MODIS-AM and MODIS-PM

MODIS Characteristics

Orbit: 705 km,

Time to cross equator: 10:30 a.m. descending node (Terra), 2:30 pm descending node (Aqua)

sun-synchronous, near-polar, circular

Sensor Systems: Across Track Scanning ('Wiskbroom')

Radiometric resolution: 12 bits

Temporal resolution: 1-2 days

Spatial Resolution:

250 m (bands 1-2)

500 m (bands 3-7)

1000 m (bands 8-36)

Design Life: 6 years

MODIS Bands

Primary Use	Band	Bandwidth	Resolution (m)
Land/cloud boundaries	1 2	620–670 nm 841–876 nm	250 250
Land/cloud properties	3 4 5 6 7	459–479 nm 545–565 nm 1230–1250 nm 1628–1652 nm 2105–2155 nm	500 500 500 500 500 500
Ocean color/ phytoplankton/ biogeochemistry	8 9 10 11 12 13 14 15 16	405–420 nm 438–448 nm 483–493 nm 526–536 nm 546–556 nm 662–672 nm 673–683 nm 743–753 nm 862–877 nm	1000 1000 1000 1000 1000 1000 1000 100
Atmospheric water vapor	17 18 19	890–920 nm 931–941 nm 915–965 nm	1000 1000 1000
Surface/cloud temperature	20 21 ^a 22 23	3.660–3.840 μm 3.929–3.989 μm 3.929–3.989 μm 4.020–4.080 μm	$ 1000 \\ 1000 \\ 1000 \\ 1000 $
Atmospheric temperature	24 25	4.433–4.498 μm 4.482–4.549 μm	1000 1000
Cirrus clouds	26 ^b	1.360–1.390 μm	1000
Water vapor	27 28 29	6.538–6.895 μm 7.175–7.475 μm 8.400–8.700 μm	1000 1000 1000
Ozone	30	9.580–9.880 μm	1000
Surface/cloud temperature	31 32	10.780–11.280 μm 11.770–12.270 μm	1000 1000
Cloud top altitude	33 34 35 36	13.185–13.485 μm 13.485–13.758 μm 13.785–14.085 μm 14.085–14.385 μm	1000 1000 1000 1000

^aBand 21 and 22 are similar, but band 21 saturates at 500 K versus 328 K. ^bWavelength out of sequence due to change in sensor design.

MODIS Applications - Fire Damage

Pre-forest fire

July, 2000

September, 2000

Post-forest fire

Burnt area identified from space

Burned Area

MODIS Applications - SST

January

-10.0 0.8 11.6 22.4 33.2 July April

-10.0 0.8 11.6 22.4 33.2 October

David Tenenbaum - EEOS 383 - UMB Spring 2008

MODIS Applications - Algae

Spectral Properties of Water with Algae

Algae **absorbs** a significant amount of **CO2**, and its presence / absence / abundance is important to understanding the ocean. It is useful to track the spatial and temporal dynamics of algae blooms

MODIS Applications - Algae

Phytoplankton bloom in the Black Sea. MODIS band 1 (red), 4 (green) and 3 (blue)

MODIS Applications - Clouds

Cloud Spectral Properties

MODIS Applications - Clouds

Cloud types from MODIS: pink - cold high level snow and ice clouds; neon green - low level water clouds. These two cloud types reflect and emit radiant energy differently

MODIS Applications - Snow

Spectral Properties of Clouds and Snow

In the **visible** spectrum clouds and snow look very similar. Thus, it is difficult to separate them with human eyes. But they are very different in the mid-infrared

MODIS Applications - Snow

A **massive iceberg**, one of the largest ever observed, broke off the Ross Ice Shelf near Roosevelt Island in Antarctica in mid-March 2000. This iceberg is about 40 miles wide and 300 miles long. The breaking off of such a big iceberg may be related to global climate change