Definition

Values and Units

R _n	Net radiation	$J m^{-2} s^{-1} $ or $W m^{-2}$
α	Reflectivity of a surface (albedo)	
Is	Intercepted incident Shortwave radation	
ε _L	Emissivity compared to a perfect black body	0.9 to 0.98 for soils/veg
σ	Stefan-Boltzmann constant	$5.67 \times 10^8 \text{ W m}^{-1} \text{K}^{-4}$
Т	Temperature in Kelvin	K
Н	Sensible heat flux (heating the air)	$W m^{-2}$
λΕ	Latent heat flux (evaporation)	$W m^{-2}$
λ	Heat of vaporization of water	2454 kJ kg ⁻¹ at 20°C
Е	Evaporation rate	$kg m^{-2}s^{-1}$
G	Storage of heat by soil and stems (trunks)	
β	Bowen Ratio, ratio of sensible to latent heat losses or H/ λE	
D	Water pressure deficit	
ew	Saturated vapor pressure of water at the surface temp	
ea	Vapor pressure of the air	
$f(\mathbf{u})$	Function of air circulation associated with wind speed	
Eeq	Evaporation rate in equilibrium with specific surface	$m s^{-1}$
3	Change of latent heat relative to change of sensible heat	$=0.7185e^{0.0544T}$
D(Pa)	Air saturation deficit	
ρ	Density of Air	kg m ⁻³
g_b	boundary layer conductance for water vapor	$m s^{-1}$
ζ	= ρ (ϵ +1) G _v T _k (This is a combination term)	
G_v	Gas constant for water vapor	$0.462 \text{ m}^3 \text{ kPa kg}^{-1} \text{ K}^{-1}$
T_k	Air temperature in Kelvin	
J	Joules	m ⁻² kgs ⁻²
W	Watts	m ⁻² kgs ⁻³

Equations

 $\begin{array}{l} R_n = (1 - \alpha) \ I_s + \epsilon_L \ \sigma \ T^4 \ (surface) - \sigma \ T^4 \ (sky) \\ \text{Net Radiation} = \text{short wave radiation} + \text{long wave radiation} \end{array}$

 $\begin{array}{ll} R_n \text{-} G = H + \lambda E & 2.2 \\ \text{Net Radiation} - \text{Heat Storage} = \text{Sensible Heat Flux} + \text{Latent Heat Flux} \\ \text{Net Radiation} - \text{heat storage} = \text{Heating of the ATM without evaporation and the evaporation of water} \end{array}$

 $\lambda E = R_n / (1 + \beta)$ 2.3 Prediction for latent heat loss (assuming heat storage is minimal)

$\mathbf{E} = (\mathbf{e}_{\mathrm{w}} - \mathbf{e}_{\mathrm{a}}) \mathbf{f}$	(u)	2.4	
Evaporation rate = evaporation close to surface * air circulation			
$e_w > e_a$	Water evaporates from the surface into the air		
$e_w = e_a$	Local equilibrium so no evaporation net change in	water	
$e_w < e_a$	Water condenses from the air to the surface		

$E = E_{eq} + D g_b / \zeta$	2.5
Calculating evaporation without knowing surface temperature	

$$E_{eq} = (\epsilon / \rho \lambda (\epsilon + 1) R_n$$
 2.6

 $\zeta = \rho (\varepsilon + 1) G_v T_k$

So:

 $E = (\epsilon / \rho \lambda (\epsilon + 1) R_n) + D g_b / (\rho (\epsilon + 1) G_v T_k)$