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Surface water/energy budget coupling over 
heterogeneous terrain

LE = fveg LE veg + (1 – fveg) LE soil

LE = f(Rn, T, gc, ga, gsoil, VPD)

ga = f(canopy structure, wind, ...)

gc = f(soil water, VPD, PAR, T, LAI)

gsoil = f(soil water, ...)

Rn ~ H + LE

Ts lower with greater LE (evaporative cooling) as a function of 
soil water (other factors),  greater canopy cover (higher NDVI)

Ts and NDVI estimated by a set of operational remote sensors
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Satellite Imagery - Sensing EMR
• Digital data obtained by sensors on satellite platforms
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Atmospheric windows

Solar Electromagnetic Radiation
•The sun emits EMR across a broad spectrum of wavelengths:

But the atmosphere 
blocks much of the 
energy before it 
reaches the surface
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AVHRR Bands
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Sensing Vegetation and Temperature
• Can take ratios or other combinations of multiple 

input bands to produce indices, e.g.:

• Normalized Difference Vegetation Index (NDVI)

– Designed to contrast heavily-vegetated areas with 
areas containing little vegetation, by taking 
advantage of vegetation’s strong absorption of red 
and reflection of near infrared:

– NDVI = (NIR-R) / (NIR + R)

• Surface temperature (Ts) from IR bands using 
Price (1984):

– TS = TIR1 + 3.33 (TIR1 – TIR2)
• Wavelengths:  TIR1 = 10.8 µm, TIR2 = 11.9 µm
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•Vegetation has a strong contrast in reflectance between 
red and near infrared EMR, and NDVI takes advantage of 
this to sense the presence/density of vegetation

Normalized Difference Vegetation Index

NDVI = (NIR - R)
(NIR + R)

NDVI [-1,1]
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MODIS LULC In Climate Divisions

Maryland CD6

North Carolina CD3
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AVHRR Satellite Imagery - NDVI

NDVI = (NIR-R) / (NIR+R)

Maryland Climate Division 6
1996 – Compositing Period 18
Aug. 30, 1996 – Sept. 13, 1996
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AVHRR Satellite Imagery - Ts

Ts :  Split-Window Algorithm (Price 1984)
TS = TIR1 + 3.33 (TIR1 – TIR2)
TIR1 = 10.8 µm, TIR2 = 11.9 µm

Maryland Climate Division 6
1996 – Compositing Period 18
Aug. 30, 1996 – Sept. 13, 1996
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Interpretation of the VI-Ts Space

VI

Ts

c

c

dry line

wet line

full cover

partial cover

bare soil

Adapted from Sandholt et al. 2002
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• Nemani and Running (1989) suggested, and later 
Nemani, Pierce, Running, and Goward (1993)  
demonstrated, that the slope of the dry line (symbolized 
using σ) is a good overall indicator of the surface 
moisture condition of a region (where the Ts and VI 
pixels that are drawn from to form the 2-D Ts-VI 
distribution ) on the occasion when the imagery was 
collected
• Steeper, more negative slopes represent drier 

conditions (where Ts disparities are greater)
• So how do we form the 2-D Ts-VI distribution and find 

the slope of the dry line?

Dry Line Slope – Sigma (σ)
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Finding the Dry Line (σ) Slope

VI

Ts
• We begin with Ts and VI data, 

ideally collected using the same 
sensor at the same time (e.g. 
from AVHRR bands 1, 2, 4, & 5)

• We then translate the values for 
each pixel into a 2-D parameter 
space, the VI on the x-axis and 
the Ts on the y-axis
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2001 MODIS Yearday 241 Climate Division 3 Ts-NDVI Plot
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• With a real Ts-VI distribution, fitting a line to the upper 
envelope of the distribution is a little bit tricky!

• We can break it down into a two-part process:
• 1st, we must identify a subset of all pixels in the 

distribution that represent the upper envelope, that is 
those pixels with the highest Ts for a given VI
We can accomplish this through some sort of 
classification/filtering method

• 2nd, once we have identified the upper envelope
pixels, we must fit a line through them We can 
accomplish this through fitting a simple linear 
regression model

Finding the Dry Line (σ) Slope
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Simple vs. Multiple Regression
• Today, we are going to examine simple linear 

regression, where we estimate the values of a 
dependent variable (y) using the values of an 
independent variable (x)

• This concept can be extended to multiple linear 
regression, where more explanatory independent 
variables (x1, x2, x3 … xn) are used to develop 
estimates of the dependent variable’s values

• For purposes of clarity, we will first look at the 
simple case, so we can more easily grasp the 
mathematics involved
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• Simple linear regression models the relationship 
between an independent variable (x) and a dependent 
variable (y) using an equation that expresses y as a linear 
function of x, plus an error term:

y = a + bx + e

Simple Linear Regression

x (independent)

x is the independent variable

y (dependent)

y is the dependent variable

b

b is the slope of the fitted line

a

a is the intercept of the fitted line

error: ε

e is the error term
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• When we have a data set consisting of an independent 
and a dependent variable, and we plot these using a 
scatterplot, to construct our model between the 
relationship between the variables, we need to select a 
line that represents the relationship:

Fitting a Line to a Set of Points

x (independent)

y (dependent)

• We can choose a line that fits best 
using a least squares method

• The least squares line is the line 
that minimizes the vertical 
distances between the points and 
the line, i.e. it minimizes the error 
term ε when it is considered for 
all points in the data set 
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Sampling and Regression II
• We usually operate using sampled data, and 

while we are building a model of the form: 
y = a + bx + e 

from our sample, in doing so we are attempting to 
estimate a “true” regression line, describing the 
relationship between independent variable (x) and 
dependent variable (y) for the entire population:

y = α + βx + ε
• Multiple samples would yield several similar

regression lines, which should approximate the 
population regression line
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• The least squares method operates mathematically, 
minimizing the error term e for all points

• We can describe the line of best fit we will find using the 
equation ŷ = a + bx, and you’ll recall that from a 
previous slide that the formula for our linear model was 
expressed using y = a + bx + e

Least Squares Method

y

ŷ = a + bx
ŷ

• We use the value ŷ on the line 
to estimate the true value, y

(y - ŷ) • The difference between the two 
is (y - ŷ) = e

• This difference is positive for 
points above the line, and 
negative for points below it
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Estimates and Residuals
• Our simple linear regression models take the form: 

y = a + bx + e 
which can alternatively be expressed as:

ŷ = a + bx
where ŷ is the estimate of y produced by the regression

• We can rearrange these equations to show:
e = y – ŷ

• The errors in the estimation of y using the regression 
equation are known are residuals, and express for any 
given value in the data set to what extent the regression 
line is either underestimating or overestimating the 
true value of y
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• In a linear model, the error in estimating the true value 
of the dependent variable y is expressed by the 
difference between the true value and the estimated 
value ŷ, e = (y - ŷ) (i.e. the residuals)

• Sometimes this difference will be positive (when the line 
underestimates the value of y) and sometimes it will be 
negative (when the line overestimates the value of y), 
because there will be points above and below the line

• If we were to simply sum these error terms, the positive 
and negative values would cancel out

• Instead, we can square the differences and then sum 
them up to create a useful estimate of the overall error

Minimizing the Error Term
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• By squaring the differences between y and ŷ, and 
summing these values for all points in the data set, we 
calculate the error sum of squares (usually denoted by 
SSE):

Error Sum of Squares

SSE = Σ (y - ŷ)2
i = 1

n

• The least squares method of selecting a line of best fit 
functions by finding the parameters of a line (intercept a 
and slope b) that minimizes the error sum of squares, i.e. 
it is known as the least squares method because it finds 
the line that makes the SSE as small as it can possibly 
be, minimizing the vertical distances between the line 
and the points
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• The equations used to find the values for the slope (b) 
and intercept (a) of the line of best fit using the least 
squares method are:

Finding Regression Coefficients

Σ (xi - x) (yi - y)
i = 1

n

b =

Σ (xi - x)2
i = 1

n

a = y - bx

Where:
xi is the ith independent
variable value
yi is the ith dependent
variable value
x is the mean value of all 
the xi values
y is the mean value of all 
the yi values
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Interpreting Slope (b)

Positive relationship – As the 
values of x increase, the values 
of y increase too

Negative (a.k.a. inverse) 
relationship – As values of x 
increase, the values of y decrease

•The slope of the line (b), gives the change in y (dependent 
variable) due to a unit change in x (independent variable):

b > 0 b < 0
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Simple Linear Regression in Excel
•Excel can calculate regression parameters in two ways: 

•There are built-in functions that can be entered into a 
cell to specify the calculation of a regression slope or 
regression intercept:

•SLOPE(array1, array2) can be used to calculate the 
slope of the least squares regression line, specifying 
the y values in array1 and the x values in array2
•INTERCEPT(array1, array2) can be used to calculate 
the intercept of the least squares regression line, 
specifying the y values in array1 and the x values in 
array2

•There is also a Data Analysis Tool that can be used to 
calculate the regression parameters
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Regression Analysis Tool
•In the Data Analysis window, select the appropriate tool:

•After clicking OK, you’ll be presented with the tool window:
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Regression Analysis Tool
Of course, when specifying the input 
ranges, you must distinguish
between the dependent variable (y) 
and the independent variable(s) (x); 
this tool can also be used for multiple 
linear regression, so more than one x 
variable can be used

The tool will automatically test the 
significance of the parameters at the 
95% confidence level, but if you 
check the checkbox and specify 
another confidence level, it will test 
the significance of the regression 
parameters at that level of confidence 
as well

Checking boxes in the Residuals
portion of the tool will produce other 
output including calculating the 
residuals for each value, calculating 
standardized residuals, and plotting 
residuals versus independent 
variables, and line fit plots as well
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Regression Analysis Tool
•The basic output the tool produces includes:

The coefficient of 
determination (r2)

The standard error of 
the estimate (e.g. the 
standard deviation of 
the residuals), se

An ANOVA table, 
including the 
minimum α where F 
would be significant

The regression coefficients 
produced by the least squares 
optimization (in the simple 
case, like this one, the 
intercept and the slope)

The standard error associated 
with each parameter (e.g. for 
the regression slope parameter, 
this is sb, the standard 
deviation of the slope)

The t-statistic and the 
minimum α where 
each parameter would 
be significant
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Regression Analysis Tool
•Checking the Residuals 
checkbox will produce a table 
of the regression estimates (the 
ŷi values) and residuals:

•Residual Plots creates a scatter 
plot of the residuals versus x
(this is useful for checking 
assumptions about the residuals):

•Line Fit Plots creates a scatter 
plot of the actual and predicted 
values versus x (this is useful 
for getting a visual sense of the 
accuracy of the estimates):


