Surface water/energy budget coupling over

heterogeneous terrain

R ~H+LE

\ A

v

—

veg) LE
LE = f(Rm T? gc’ ga? gsoil’ VPD)

g = f(canopy structure, wind, ...)

g. = f(soil water, VPD, PAR, T, LAI)

soil

R LE =f,,LE ., + (1 -f

g = f(soil water, ...)

T, lower with greater LE (evaporative cooling) as a function of
soil water (other factors), greater canopy cover (higher NDVI)

T, and NDVI estimated by a set of operational remote sensors
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Satellite Imagery - Sensing EMR

* Digital data obtained by sensors on satellite platforms

g = / Reflected EMR

Emitted EMR

—"
e,
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Solar Electromagnetic Radiation

*The sun emits EMR across a broad spectrum of wavelengths:

Transmission

But the atmosphere
Sun’s energy (at 6000°K)
Earth’s energy (at 300°K) blOCkS muCh Of the
e~ energy before it
e v Sk reaches the surface

(b) Atmospheric transmittance

—] — Human eye

Photography Thermal scanners AtmOSpheric WindOWS

e | e |
Multispectral scanners Radar and passive microwave
femosi i 1] ; L LI ;' L J | T L L] T LI " T T T T Trr 'Il Ll 1 T l l 'I
0.3 um 1 um 10 um 100 um 1 mm 1m

Wavelength —a=
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Transmission

0%

AVHRR Bands

Sun’s energy (at 6000°K)

Energy —e

Earth’s energy (at 300°K)

L l LI B A lllll|' T T T IIIII'I' T
03um 1Tum 10 um 100 um 1 mm 1m
Wavelength —a
(a) Energy sources

100%

T

] T : ’ ; I I I
0.3um 1um 10 um 100 um 1 mm Tm

Wavelength —e

(b) Atmospheric transmittance

— | Human eye

Photography Thermal scanners

e o
Multispectral scanners Radar and passive microwave
| ——] ]
il L : LI ; L | | T L} LEND LB I‘ T T T rTTr I' TNi ‘I T 'I I 'l
0.3um 1 um 10 um 100 um 1 mm 1m

Wavelength —a=
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Sensing Vegetation and Temperature

Can take ratios or other combinations of multiple
input bands to produce indices, e.g.:

Normalized Difference Vegetation Index (NDVI)

— Designed to contrast heavily-vegetated areas with
areas containing little vegetation, by taking
advantage of vegetation’s strong absorption of red
and reflection of near infrared:

— NDVI = (NIR-R) / (NIR + R)

Surface temperature (T,) from IR bands using
Price (1984):

— Ty =TIR1 + 3.33 (TIR1 — TIR2)

° WavelengthS: TIR1 =10.8 um, TIR2=11.9 Um David Tenenbaum — EEOS 383 — UMB Spring 2008



Normalized Difference Vegetation Index

—.—-—-— Dry bare soil (Gray-brown)
el Vegetation (Green)
—————— Water (Clear) i
- e ./""""‘-.\__,/"\.\h‘
: -~ NDVI=(NIR - R)
o A0
3]
(NIR + R)
g -
©
€ 20 NDVI [-1,1]
0 Eaiihien T T T T T I l

| | |
(o A R s X RER 1+ AU (v SR B S - et R - ¢ R S
Wavelength (um)

*Vegetation has a strong contrast in reflectance between
red and near infrared EMR, and NDVI takes advantage of
this to sense the presence/density of vegetation
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Study Climate Divisions

Atlantic
Ocean

South Carolina 100 0 100 200 300 Kilometers
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MODIS LULC In Climate Divisions

10

Maryland CD6

10 20 30 40 Kilometers

MODIS Land Cover

[ ] Deciduous Broadleaf Forests

I Mixed Forests

[ ] Cropland

B Urban and Built-Up

[ ] CroplandiNatural Vegetation Mosaic
[ Other

B Water

[ ] Outside NC CD 3

North Carolina CD3
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AVHRR Satellite Imagery - NDVI

Maryland Climate Division 6
1996 — Compositing Period 18
Aug. 30, 1996 — Sept. 13, 1996

NDVI = (NIR-R) / (NIR+R)




AVHRR Satellite Imagery - T

Maryland Climate Division 6
1996 — Compositing Period 18
Aug. 30, 1996 — Sept. 13, 1996

T, : Split-Window Algorithm (Price 1984)
T =TIRI + 3.33 (TIR1 — TIR2)
TIR1 =10.8 um, TIR2 =11.9 um
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Interpretation of the VI-T§ Space

Ts

(@)
b&re sail .
dry line
(@) (@)
(@) (@)
e
© parti&l cover
(@)
© (@) (@) e
e fullgover
© (@) (@)
wet line
VI

Adapted from Sandholt et al. 2002
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Dry Line Slope — Sigma (o)

 Nemani and Running (1989) suggested, and later
Nemani, Pierce, Running, and Goward (1993)
demonstrated, that the slope of the dry line (symbolized
using o) 1s a good overall indicator of the surface
moisture condition of a region (where the T, and VI
pixels that are drawn from to form the 2-D T.-VI
distribution ) on the occasion when the imagery was
collected

* Steeper, more negative slopes represent drier
conditions (where T, disparities are greater)

* So how do we form the 2-D T-VI distribution and find
the slope of the dry line?

enenbaum — EEOS 383 — UMB Spring 2008



Finding the Dry Line (c) Slope

45

VI-Ts Plot for MD CD6 - May 24, 2002

NDVI

MD CD6 NDVI - May 24, 2002
[ ]-0.212 - -0.084

] -0.084 - 0.044

] 0.044-0.172

] 0172 - 0.301

[ 0.301 - 0.420

[ 0429 - 0.557
[ 0.557 - 0.685
I 0.685 - 0.813
I 0813 - 0.941
I 0.941 - 1.069
[__] Outside MD CD &

MD CD6 Ts - May 24, 2002
[ 1761 - 19.946
1 19.946 - 22.282
[ 22.282 - 24.618
[ 24618 - 26.954
[ 26.954 - 29.29
29.29 - 31.626
[ 31.626 - 33.962
[ 33.962 - 36.298
36.298 - 38.634
[ 38634 - 40.97
[ | Outside MD CD 6

We begin with T, and VI data,
ideally collected using the same

sensor at the same time (e.g.
from AVHRR bands 1, 2, 4, & 5)

We then translate the values for
each pixel into a 2-D parameter
space, the VI on the x-axis and
the T, on the y-axis
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Finding the Dry Line (c) Slope

With a real T,-VI distribution, fitting a line to the upper
envelope of the distribution is a little bit tricky!

We can break it down 1nto a two-part process:

o 15, we must identify a subset of all pixels 1n the
distribution that represent the upper envelope, that 1s
those pixels with the highest T, for a given VI =
We can accomplish this through some sort of
classification/filtering method

« 2nd once we have identified the upper envelope
pixels, we must fit a line through them = We can
accomplish this through fitting a simple linear
regression model
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Simple vs. Multiple Regression

* Today, we are going to examine simple linear
regression, where we estimate the values of a
dependent variable (y) using the values of an
independent variable (x)

* This concept can be extended to multiple linear
regression, where more explanatory independent
variables (X, X,, X; ... X, ) are used to develop
estimates of the dependent variable’s values

* For purposes of clarity, we will first look at the
simple case, so we can more easily grasp the
mathematics involved



Simple Linear Regression

Simple linear regression models the relationship
between an independent variable (x) and a dependent
variable (y) using an equation that expresses y as a linear
function of x, plus an error term:

y=a+tbx+e

eITor: € , , .
x 1s the independent variable
A . .
— I,/‘ y 1s the dependent variable
o *e b is the slope of the fitted line
0 o .Y i . . .
@ el% ih a 1s the intercept of the fitted line
&l ¢ 1s the error term
-9 °
~" a

X (independent)
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Fitting a Line to a Set of Points

When we have a data set consisting of an independent
and a dependent variable, and we plot these using a
scatterplot, to construct our model between the
relationship between the variables, we need to select a
line that represents the relationship:

* We can choose a line that fits best
using a least squares method

* The least squares line 1s the line
that minimizes the vertical
distances between the points and
the line, 1.e. 1t minimizes the error
term € when 1t 1s considered for

> all points in the data set

(quapuadap) A

X (independent)
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Sampling and Regression 11

* We usually operate using sampled data, and
while we are building a model of the form:

y=a+tbx+e

from our sample, 1n doing so we are attempting to
estimate a “true” regression line, describing the
relationship between independent variable (x) and
dependent variable (y) for the entire population:

y=a+pBx+e

* Multiple samples would yield several similar
regression lines, which should approximate the
population regression line
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Least Squares Method

The least squares method operates mathematically,
minimizing the error term e for all points

We can describe the line of best fit we will find using the
equation ¥ = a + bx, and you’ll recall that from a
previous slide that the formula for our linear model was
expressed usingy =a+bx +¢

A *  We use the value y on the line

to estimate the true value, y

e The difference between the two
1s(y-y)=e

e This difference 1s positive for

points above the line, and
»  negative for points below it
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Estimates and Residuals

* QOur simple linear regression models take the form:
y=a+tbx+e
which can alternatively be expressed as:
y=a+bx
where ¥ 1s the estimate of y produced by the regression

 We can rearrange these equations to show:

A

C=y-—Yy
* The errors in the estimation of y using the regression
equation are known are residuals, and express for any
given value in the data set to what extent the regression
line 1s either underestimating or overestimating the
true value of y
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Minimizing the Error Term

In a linear model, the error in estimating the true value
of the dependent variable y 1s expressed by the
difference between the true value and the estimated
value ¥, e = (y - ¥) (1.e. the residuals)

Sometimes this difference will be positive (when the line
underestimates the value of y) and sometimes 1t will be
negative (when the line overestimates the value of y),
because there will be points above and below the line

If we were to simply sum these error terms, the positive
and negative values would cancel out

Instead, we can square the differences and then sum
them up to create a useful estimate of the overall error
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Error Sum of Squares

By squaring the differences between y and ¥, and
summing these values for all points in the data set, we

calculate the error sum of squares (usually denoted by
SSE):

SSE = Z (y - §)
i=1

The least squares method of selecting a line of best fit
functions by finding the parameters of a line (intercept a
and slope b) that minimizes the error sum of squares, i.e.
it 1s known as the least squares method because it finds
the line that makes the SSE as small as it can possibly
be, minimizing the vertical distances between the line
and the points i T EEOS 53O Sy 20



Finding Regression Coefficients

The equations used to find the values for the slope (b)
and intercept (a) of the line of best fit using the least
squares method are:

Where:
X, is the i independent

; (X;-X) (¥;- ¥) variable value

b= - y. is the i!" dependent
Z v variable value
- (X; - X) X is the mean value of all
the x; values
a=y-bx y is the mean value of all

the y. values



Interpreting Slope (b)
*The slope of the line (b), gives the change in y (dependent
variable) due to a unit change in x (independent variable):

(k) ¥
n |

b>0 e \ b<0

g i
X
11 n a
™ - /
& ]

() n ¥ I

11

Positive relationship — As the Negative (a.k.a. inverse)

values of x increase, the values relationship — As values of x
of y increase too increase, the values of y decrease
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Simple Linear Regression in Excel

*Excel can calculate regression parameters in two ways:

*There are built-in functions that can be entered into a
cell to specify the calculation of a regression slope or
regression intercept:

*SLOPE(arrayl, array2) can be used to calculate the
slope of the least squares regression line, specifying
the y values 1n arrayl and the x values in array?2

INTERCEPT(arrayl, array2) can be used to calculate
the intercept of the least squares regression line,
specifying the y values 1n arrayl and the x values in
array?2
*There 1s also a Data Analysis Tool that can be used to
calculate the regression parameters
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Regression Analysis Tool

In the Data Analysis window, select the appropriate tool:

D ata Analysis 21 x|
analysis Tools
Hiskogram ;I

Moving Average Cancel |
Random Mumber Generation

Rank and Percentile

Help |

Sampling

b-Test: Paired Twao Sample for Means

E-Test: Two-Sample Assuming Equal Yariances

k-Test: Two-3ample Assuming Unequal Yariances

z-Tesk: Two Sample For Means =

 After clicking OK, you’ll be presented with the tool window:

A ¢ [ D [ F [ 6 [ W T 1
1
sor 2ix]
TVDI (x) | Moisture rInput -OK
2 v Input ¥ Range: from ol e e %
= | Cancel |
i 0.274 0.414 Inpuk 2 Range: tBf2: B2 =
4 | 0.542 0.359
% ggég gigg v Labels ™ Constart is Zeto ﬂl
I 0.374 0,350 [ Confidence Level |95 %
&3 0.433 0.357 -
—— —Oukput options
il 0.623 0255 =
0| 0505 0189 " output Range: $B$14
11 | 0.768 0171 " Mew Worksheet Ply: I
i 0725 0.119 " New Workbook
|13 ] esiduals
| 14 | r ™ Residual Plots
15 | [~ Standardized Residuals ™ Line Fit Ploks
16
17 | ormal Probability
18 | ™ Mormal Probabiliey: Plots
19|
20



Regression Analysis Tool

Regreszzion 2 x|
~Impuk
0].4
Input ¥ Range: |$C$2:$C$12 f".] .
44— I
Input  Range: |$B$2:$B$12 f".]
Hel
W Labels ™ Constart is Zero _—DI
[~ Confidence Level !IEIS %o
\
oukpuk opkions N
%' output Range: |$B$14\ i
" Mew Warksheet Ply: | \
™ Mew Workbook
~Residuals
I Residusls: I~ Residual Plots
[ standardized Residuals [ Line Fit Plats
—Mormal bilik:sy
[ pfrmal Probability Plaks

Checking boxes in the Residuals
portion of the tool will produce other
output including calculating the
residuals for each value, calculating
standardized residuals, and plotting
residuals versus independent
variables, and line fit plots as well

Of course, when specifying the input
ranges, you must distinguish
between the dependent variable (y)
and the independent variable(s) (x);
this tool can also be used for multiple
linear regression, so more than one x
variable can be used

The tool will automatically test the
significance of the parameters at the
95% confidence level, but if you
check the checkbox and specify
another confidence level, it will test
the significance of the regression
parameters at that level of confidence
as well
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Regression Analysis Tool

*The basic output the tool produces includes:

SUMMARY OUTPLIT

Regression Statistics

The coefficient of
bfultiple R
R Sguare

determination (r?) \
Adjusted R Sguare

The standard error of Standard Error
/ Dbservations

0.57 163053
0.7587 3575
0728970725
0.055996534

10

the estimate (e.g. the

o ANOVA
standard deviation of df S5 MS F__ |Significance F
. Regression 1] 0.090973945 0.09097394 25 2972303|_0.001014626

the residuals), s, Residual 5 0028769614 0.0035962
Total 9 0.119743559

An ANOVA table, _

. . Coefficients Standard Errar b oiat Pwalue Lower 30% | Upper 95%

including the Intercept 060320076 0.051926011 5.74066676 1 0324E-05 045039503 0.74500249
TvDI (x 05923931 0.117780521 -5.0296352 0.00101463 -0.863995597 -0.3207905

minimum o where F
would be significant

The regression coefficients
produced by the least squares
optimization (in the simple
case, like this one, the
intercept and the slope)

7

The standard error associated The t-statistic and the
with each parameter (e.g. for
the regression slope parameter, each parameter would
this 1s S,, the standard
deviation of the slope)

N

minimum o, where

be significant
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Regression Analysis Tool

RESIDUAL QUTFUT

*Checking the Residuals
checkbox will produce a table
of the regression estimates (the
y; values) and residuals:

*Residual Plots creates a scatter
plot of the residuals versus x
(this 1s useful for checking

assumptions about the residuals):

Line Fit Plots creates a scatter
plot of the actual and predicted
values versus x (this 1s useful
for getting a visual sense of the
accuracy of the estimates):

Obsenation

Fredicted Soif Moisture (i | Residuals

= 00 M L) R —

0.441
0.252
0.355
0.434
0.352
0.313
0.234
0.304
0.148
0.173

-0.027
0.077
0.041
0.024
-0.031
0.043
0.020
0115
0.023
-0.055

Residuals

0100

TVDI (x) Residual Plot

0050 +
0.000

*

*

+ *
IQ

*
I

0050800 02000 0%00 0600 +0800 1.000
-0.100 +
-0.150

*

TVDI (x)

Soil Moisture (y)

0500

TVDI (x) Line Fit Plot

0400 -
0300 +
0200 +
0100 +
0.000

¥

L H =:

+*

[
|

+ Soil Moisture (y)

= Predicted Soil
Misture ()

0.000

0.500
TVDI (x)

1.000




