Geographic Surfaces

- Up to this point, we have talked about spatial data models that operate in **two dimensions**
- How about the **3rd** dimension?
 - Surface the continuous variation in space of a third dimension (elevation in a physical context, but it could be other 'virtual' 3rd dimensions for other purposes, e.g. modeling population density using a surface)
- We can use either the vector or raster data model to represent a surface, but **raster** models are **most commonly** used for because they are good at representing **continuous variation**

Representing terrain using data

- We can **represent terrain** using various sorts of digital elevation models (DEMs). We will briefly look at each of these representations:
 - Raster grid a cell-based model with elevations associated with each cell
 - Triangulated Irregular Network (TIN) a model made up of triangular facets
 - Contours a vector/arc based model with elevations associated with each contour
- From DEMs, we can derive **how water moves through a landscape** (via drainage networks) by using a variety of **spatial analysis** operations

Spot Elevations – The Starting Point

- Where do DEMs come from?
 - We create them from another representation of terrain
- Fundamentally, terrain data is collected in the field as a **set of spot elevations**
- Traditionally, **survey or photogrammetric** methods are used to collect these
- Now we have an alternative source at a higher density **LIDAR** (LIght Detection And Ranging)
- Why does the **density** of spot elevations matter?

Spot Elevation Density

•Figure B shows spot elevations collected by photogrammetry

- •Figure C show spot elevations collected using LIDAR
- •Higher density of spot elevations supports a DEM with more detail → Produces a more detailed representation of terrain

Interpolating a DEM

- Getting from a set of spot elevations to a DEM requires the use of **interpolation**:
- Interpolation creates a continuous field representation (like a raster grid, or TIN, or contours) from discrete objects (like spot elevation samples)
 - This is necessary: There isn't really a way to capture a continuous field other than by sampling it discretely at some chosen resolution ...
 - Our models of reality will always be less detailed than reality itself, but we hope to capture enough variation to support whatever purposes we have in mind

Inverse Distance Weighting (IDW)

 $w_i = 1/d_i^2$ Weights decline with distance

Issues with IDW

•This set of six data points clearly suggests a **hill profile** (dashed line). But in areas where there is little or no data the interpolator will move towards the **overall mean** (solid line)

•There are **other interpolation methods** that can do better in this situation ...

The Interpolation Problem

http://skagit.meas.ncsu.edu/~helena/gmslab/viz/interp1d.html

•If we look at interpolation in a **2-dimensional** sense (as shown to the left), what we are trying to do is:

•Find a function that passes through (or close to) a set of points

•There is **no unique solution** to this problem, so we want to pick a function that produces a result that has the **properties we want** in our surface

David Tenenbaum - EEOS 383 - UMass Boston

Representing terrain using data

- We can **represent terrain** using various sorts of digital elevation models (DEMs). We will briefly look at each of these representations:
 - Raster grid a cell-based model with elevations associated with each cell
 - Triangulated Irregular Network (TIN) a model made up of triangular facets
 - Contours a vector/arc based model with elevations associated with each contour
- From DEMs, we can derive **how water moves through a landscape** (via drainage networks) by using a variety of **spatial analysis** operations

Digital Elevation Models Raster Grid

Digital Elevation Models

Triangulated Irregular Network (TIN)

Digital Elevation Models

Triangulated Irregular Network (TIN)

Triangulated Irregular Networks

- Vector models can also be used to represent a surface
- One type of these models is called **triangulated irregular networks** (TINs)

Point elevations are joined together with straight lines to form a mosaic of irregular triangles

Triangulated Irregular Networks

- Triangle **vertices** represent certain kinds of terrain features **peaks & depressions**
- The **edges** of the triangles represent other terrain features **ridges & valleys**
- Elevation at any **vertex** is known
- Elevation can be **calculated** at **other points** on the surface using using geometry
- **Tightly-packed** triangles indicate **rapid terrain change** (variable density of representation)
- Large triangles indicate little change (flat areas)

Triangulated Irregular Networks

- Slope and aspect can also be **derived** from a TIN
- **Slope** can be **calculated** using simple geometry
- The direction of a triangle's face can be used to obtain aspect

Digital Elevation Models

- Contours represent terrain using **isolines or isopleths**, which are lines of constant value
- Terrain features are represented by the shape of the isolines (their path and how close they are together)
- Elevation on any **contour line** is known
- Elevation can be **calculated/interpolated** at **other points** on the surface by measuring the distance to nearby isolines
- **Tightly-packed** isolines indicate **rapid terrain change** (variable density of representation)
- Large spaces between contour lines indicate little change (flat areas)

- Slope can also be **derived** from contours
- Slope can be calculated by taking rise / run, where rise is the difference in elevation between two contour lines (Z₁ Z₂) and run is the distance between them (X), ideally measured orthogonal to both contour lines

- Through visual interpretation, we can **find critical points** in the landscape (points where the first derivative, slope, is zero):
 - Peaks at local maxima
 - Pits at local minima
 - **Passes** at saddle points
- Further, we can **connect critical points** to find some useful sorts of lines:
 - A slope line that connects a pass to a peak is a **ridge line**
 - A slope line that connects a pass to a pit is a **course line**

Governing Rules of Water Movement

- Like all physical processes, the flow of water always occurs across some form of **energy gradient** from high to low...
 - e.g., a topographic (slope) gradient from high to low elevation
 - Or a concentration gradient, pressure gradient, etc.
- All other things being equal, in a fluvial landscape that **has some relief**, water movement near the surface is going to follow the **topographic gradient downhill**
- Thus, by **modeling terrain** using a continuous surface, we can learn some useful things about the **movement of water** through a landscape

Watershed (a.k.a. Drainage Basin, Catchment)

• A geomorphically distinct **landscape unit** defined by topographic boundaries, or drainage 'divides' that acts as a spatially discrete hydrological system

Watershed Delineation using Contours

Watershed Delineation using Contours

- Watershed boundaries can be determined by finding ridge lines (locate the appropriate critical points, and join them, perpendicular to the contour lines)
- **Stream channels** (which are specific course lines) also flow perpendicularly to the contour lines, from passes to pits
- The **boundary lines** are drawn through the center of saddles (pass critical points) and closed contour lines (peak critical points)

