Water in Environmental Planning

Calculation of Flood Hazard

Dunne and Leopold 1978

Presented by

Chris Maio EEOS 383 – Graduate May 4, 2010

Flood Hazards

- Quantification of storm runoff is crucial for a variety planning and engineering projects
- Numerous investigations have sought to develop methods to calculate storm runoff
- Flood hazards have increased due to an increase in extreme weather events associated with climate change
- Understanding watershed response to storm events crucial for the development of effective management strategies

Tennessee flooding worst in decades due heavy rains (CNN, 5/4/2010).

Storm Runoff

- Runoff occurs in natural catchments when soil becomes saturated due to previous rainfall or as a result of impervious surfaces in urban areas
- The amount of water in the soil prior to the rain event, also known as "antecedent soil moisture" plays a significant roll in determining runoff volume
- Runoff volumes have dramatically increased due to urbanization

Antecedent Soil Moisture

- Relative value that describes preceding soil moisture conditions with higher values corresponding to soil saturation
- These conditions are continuously changing due to environmental conditions (evapotranspiration) and weather (rain – no rain)

Figure 10-6 Relation between volume of rainfall and storm runoff for a range of antecedent moisture conditions, represented by baseflow. The family of lines represent antecedent baseflow in units of cubic feet per second per square mile (csm).

Calculation of Storm Runoff

- Simplest method is direct correlation with volume of rainfall
- Scatter of data points due to differences in intensity and duration of storm events and antecedent moisture conditions in basin
- Differentiating baseflow from storm flow crucial for calculation
- 1978 Dunne and Leopold improve methods by introducing Antecedent Precipitation Index (API)

Figure 10-5 Volume of storm runoff as a function of rainfall for summer storms on a 0.23-square-mile basin at Danville, Vermont. (Data from the Agricultural Research Service, U.S. Department of Agriculture.)

Antecedent Precipitation Index (API)

- Higher performance in runoff calculations obtained by inclusion of Antecedent Moisture Index (API) for particular catchment area
- The index is a weighted summation or running tally of daily precipitation amounts and there impact on soil moisture content calculated for each pixel
- API assumes natural drainage with evapotranspiration continuously reducing soil moisture at a logarithmically decreasing rate over time

Calculating the Antecedent Precipitation Index (API)

$\mathbf{I}_{t} = \mathbf{I}_{0}\mathbf{k}^{t}$

- **I**_t = Antecedent Precipitation Index on day t
- **I**₀ = Antecedent Precipitation Index at beginning of calculation period
- k = Decay constant between 0.85 0.95 indicating rate of reduction of soil wetness
- t = time in days since last rainfall

- Generating API for any given day is obtained through keeping running calculation in which the previous day's value is multiplied by k
- The impact of a rain event on soil moisture exponentially decreases after the event:
 - **Day 1** = I_0
 - **Day 2** = $I_0 k^1$
 - Day $3 = I_0 k^2$
 - **Day 3** = $I_0 k^3$, and so on
- Once rain occurs again amount of rain is added to the index and t is set equal to zero again

Example Calculation $I_t = I_0 k^t$

Chart used for calculating API with 4 rain events occurring over a 15 day Period. Arrows indicate impact of rain On API. Graphed I_t values showing exponential decrease in soil moisture over time. Values can be correlated with ratio of storm runoff volume to rainfall or with other hydrologic variables.

Conclusions

- The calculation of storm runoff volume is crucial to effective flood hazard management
- The volume of storm runoff is correlated to the antecedent moisture content within the soil prior to the rainfall event
- Including an Antecedent Precipitation Index (API) in runoff models dramatically improve performance
- The API formula, I_t = I₀k^t is daily running tally of soil moisture content which exponentially decays after the initial rain event

