Surface water/energy budget coupling over

heterogeneous terrain

R ~H+LE

\ A

v

—

veg) LE
LE = f(Rm T? gc’ ga? gsoil’ VPD)

g = f(canopy structure, wind, ...)

g. = f(soil water, VPD, PAR, T, LAI)

soil

R LE =f,,LE ., + (1 -f

g = f(soil water, ...)

T, lower with greater LE (evaporative cooling) as a function of
soil water (other factors), greater canopy cover (higher NDVI)

T, and NDVI estimated by a set of operational remote sensors
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Interpretation of the VI-T§ Space

Ts

(@)
b&re sail .
dry line
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e fullgover
© (@) (@)
wet line
VI

Adapted from Sandholt et al. 2002
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Dry Line Slope — Sigma (o)

 Nemani and Running (1989) suggested, and later
Nemani, Pierce, Running, and Goward (1993)
demonstrated, that the slope of the dry line (symbolized
using o) 1s a good overall indicator of the surface
moisture condition of a region (where the T, and VI
pixels that are drawn from to form the 2-D T.-VI
distribution ) on the occasion when the imagery was
collected

* Steeper, more negative slopes represent drier
conditions (where T, disparities are greater)

* So how do we form the 2-D T-VI distribution and find
the slope of the dry line?
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Finding the Dry Line (c) Slope

45

VI-Ts Plot for MD CD6 - May 24, 2002

NDVI

MD CD6 NDVI - May 24, 2002
[ ]-0.212 - -0.084

] -0.084 - 0.044

] 0.044-0.172

] 0172 - 0.301

[ 0.301 - 0.420

[ 0429 - 0.557
[ 0.557 - 0.685
I 0.685 - 0.813
I 0813 - 0.941
I 0.941 - 1.069
[__] Outside MD CD &

MD CD6 Ts - May 24, 2002
[ 1761 - 19.946
1 19.946 - 22.282
[ 22.282 - 24.618
[ 24618 - 26.954
[ 26.954 - 29.29
29.29 - 31.626
[ 31.626 - 33.962
[ 33.962 - 36.298
36.298 - 38.634
[ 38634 - 40.97
[ | Outside MD CD 6

We begin with T, and VI data,
ideally collected using the same

sensor at the same time (e.g.
from AVHRR bands 1, 2, 4, & 5)

We then translate the values for
each pixel into a 2-D parameter
space, the VI on the x-axis and
the T, on the y-axis
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Obtaining Per Pixel Dryness Info

* The slope of the dry line (symbolized using ) 1s a good
overall indicator of the surface moisture condition of a

region (where the T, and VI pixels that are drawn from
to form the 2-D T,-VI distribution )

* But it is just that, a single number that 1s a regional
descriptor of the surface moisture condition of the
overall aggregate set of pixels

* What if we want to know something about the surface

moisture condition of individual pixels? How can we
do this?

* One way i1s to take an approach that describes each
pixel’s position 1n the distribution
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Temperature Vegetation Dryness Index

Sigma=>Db

Ts = a + b(NDVI) TVDI = A/B

TVDI=0 wet line

NDVI

Adapted from Sandholt et al. 2002
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Generating TVDI Values

Ts

45

35

VI-Ts Plot for MD CD6 - May 24, 2002
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MD CD6 NDV1 - May 24, 2002
[ ]-0.212--0.084
-0.084 - 0.044
] 0.044-0.172
] 0172 - 0.301
[ 0.301 - 0.429
0.420 - 0.557
0.557 - 0.685
0.685 - 0.813
0.813 - 0.941
0.941 - 1.069
[__] Outside MD CD &

0.0 0.2 0.4 0.6 0.‘9 10
NDVI
VI-T,
TS

MD CD6 Ts - May 24, 2002
[ 1761 - 19.946
1 19.946 - 22.282
[ 22.282 - 24.618
[ 24618 - 26.954
[ 26.954 - 29.29
29.29 - 31.626
[ 31.626 - 33.962
[ 33.962 - 36.298
36.298 - 38.634
[ 38634 - 40.97
[ | Outside MD CD 6

MD CD6 TVDI - May 24, 2002
I TVDI < 0
I 0.01 - 0.1
I 0.11 - 0.2
C0.21-0.3
[ 10.31-04
C_041-0.5
[ ]0.51-0.6
I 0-61-0.7
I 0.71 - 0.8
I 0-81 - 0.9

[ ]0.01-1
I TV > 1

[ | Outside MD ¢D 6
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Temperature Vegetation Dryness Index

* The procedure for creating TVDI 1nitially requires all
the steps required to obtain ¢ :
1. Form the 2-D T, — VI distribution

2. Calculate/find o

followed by a few further steps:

3. Define the wet line along the bottom the triangle (which
can usually be safely done 1n a fairly unsophisticated
fashion)

4. Calculate TVDI as described (where 1s the point/pixel of
interest positioned between the dry and wet lines at the
given NDVI)

5. Take the resulting values and map them back to their
respective pixels
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Modeling TVDI

MD CD6 TVDI - May 24, 2002

I TVDI <0
[ 0.01 - 0.1
[ 0.11 - 0.2
[ ]0.21-03

0.31-04
% 041 -0.5 MODIS Land Cover
[ 0.51-0.6 ] Deciduous Broadleaf Forests
[ 061 -0.7 Mixed Forests
[ 0.71-0.8 Cropland

o y Urban and Built-Up
- 0.81-0.9 Cropland/Natural Vegetation Mosaic
[ '?'3;; 11 Other
=

Il Water

[ | Outside MD ¢D 6 [_] Outside MD CD 6

TVDI | LULC

/ & PI I { I I/G Maryland Climate Division 6 - May 24, 2002

» TVDI vs. Modeled TVDI
I =I,kt
t -0 . . |® o555
. S,
0.8 R2=0.71 > HIRE L
[ ™ """ [& o OQ.é"‘ Y ¢ e o
.
*»
0.6 -~ * =

MD CD6 API - May 24, 2002 (mm) R
o = A
B 001 -5 [a] O
W 5.01 -10 = 04 r'S o

1001-15 ol * .:b Q““

1501 -20 . o0

2001 -26 02 Fet o

2501-30 bl d +

3001-35 e 0‘ * L
I 3501 -50
I 5001 -75 0053 wee *
— e .02 olo oj2 o4 ols ols 1lo
B 125.01 -150 o

15001 -175 0z
I 175.01 -500
[ Outside MD CD& Modeled TVDI

David Tenenbaum — EEOS 383 — UMB Spring 2008



MODIS LULC In Climate Divisions

10

Maryland CD6

10 20 30 40 Kilometers

MODIS Land Cover

[ ] Deciduous Broadleaf Forests

I Mixed Forests

[ ] Cropland

B Urban and Built-Up

[ ] CroplandiNatural Vegetation Mosaic
[ Other

B Water

[ ] Outside NC CD 3

North Carolina CD3
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Two Types of Remote Sensing

* Based on the source of the energy, remote sensing
can be broken into two categories:

* Passive remote sensing: The source of energy
collected by sensors 1s either reflected solar
radiation (e.g. cameras) or emitted by the targets
(thermal 1maging).

* Active remote sensing: The source of energy
collected by sensors 1s actively generated by a man-
made device. Examples include RADAR (RAdio
Detection And Ranging, which uses microwave
energy) and LIDAR (LIght Detection Imagery And
Ranging, which uses a laser).

OS 383 — UMB Spring 2008



Passive vs. Active Remote Sensing

http://www.ccrs.nrcan.gc.ca/cers/learn/tutorials/fundam/chapter3/chapter3 1 e.html

4 A B CCRS/CCT
& CCRS T CCT
Passive sensors receive solar Active sensors receive energy
energy reflected by the Earth’s reflected from the Earth’s
surface (2), along with energy surface that originally came from
emitted by the atmosphere (1), an emitter other than the Sun

surface (3) and sub-surface (4)
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RADAR Remote Sensing

*Remote sensing using RADAR can be active or passive:

*Some earth materials do emit radiation 1n the microwave
range of wavelengths (anywhere from a millimeter to a
meter), and these can be sensed by a detector that
operates just as many that we have already looked at
does, sensing the energy passively

*However today we’re primarily going to look at active
RADAR remote sensing, where the source of the
microwave energy which returns to the sensor is a man-
made source or emitter, and the characteristics of the
emitter and sensor are both selected for the particular
application (1.e. choose the wavelength and other factors
based on what you want to capture in the imagery)
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RADAR Remote Sensing

*The platform/position of the emitter and sensor can vary:

*Aircraft and ships are routinely fitted with active
RADAR systems for purposes of navigation, although
we find research and geographic information oriented
systems on these platforms as well

*There are satellite systems that use active microwave
sensing systems (e.g. Radarsat, Japan’s Earth Resources
Satellite JERS-1, and the SIR-C/X-SAR system that was
flown on the space shuttle 1994 and again in 2000 -
SRTM)

*There are land-based systems like the Doppler RADAR
network used to produce precipitation estimates (1.e.
WRAL News’ weather imagery)
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Nexrad Doppler Weather RADAR

 The Nexrad network of weather RADAR sensors
consists of 158 radars that each have a maximum
range of 250 miles that together provide excellent
coverage of the continental United States

The sensors are known by
the designation WSR-88D
(Weather Surveillance Radar
88 Doppler), and the station
in this area 1s located at
RDU airport 1s #64 - KRAX

http://www.roc.noaa.gov/
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Nexrad Doppler Weather RADAR

COMPLETED WSR-88D INSTALLATIONS
WITHIN THE CONTIGUOUS U.S.

RADAR OPERATIONS CENTER
NORMAN. OKLAHOMA



Nexrad Doppler Weather RADAR
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Radar Image from Hational Weather Service: KRAX 01:28 UTC 031112005

http://weather.noaa.gov/radar/latest/DS.p19r0/si.krax.shtml

*At any time, you can
g0 online and retrieve
a weather RADAR
image for any of the
158 operational stations
that 1s no more than 10
minutes old (this one 1s
from KRAX at about
8:30 PM on March 10,
2005)

*Note the scattered
signal from around the
Triangle, and the strong,

organized return from
NW of the RADAR
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Nexrad Coordinate Systems
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*This produces units that are smaller near the sensor, and
larger as they get further away, which 1s an accurate

reflection of how a sensor that operates radially collects

information about the world



Nexrad Coordinate Systems

*To create regional or national mosaics of radar returns, the
158 RADARS’ returns are combined into a raster grid,
projected 1n a polar stereographic projection that covers the
continental United States in either 4 km or 16 km cells

*Products are produced at a range of time scales: Hourly,
6-hourly, or daily precipitation mosaics for the CONUS
can be downloaded from various web sites

*Of course, 1n addition to the coordinate system
transformation, the RADARS’ measurements of returned
microwave energy need to converted into an estimated
amount of precipitable water 1n the atmosphere, which 1s
further improved by comparison to rain gauge data
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CONUS Hourly Nexrad Rainfall

*Here 1s Nexrad gauge-
PRECIP fmm) Stage [V {lll MOS) corrected for six one-

N1h accum
VALID 142 10 MAR 2005 HERMIBLSIRERE hourly periods for the
, n | S afternoon and evening
= !{YL J T ‘5\4‘“{&}/ of March 10, 2005
w0 %
1 %i rq%ﬂ *Note the changes 1n
- . R YO e shape of the blue
= R N T bounding box, which
o %[5 |
25 . show that some
.|| | RADARSs were offline
SR o ~_ | Where no overlapping
| ~J | coverage was present,
I . w ﬁ r T thus no i.nformation
° e ' was available

http://wwwt.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/images/st4.6hrloop.gif David Tenenbaum — EEOS 383 — UMB Spring 2008



Antecedent Precipitation Index (API)
from Stage 1V Nexrad Data

*Successive daily Stage I'V Nexrad rainfall data were accumulated
into an antecedent precipitation index (API) for the study climate
divisions for the study period

*The API 1s of the form [, = [ k' where I,1s an initialization value, and
k 1s a decay constant (0.9 1s a typical value from Dunne & Leopold)

*For example, assume [, =5 mm and k= 0.9
*Ont=0,,=5mm * (0.9%) =5 mm
*On t=1itrains 1.5 mm, [, =5 mm * (0.9") + 1.5 mm
= mm *0.9)+ 1.5 mm
=4.5mm+ 1.5 mm =6 mm

*On t = 2 it does not rain, [, = 6 mm * (0.9!) = 5.4 mm
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Antecedent Moisture from NEXRAD

NEXRAD ANTECEDENT MOISTURE & TVDI: 7, 11 June 2002

NEXRAD ANTECEDENT
MOISTURE, 6/7/02:
red = high, green = low.

TVDI, 6/11/02:
red = dry, blue = wet.
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Significant explanation of
residuals of plot based
on land use/land cover

TVDI variation with API

May 24, 2002 May 24 2002
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Fitted Values from DV Model

0.8

0.6

0.4

0.2

May 24 2002

0.4

0.2

0.0

Residuals from TWVDI ~ APl + LULC
-0.4 -0.2

-0.6

May 24 2002
DBF MF Cr Ur CNV
LULC

May 24 2002, Dummy Variables Model, Water Omitted

Coeff. Value SE t-value Pr(> |t |)
Int 1.5103 0.0651 23.1966 0.0000
API -0.0811 0.0071 -11.4511 0.0000
API2 0.0014 0.0002 7.7445 0.0000
DBF -0.1454  0.0130 -11.1485 0.0000
MF -0.1778  0.0137 -12.9461 0.0000
Urb -1.6600  0.7310 -2.2708 0.0234
Urb:API1 0.2417 0.0970 2.4927 0.0129
Urb*API 21 -0.0074  0.0031 -2.3619 0.0184

Residual standard error: 0.1545 on 830 degrees of freedom
Multiple R-Squared: 0.6041
F-statistic: 180.9 on 7 and 830 degrees of freedom, the p-value is 0
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Simple vs. Multiple Regression

* Today, we are going to examine simple linear
regression, where we estimate the values of a
dependent variable (y) using the values of an
independent variable (x)

* This concept can be extended to multiple linear
regression, where more explanatory independent
variables (X, X,, X; ... X, ) are used to develop
estimates of the dependent variable’s values

* For purposes of clarity, we will first look at the
simple case, so we can more easily grasp the
mathematics involved



Simple Linear Regression

Simple linear regression models the relationship
between an independent variable (x) and a dependent
variable (y) using an equation that expresses y as a linear
function of x, plus an error term:

y=a+tbx+e

eITor: € , , .
x 1s the independent variable
A . .
— I,/‘ y 1s the dependent variable
o *e b is the slope of the fitted line
0 o .Y i . . .
@ el% ih a 1s the intercept of the fitted line
&l ¢ 1s the error term
-9 °
~" a

X (independent)
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Fitting a Line to a Set of Points

When we have a data set consisting of an independent
and a dependent variable, and we plot these using a
scatterplot, to construct our model between the
relationship between the variables, we need to select a
line that represents the relationship:

* We can choose a line that fits best
using a least squares method

* The least squares line 1s the line
that minimizes the vertical
distances between the points and
the line, 1.e. 1t minimizes the error
term € when 1t 1s considered for

> all points in the data set

(quapuadap) A

X (independent)
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Least Squares Method

The least squares method operates mathematically,
minimizing the error term e for all points

We can describe the line of best fit we will find using the
equation ¥ = a + bx, and you’ll recall that from a
previous slide that the formula for our linear model was
expressed usingy =a+bx +¢

A *  We use the value y on the line

to estimate the true value, y

e The difference between the two
1s(y-y)=e

e This difference 1s positive for

points above the line, and
»  negative for points below it
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Error Sum of Squares

By squaring the differences between y and ¥, and
summing these values for all points in the data set, we

calculate the error sum of squares (usually denoted by
SSE):

SSE = Z (y - §)
i=1

The least squares method of selecting a line of best fit
functions by finding the parameters of a line (intercept a
and slope b) that minimizes the error sum of squares, i.e.
it 1s known as the least squares method because it finds
the line that makes the SSE as small as it can possibly
be, minimizing the vertical distances between the line
and the points i T EEOS 53O Sy 20



Simple Linear Regression in Excel

*Excel can calculate regression parameters in two ways:

*There are built-in functions that can be entered into a
cell to specify the calculation of a regression slope or
regression intercept:

*SLOPE(arrayl, array2) can be used to calculate the
slope of the least squares regression line, specifying
the y values 1n arrayl and the x values in array?2

INTERCEPT(arrayl, array2) can be used to calculate
the intercept of the least squares regression line,
specifying the y values 1n arrayl and the x values in
array?2
*There 1s also a Data Analysis Tool that can be used to
calculate the regression parameters
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Regression Analysis Tool

In the Data Analysis window, select the appropriate tool:

D ata Analysis 21 x|
analysis Tools
Hiskogram ;I

Moving Average Cancel |
Random Mumber Generation

Rank and Percentile

Help |

Sampling

b-Test: Paired Twao Sample for Means

E-Test: Two-Sample Assuming Equal Yariances

k-Test: Two-3ample Assuming Unequal Yariances

z-Tesk: Two Sample For Means =

 After clicking OK, you’ll be presented with the tool window:

A ¢ [ D [ F [ 6 [ W T 1
1
sor 2ix]
TVDI (x) | Moisture rInput -OK
2 v Input ¥ Range: from ol e e %
= | Cancel |
i 0.274 0.414 Inpuk 2 Range: tBf2: B2 =
4 | 0.542 0.359
% ggég gigg v Labels ™ Constart is Zeto ﬂl
I 0.374 0,350 [ Confidence Level |95 %
&3 0.433 0.357 -
—— —Oukput options
il 0.623 0255 =
0| 0505 0189 " output Range: $B$14
11 | 0.768 0171 " Mew Worksheet Ply: I
i 0725 0.119 " New Workbook
|13 ] esiduals
| 14 | r ™ Residual Plots
15 | [~ Standardized Residuals ™ Line Fit Ploks
16
17 | ormal Probability
18 | ™ Mormal Probabiliey: Plots
19|
20



Regression Analysis Tool

Regreszzion 2 x|
~Impuk
0].4
Input ¥ Range: |$C$2:$C$12 f".] .
44— I
Input  Range: |$B$2:$B$12 f".]
Hel
W Labels ™ Constart is Zero _—DI
[~ Confidence Level !IEIS %o
\
oukpuk opkions N
%' output Range: |$B$14\ i
" Mew Warksheet Ply: | \
™ Mew Workbook
~Residuals
I Residusls: I~ Residual Plots
[ standardized Residuals [ Line Fit Plats
—Mormal bilik:sy
[ pfrmal Probability Plaks

Checking boxes in the Residuals
portion of the tool will produce other
output including calculating the
residuals for each value, calculating
standardized residuals, and plotting
residuals versus independent
variables, and line fit plots as well

Of course, when specifying the input
ranges, you must distinguish
between the dependent variable (y)
and the independent variable(s) (x);
this tool can also be used for multiple
linear regression, so more than one x
variable can be used

The tool will automatically test the
significance of the parameters at the
95% confidence level, but if you
check the checkbox and specify
another confidence level, it will test
the significance of the regression
parameters at that level of confidence
as well
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Regression Analysis Tool

*The basic output the tool produces includes:

SUMMARY OUTPLIT

Regression Statistics

The coefficient of
bfultiple R
R Sguare

determination (r?) \
Adjusted R Sguare

The standard error of Standard Error
/ Dbservations

0.57 163053
0.7587 3575
0728970725
0.055996534

10

the estimate (e.g. the

o ANOVA
standard deviation of df S5 MS F__ |Significance F
. Regression 1] 0.090973945 0.09097394 25 2972303|_0.001014626

the residuals), s, Residual 5 0028769614 0.0035962
Total 9 0.119743559

An ANOVA table, _

. . Coefficients Standard Errar b oiat Pwalue Lower 30% | Upper 95%

including the Intercept 060320076 0.051926011 5.74066676 1 0324E-05 045039503 0.74500249
TvDI (x 05923931 0.117780521 -5.0296352 0.00101463 -0.863995597 -0.3207905

minimum o where F
would be significant

The regression coefficients
produced by the least squares
optimization (in the simple
case, like this one, the
intercept and the slope)

7

The standard error associated The t-statistic and the
with each parameter (e.g. for
the regression slope parameter, each parameter would
this 1s S,, the standard
deviation of the slope)

N

minimum o, where

be significant
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Regression Analysis Tool

RESIDUAL QUTFUT

*Checking the Residuals
checkbox will produce a table
of the regression estimates (the
y; values) and residuals:

*Residual Plots creates a scatter
plot of the residuals versus x
(this 1s useful for checking

assumptions about the residuals):

Line Fit Plots creates a scatter
plot of the actual and predicted
values versus x (this 1s useful
for getting a visual sense of the
accuracy of the estimates):

Obsenation

Fredicted Soif Moisture (i | Residuals

= 00 M L) R —
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