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Surface water/energy budget coupling over 
heterogeneous terrain

LE = fveg LE veg + (1 – fveg) LE soil

LE = f(Rn, T, gc, ga, gsoil, VPD)

ga = f(canopy structure, wind, ...)

gc = f(soil water, VPD, PAR, T, LAI)

gsoil = f(soil water, ...)

Rn ~ H + LE

Ts lower with greater LE (evaporative cooling) as a function of 
soil water (other factors),  greater canopy cover (higher NDVI)

Ts and NDVI estimated by a set of operational remote sensors
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Interpretation of the VI-Ts Space

VI

Ts

c

c

dry line

wet line

full cover

partial cover

bare soil

Adapted from Sandholt et al. 2002
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• Nemani and Running (1989) suggested, and later 
Nemani, Pierce, Running, and Goward (1993)  
demonstrated, that the slope of the dry line (symbolized 
using σ) is a good overall indicator of the surface 
moisture condition of a region (where the Ts and VI 
pixels that are drawn from to form the 2-D Ts-VI 
distribution ) on the occasion when the imagery was 
collected
• Steeper, more negative slopes represent drier 

conditions (where Ts disparities are greater)
• So how do we form the 2-D Ts-VI distribution and find 

the slope of the dry line?

Dry Line Slope – Sigma (σ)
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Finding the Dry Line (σ) Slope

VI

Ts
• We begin with Ts and VI data, 

ideally collected using the same 
sensor at the same time (e.g. 
from AVHRR bands 1, 2, 4, & 5)

• We then translate the values for 
each pixel into a 2-D parameter 
space, the VI on the x-axis and 
the Ts on the y-axis



David Tenenbaum – EEOS 383 – UMB Spring 2008

• The slope of the dry line (symbolized using σ) is a good 
overall indicator of the surface moisture condition of a 
region (where the Ts and VI pixels that are drawn from 
to form the 2-D Ts-VI distribution )
• But it is just that, a single number that is a regional 

descriptor of the surface moisture condition of the 
overall aggregate set of pixels

• What if we want to know something about the surface 
moisture condition of individual pixels?  How can we 
do this?
• One way is to take an approach that describes each 

pixel’s position in the distribution

Obtaining Per Pixel Dryness Info
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Temperature Vegetation Dryness Index

NDVI

Ts

wet line

B

A

TVDI = 1

TVDI = 0

TVDI = A/B
Sigma = b

Ts = a + b(NDVI)

dry line

Adapted from Sandholt et al. 2002
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Generating TVDI Values

VI-Ts VI

Ts TVDI
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• The procedure for creating TVDI initially requires all 
the steps required to obtain σ :

1. Form the 2-D Ts – VI distribution
2. Calculate/find σ

followed by a few further steps:
3. Define the wet line along the bottom the triangle (which 

can usually be safely done in a fairly unsophisticated 
fashion)

4. Calculate TVDI as described (where is the point/pixel of 
interest positioned between the dry and wet lines at the 
given NDVI)

5. Take the resulting values and map them back to their 
respective pixels

Temperature Vegetation Dryness Index
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Modeling TVDI

TVDI LULC
API REG

It =I0kt
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MODIS LULC In Climate Divisions

Maryland CD6

North Carolina CD3
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• Based on the source of the energy, remote sensing 
can be broken into two categories:

• Passive remote sensing: The source of energy 
collected by sensors is either reflected solar 
radiation (e.g. cameras) or emitted by the targets
(thermal imaging).

• Active remote sensing: The source of energy 
collected by sensors is actively generated by a man-
made device.  Examples include RADAR (RAdio 
Detection And Ranging, which uses microwave 
energy) and LIDAR (LIght Detection Imagery And 
Ranging, which uses a laser).

Two Types of Remote Sensing
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Passive vs. Active Remote Sensing

Passive sensors receive solar 
energy reflected by the Earth’s 
surface (2), along with energy 
emitted by the atmosphere (1), 
surface (3) and sub-surface (4)

Active sensors receive energy 
reflected from the Earth’s 
surface that originally came from 
an emitter other than the Sun

http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter3/chapter3_1_e.html
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•Remote sensing using RADAR can be active or passive:
•Some earth materials do emit radiation in the microwave 
range of wavelengths (anywhere from a millimeter to a 
meter), and these can be sensed by a detector that 
operates just as many that we have already looked at 
does, sensing the energy passively
•However today we’re primarily going to look at active 
RADAR remote sensing, where the source of the 
microwave energy which returns to the sensor is a man-
made source or emitter, and the characteristics of the 
emitter and sensor are both selected for the particular 
application (i.e. choose the wavelength and other factors 
based on what you want to capture in the imagery)

RADAR Remote Sensing



David Tenenbaum – EEOS 383 – UMB Spring 2008

•The platform/position of the emitter and sensor can vary:
•Aircraft and ships are routinely fitted with active 
RADAR systems for purposes of navigation, although 
we find research and geographic information oriented 
systems on these platforms as well
•There are satellite systems that use active microwave 
sensing systems (e.g. Radarsat, Japan’s Earth Resources 
Satellite JERS-1, and the SIR-C/X-SAR system that was 
flown on the space shuttle 1994 and again in 2000 -
SRTM)
•There are land-based systems like the Doppler RADAR 
network used to produce precipitation estimates (i.e. 
WRAL News’ weather imagery)

RADAR Remote Sensing
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Nexrad Doppler Weather RADAR
• The Nexrad network of weather RADAR sensors 

consists of 158 radars that each have a maximum 
range of 250 miles that together provide excellent 
coverage of the continental United States

The sensors are known by 
the designation WSR-88D
(Weather Surveillance Radar 
88 Doppler), and the station 
in this area is located at 
RDU airport is #64 - KRAX

http://www.roc.noaa.gov/
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Nexrad Doppler Weather RADAR
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Nexrad Doppler Weather RADAR

http://weather.noaa.gov/radar/latest/DS.p19r0/si.krax.shtml

•At any time, you can 
go online and retrieve 
a weather RADAR 
image for any of the 
158 operational stations 
that is no more than 10 
minutes old (this one is 
from KRAX at about 
8:30 PM on March 10, 
2005)
•Note the scattered 
signal from around the 
Triangle, and the strong, 
organized return from 
NW of the RADAR
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Nexrad Coordinate Systems
•The individual sensors information is referenced using a 
polar coordinate system, the 250-mile radius circle that is 
sliced into chunks that are 1 degree of arc in width and 2 
kilometers along the radius in length:

•This produces units that are smaller near the sensor, and 
larger as they get further away, which is an accurate 
reflection of how a sensor that operates radially collects 
information about the world 
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Nexrad Coordinate Systems
•To create regional or national mosaics of radar returns, the 
158 RADARs’ returns are combined into a raster grid, 
projected in a polar stereographic projection that covers the 
continental United States in either 4 km or 16 km cells

•Products are produced at a range of time scales:  Hourly, 
6-hourly, or daily precipitation mosaics for the CONUS 
can be downloaded from various web sites

•Of course, in addition to the coordinate system 
transformation, the RADARs’ measurements of returned 
microwave energy need to converted into an estimated 
amount of precipitable water in the atmosphere, which is 
further improved by comparison to rain gauge data
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CONUS Hourly Nexrad Rainfall
•Here is Nexrad gauge-
corrected for six one-
hourly periods for the 
afternoon and evening 
of March 10, 2005

•Note the changes in 
shape of the blue 
bounding box, which 
show that some 
RADARs were offline 
where no overlapping 
coverage was present, 
thus no information 
was available

http://wwwt.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/images/st4.6hrloop.gif
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Antecedent Precipitation Index (API) 
from Stage IV Nexrad Data

•Successive daily Stage IV Nexrad rainfall data were accumulated 
into an antecedent precipitation index (API) for the study climate 
divisions for the study period

•The API is of the form It = I0kt where I0 is an initialization value, and 
k is a decay constant (0.9 is a typical value from Dunne & Leopold)

•For example, assume I0 = 5 mm and k = 0.9

•On t = 0, It = 5 mm * (0.90) = 5 mm

•On t = 1 it rains 1.5 mm, It = 5 mm * (0.91) + 1.5 mm

= (5 mm * 0.9) + 1.5 mm

= 4.5 mm + 1.5 mm = 6 mm

•On t = 2 it does not rain, It = 6 mm * (0.91) = 5.4 mm
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Antecedent Moisture from NEXRAD

NEXRAD Precip, 6/7/02:
Red = high, green = low

NEXRAD ANTECEDENT MOISTURE  & TVDI: 7, 11 June 2002

TVDI, 6/11/02: 
red = dry, blue = wet.

NEXRAD ANTECEDENT 
MOISTURE, 6/7/02: 
red = high, green = low.
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TVDI variation with API

Significant explanation of 
residuals of plot based 
on land use/land cover
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Simple vs. Multiple Regression
• Today, we are going to examine simple linear 

regression, where we estimate the values of a 
dependent variable (y) using the values of an 
independent variable (x)

• This concept can be extended to multiple linear 
regression, where more explanatory independent 
variables (x1, x2, x3 … xn) are used to develop 
estimates of the dependent variable’s values

• For purposes of clarity, we will first look at the 
simple case, so we can more easily grasp the 
mathematics involved
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• Simple linear regression models the relationship 
between an independent variable (x) and a dependent 
variable (y) using an equation that expresses y as a linear 
function of x, plus an error term:

y = a + bx + e

Simple Linear Regression

x (independent)

x is the independent variable

y (dependent)

y is the dependent variable

b

b is the slope of the fitted line

a

a is the intercept of the fitted line

error: ε

e is the error term
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• When we have a data set consisting of an independent 
and a dependent variable, and we plot these using a 
scatterplot, to construct our model between the 
relationship between the variables, we need to select a 
line that represents the relationship:

Fitting a Line to a Set of Points

x (independent)

y (dependent)

• We can choose a line that fits best 
using a least squares method

• The least squares line is the line 
that minimizes the vertical 
distances between the points and 
the line, i.e. it minimizes the error 
term ε when it is considered for 
all points in the data set 
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• The least squares method operates mathematically, 
minimizing the error term e for all points

• We can describe the line of best fit we will find using the 
equation ŷ = a + bx, and you’ll recall that from a 
previous slide that the formula for our linear model was 
expressed using y = a + bx + e

Least Squares Method

y

ŷ = a + bx
ŷ

• We use the value ŷ on the line 
to estimate the true value, y

(y - ŷ) • The difference between the two 
is (y - ŷ) = e

• This difference is positive for 
points above the line, and 
negative for points below it



David Tenenbaum – EEOS 383 – UMB Spring 2008

• By squaring the differences between y and ŷ, and 
summing these values for all points in the data set, we 
calculate the error sum of squares (usually denoted by 
SSE):

Error Sum of Squares

SSE = Σ (y - ŷ)2
i = 1

n

• The least squares method of selecting a line of best fit 
functions by finding the parameters of a line (intercept a 
and slope b) that minimizes the error sum of squares, i.e. 
it is known as the least squares method because it finds 
the line that makes the SSE as small as it can possibly 
be, minimizing the vertical distances between the line 
and the points
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Simple Linear Regression in Excel
•Excel can calculate regression parameters in two ways: 

•There are built-in functions that can be entered into a 
cell to specify the calculation of a regression slope or 
regression intercept:

•SLOPE(array1, array2) can be used to calculate the 
slope of the least squares regression line, specifying 
the y values in array1 and the x values in array2
•INTERCEPT(array1, array2) can be used to calculate 
the intercept of the least squares regression line, 
specifying the y values in array1 and the x values in 
array2

•There is also a Data Analysis Tool that can be used to 
calculate the regression parameters
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Regression Analysis Tool
•In the Data Analysis window, select the appropriate tool:

•After clicking OK, you’ll be presented with the tool window:
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Regression Analysis Tool
Of course, when specifying the input 
ranges, you must distinguish
between the dependent variable (y) 
and the independent variable(s) (x); 
this tool can also be used for multiple 
linear regression, so more than one x 
variable can be used

The tool will automatically test the 
significance of the parameters at the 
95% confidence level, but if you 
check the checkbox and specify 
another confidence level, it will test 
the significance of the regression 
parameters at that level of confidence 
as well

Checking boxes in the Residuals
portion of the tool will produce other 
output including calculating the 
residuals for each value, calculating 
standardized residuals, and plotting 
residuals versus independent 
variables, and line fit plots as well
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Regression Analysis Tool
•The basic output the tool produces includes:

The coefficient of 
determination (r2)

The standard error of 
the estimate (e.g. the 
standard deviation of 
the residuals), se

An ANOVA table, 
including the 
minimum α where F 
would be significant

The regression coefficients 
produced by the least squares 
optimization (in the simple 
case, like this one, the 
intercept and the slope)

The standard error associated 
with each parameter (e.g. for 
the regression slope parameter, 
this is sb, the standard 
deviation of the slope)

The t-statistic and the 
minimum α where 
each parameter would 
be significant



David Tenenbaum – EEOS 383 – UMB Spring 2008

Regression Analysis Tool
•Checking the Residuals 
checkbox will produce a table 
of the regression estimates (the 
ŷi values) and residuals:

•Residual Plots creates a scatter 
plot of the residuals versus x
(this is useful for checking 
assumptions about the residuals):

•Line Fit Plots creates a scatter 
plot of the actual and predicted 
values versus x (this is useful 
for getting a visual sense of the 
accuracy of the estimates):


