Chemical Formulas & Naming Simple Compounds

Lecture 8

Chemical formulas

The formula for a compound indicates the combination of the elements that compose it.

- Can be as simple as that for one or two atoms like
 H or H₂
- Or more complicated looking, if a molecule is larger like cholesterol: C₂₇H₄₆O.
- The subscripted numbers tell you how many atoms of that element a molecule of that substance has.

Cholesterol has 27 atoms of carbon, 46 of hydrogen and 1 oxygen atom in a molecule.

Oxidation Numbers

- These are given on the periodic table, they can be positive, negative or zero.
- They are the electric charges atoms commonly have when combined.
- Atoms have a common oxidation number, but it can differ.
- When not using a periodic table this would be given information, written with a superscript on the right side seen in these examples: H⁺, Al³⁺ O²⁻, Cl⁻. The number 1 is never written.
- Oxidation numbers order the symbols as you write the formula.
- They also create the ratio of atoms bonded.

Binary Compounds

- Atoms with negative oxidation numbers combine with atoms with positive oxidative numbers in such a way to cancel the charges. (algebraic sum=0)
- Example:

Na⁺ and F⁻ combine and create NaF

Generally, the item with a positive oxidative number is written first-not always.

How would you combine Ca²⁺ and O²⁻?

Answer: CaO

How would you combine Ca²⁺ and F⁻?

Answer: CaF₂

How would you combine the following:

Li + and O²⁻

Fe 3+ and S²⁻

Al 3+ and F-

H⁺ and N³⁻

Answers

Li + and O²-

Li₂O

Fe 3+ and S2-

 Fe_2S_3 (here you need a number common to 2 and 3 which is 6: 3+ x 2 = 6+ and 2- x 3 = 6- the sixes

cancel out.

Al 3+ and F-

Al F₃

H⁺ and N³⁻

H₃N but we actually write it NH₃ (ammonia)

Naming Binary compounds:

- Binary compounds are named starting with the element with the positive oxidation number first.
- Followed by the element with the negative oxidation number.
- You use the first element's name and add
 ide to the second element's name.
- Example: Li₂O Lithium Oxide
 Fe₂S₃ Iron Sulfide

Names of some elements with negative oxidative numbers:

```
H- hydride
```

Br- bromide

I- iodide

Cl-chloride

F - fluoride (yes it is spelled uo)

S²⁻ sulfide

O²- oxide

P³⁻ phosphide

N³⁻ nitride

C⁴⁻ carbide

Roman numerals in the name

 Many elements have more than 1 positive oxidation number and will combine in multiple ways with the same element.

For example: FeO and Fe₂O₃

 Roman numerals in the written name in parentheses indicate which oxidation state an element is in, since they can vary.

Iron (II) oxide tells you to use Fe²⁺ iron (III) oxide tells you to use Fe³⁺

Name these:

- Mg F
- KH
- Nil₂

Write the formula for these:

Copper (II) sulfide Iron (III) bromide

Answers

Mg F

magnesium fluoride

• KH

potassium hydride

• Nil₂

nickel (II) iodide

Copper (II) sulfide

CuS

Iron (III) bromide

FeBr₃

Polyatomic ions

A group of atoms can have an oxidation number too. Some common examples:

Carbonate	CO ₃ ²⁻	all 4 atoms have a net -2 charge
Hydroxide	OH-	both atoms have a
		net negative charge
Nitrate	NO ₃	all 4 atoms have a net negative charge
Ammonium	NH ₄ +	all 5 atoms have a net positive charge

Polyatomic ions help with naming complex molecules

Follow the same rules as before:

Write the formula for sodium phosphate:

Na+ PO₄3-

Phosphate has a negative 3 charge

Sodium has a positive 1 charge

(You need 3 sodium atoms to match the -3 charge of phosphate)

sodium phosphate's formula is written so:

Na₃PO₄

Try these

How would you write calcium sulfate?
 Calcium is Ca+
 Sulfate is SO₄-

How would you write ammonium carbonate?

Carbonate is CO₃²-Ammonium is NH₄+

Answers

calcium sulfate:

Calcium is Ca+

Sulfate is SO₄

The charges are equal drop them and put the two together: CaSO₄

ammonium carbonate:

Carbonate is CO₃²-

Ammonium is NH₄+

You need 2 of the ammonium ion to cancel carbonates -2 charge: (NH₄)₂CO₃

Tip of the ice berg

 This is a good start, as molecules get larger and more complex you would need additional rules and information about how to name a compound.

 There are multiple ways that most chemicals can be named.