

All amino acids found in the protein are L-amino acids.

- Nature has chosen only L-amino acids in proteins. D-amino acids are only found very rarely.
- D Aspartic acid, a rare example of D-amino acid, arises by slow racemization of L-Aspartic acid in proteins.

Aı	nino acid	classi	fication base	ed or	ı charge
Polar	Side chain	Neutral	Side chain	Non	Side chain
Asp	CH ₂ COOH	Asn	CH ₂ CONH ₂	polar Gly	H
Glu	CH ₂ CH ₂ COOH	Gln	CH ₂ CH ₂ CONH ₂	Ala Val	CH ₃ CH ₃ CHCH ₃
His	Imidazole	Ser	CH ₂ OH	Leu	Isobutyl
Lys	(CH ₂) ₄ NH ₂	Thr	CHOHCH ₃	lle Pro	Isobutyl Pyrrole
Arg	(CH ₂) ₃ Guanido	Tyr	CH ₂ -4-OH Phenyl	Phe	CH ₂ - Phenyl
Cys	CH ₂ SH	Met	CH ₂ CH ₂ SCH ₃	Trp	CH ₂ -Indole

Structure of 21 amino acids Green - aliphatic; yellow - aliphatic hydroxyl; pink -acidic; sky blue - thiol containing; red -proline; Blue aromatic; orange -basic.					
R = H	Gly (G)	$\mathbf{R} = \mathbf{CH}_{3}\mathbf{CHCH}_{3}$	Val (V)	$R= -CH_2CH (CH_3)_2$	Leu (L)
$\mathbf{R} = \mathbf{CH}_3$	Ala (A)	$\mathbf{R} = -\mathbf{CH} (\mathbf{CH}_3)$ $\mathbf{CH}_2\mathbf{CH}_3$	Ile (I)	$\mathbf{R} = \mathbf{CH}_2\mathbf{Ph}$	Phe (F)
$\mathbf{R} = \mathbf{CH}_2\mathbf{OH}$	Ser (S)	$R = CHOHCH_3$	Thr (T)	$\mathbf{R} = \mathbf{CH}_{2}\mathbf{Ph}$ (4-OH)	Tyr (Y)
$R = CH_2COOH$	Asp (D)	$R = CH_2CH_2COOH$	Glu (E)	R= CH ₂ 3-indolyl	Trp (W)
$R = CH_2 CONH_2$	Asn (N)	$\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_2\mathbf{CO}\mathbf{NH}_2$	Gln (Q)	$\mathbf{R} = (CH_2)_4 NH_2$	Lys (K)
$\mathbf{R} = \mathbf{CH}_2 \mathbf{SH}$	Cys (C)	$\mathbf{R} = (\mathbf{CH}_2)_2 \mathbf{SCH}_3$	Met (M)	$\mathbf{R} = (\mathbf{CH}_2)_3$ guanidyl	Arg (R)
$\mathbf{R} = \mathbf{CH}_2\mathbf{SeH}$	SeCys	R = Pyrrole with Primary N	Pro (P)	R = CH ₂ - Imidazolyl	His (H)

Anfinsen's experiment -1

When native Ribonuclease (RNAse) was denatured with 8 M urea and reduced with β - mercaptoethanol (β - ME), it lost all its activity. The fully reduced and random coiled RNAse after the removal of urea and β - ME by dialysis, slowly regained full enzyme activity by standing in air.

Explanation for the second experiment

The denatured and reduced RNAse when allowed to form disulfide bridges in presence of urea, generated scrambled structures with different combination of disulfide bridges. Only one of them (the correct structure) exhibited biological activity. The rest did not. These structures were allowed to refold into correct structure by traces of β - mercaptoethanol (by thiol - disulfide exchange reaction).

The first SH has 7 possible SH to form disulfide; Once, it is forms a disulfide, the third SH has 5 SH to form disulfide bridge. The fifth has 3 SH to form disulfide and the seventh has the last SH. 7 x 5 x 3 x 1 = 105 (Of the 105 possible structures, only one will be the correct structure and hence only 1% activity is observed)

Protein terminal analysis -End group analyzing strategies

Protocol	Site	Specificity
Edman Degradation	C side of N terminus	Nonspecific
Sanger's reagent	N- terminal analysis	Nonspecific
Carboxypeptidase A	N side of C terminus	R _n ≠ Arg, Lys, Pro
Carboxypeptidase B	N side of C terminus	$R_{n-1} \neq Pro$ $R_n = Arg, Lys, AECys$
Hydrazinolysis	C terminal analysis	$R_{n-1} \neq Pro$ Only C – terminal comes out free

Reagents used for protein cleavage and their specificity

Reagent	Site	Specificity	Comment
CNBr	C side of $\mathbf{R}_{\mathbf{n}}$	$R_n = Met$	Highly specific
Anhydrous CNBr		$R_n = Met, Trp$	
Trypsin	C side of R _n	$\mathbf{R}_{n} = \mathbf{Lys}, \mathbf{Arg}, \mathbf{AECys};$	Highly specific
		R _{n+1} ≠ Pro	
Chymotrypsin	C side of R _n	\mathbf{R}_{n} = Phe, Trp, Tyr,	Met & Asn
		Leu; R _{n+1} ≠ Pro	some times
Thermolysin	N side of R _n	R _n = Leu, Ile, Phe, Trp	Some times
		Tyr, Val; R _{n-1} ≠ Pro	Ala
Pepsin	N side of R _n	$R_n = Leu, Asp, Glu,$	Non-specific
		Phe,Tyr,Trp;R _{n-1} ≠ Pro	
Acid Proteases	C side of R _n	$R_n = Asp, Glu;$	Specific
(Phosphatase?)		R _{n-1} ≠ Pro	

