BIOL 112

Lecture 4: Evolution and Population Genetics cont.

Is a population at HWE (not evolving)

- 1. calculate allele frequencies of a trait in a population of a species
- 2. predict genotype frequencies if population were at HWE
- 3. compare predicted and actual see examples from class

Fitness

- <u>Fitness</u> in evolutionary terms refers to reproductive success (i.e. the number of offspring- how well you pass on your genes)
- <u>relative fitness</u>: the contribution an individual makes to the gene pool of the next generation relative to others

Assumptions of Hardy-Weinberg Equilibrium

- 1. Large Population Size
- 2. No mutation
- 3. No migration in or out of the population
- 4. Random mating
- 5. No Natural Selection
 - WHAT HAPPENS WHEN THESE ASSUMPTIONS ARE VIOLATED?

1. A very large population size

violation: small population size

- *genetic drift: by **chance** the allele frequencies fluctuate more likely to happen in small population
- *If a large catastrophe happens reducing the population size drastically this is called <u>bottleneck effect</u> (eg. a hurricane wipes out a bunch of trees)
- *If a small group of individuals becomes isolated by chance their allele frequencies may be different from the original population this is called <u>Founder Effect</u>

Founder effect

Summary of effects of genetics drift

- Genetic drift happens most often in small populations
- The change in allele frequencies is random
- May result in loss of genetic variation (some alleles gone)
- This cause of change in allele frequency is not <u>adaptive</u>. Sometimes deleterious alleles increase in frequency.

DEME 1.0 demonstration

this is a excel based program that can simulate how different violations of HWE can change allele frequency

2. No mutation

- Mutations happen very slowly but new alleles are created by mutation
- mutation is the source of genetic variation

3. No migration out or in

- Migration or <u>gene flow</u> is an important source of changing allele frequencies in populations (can undo effects of genetic drift and even local adaptation or natural selection)
- Gene flow can result in either non-adaptive or adaptive change. Can increase genetic variation potentially adaptive or decrease frequency of alleles better suited for environment

Gene flow can decrease the

fitness of a population
• For example, the great tit (*Parus major*) on the Dutch island of Vlieland

Observation of difference in fitness between east and central island populations (East populations produced more recruits)

4. random mating

Violation: non random mating-

- inbreeding: mating with close relatives can change allele frequencies (e.g. can increase the frequency of a rare deleterious recessive allele)
- Sexual selection

Sexual selection

- 1. Mate choice: e.g. females select a male with certain phenotype
- 2. Direct competition between the same sex for mates of the opposite sex

Are females selecting mates with good genes?

This is of much interest to evolutionary biologist

e.g.

5. No natural selection

 Natural selection leads to changes in allele frequencies because those individuals with alleles better adapted to the habitat leave more offspring with those alleles.

Directional, Disruptive, and Stabilizing Selection

- Three modes of selection:
 - Š **Directional selection** favors individuals at one end of the phenotypic range
 - Š **Disruptive selection** favors individuals at both extremes of the phenotypic range
 - Š **Stabilizing selection** favors intermediate variants and acts against extreme phenotypes

© 2011 Pearson Education, Inc.

example of directional selection

Peppered moths- Industrial melanism

Examples of disruptive selection

QuickTime™ and a decompressor are needed to see this picture.

Examples of stabilizing selection

QuickTime™ and a decompressor are needed to see this picture.

- Heterozygote advantage occurs when heterozygotes have a higher fitness than do both homozygotes
- Natural selection will tend to maintain two or more alleles at that locus
- The sickle-cell allele causes mutations in hemoglobin but also confers malaria resistance

