Physics 640 October 30, 2008

Project 5 Week 6 & 7: Time-Frequency Analysis and Fractals

Project 5: Pick one option below for this project

- a) Develop a Matlab code that allows you to recognize a vowel from a recording (wav file) using the Wigner transform.
- b) Write a Matlab code to demonstrate the advantage of using wavelet transform versus Fourier transform in signal recovery
 - Matlab code to calculate the Wigner function; and wavelet subroutines will be available

c) Work on the Mandelbrot Fractal Fortran Code, then visualize using Matlab, make a movies to show the "self-similarity" zooming in effects of fractals

Chirp signal with two perturbations in time Wigner transform showing linear dependence of frequency w.r.t. time

Start by recording one vowel to use as a gold standard. Should be able to determine if a given wav file contains that same vowel or not by doing correlation between the two Wigner function 2D plots ("corr2")

Human voice processing is very intensive, will need to use a very short piece of your recording.

Option b)

2D pattern or signal with a perturbation in the lower band Masked by added noise

Recovered pattern using wavelet transform

The code provided, "perform_wavelet_transform.m", can perform direct and inverse 2D wavelet transforms. You would need to create your own 2D signal, add noise and do the analysis to recover the signal . Write your own Matlab code, when wavelet transform is needed, call in this subroutine.

```
y = perform_wavelet_transform(x, Jmin, dir, options);
%
%
    'x' is either a 1D or a 2D array.
    'Jmin' is the minimum scale (i.e. the coarse channel is of size 2^Jmin
%
%
        in 1D).
    'dir' is +1 for fwd transform and -1 for bwd.
%
%
    'options.wavelet_vm' is the number of Vanishing moment (both for primal and
dual).
    'options.wavelet_type' can be
%
%
        'daubechies', 'symmlet', 'battle', 'biorthogonal'.
```

Option c)

The Mandelbrot Fractal

Here is an example code to calculate the Mandelbrot fractal

program mandel

- C FORTRAN77 code to generate a Mandelbrot fractal implicit none integer npts
- C Number of points in side of image parameter (npts=1000) real*8 zRe(npts,npts) real*8 zIm(npts,npts) real*8 kRe(npts,npts) real*8 kIm(npts,npts) real*8 qRe(npts,npts) real*8 qIm(npts,npts) real*8 qIm(npts,npts) integer i,j,k,niter
 C Number of iterations in the Mandelbrot fractal calculation

```
niter=51
do j=1,npts
do i=1,npts
```

- C Generating z = 0 (real and imaginary part) zRe(i,j)=0.
- zIm(i,j)=0.
 Generating the constant k (real and imaginary part) kRe(i,j)=dble(i)*2.0/(dble(npts)-1.)-1.5
 kIm(i,i)=dble(i)*2.0/(dble(npts)-1.)-1

```
kIm(i,j)=dble(j)*2.0/(dble(npts)-1.)-1.
enddo
enddo
```

C Iterating

do k=1,niter do j=1,npts do i=1,npts

- C Calculating $q = z^*z + k$ in complex space
- C q is a temporary variable to store the result qRe(i,j)=zRe(i,j)*zRe(i,j)-zIm(i,j)*zIm(i,j)+kRe(i,j);qIm(i,j)=2.*zRe(i,j)*zIm(i,j)+kIm(i,j);
- C Assigning the q values to z constraining between
- C -5 and 5 to avoid numerical divergences

zRe(i,j)=qRe(i,j); zIm(i,j)=qIm(i,j); if (zRe(i,j) < -5.) zRe(i,j)=-5.; if (zRe(i,j) > 5.) zRe(i,j)=5.; if (zIm(i,j) < -5.) zIm(i,j)=-5.; if (zIm(i,j) > 5.) zIm(i,j)=5.;

enddo enddo

enddo

C You will need to output zRe and zIm to a file here

end program mandel

November 2008

S	Μ	Т	W	Th	F	Sat.				
2	3	4	5	6	7	8				
		Midterm		Term Proj.						
				Selection						
9	10	11	12	13	14	15				
		Pr 5 due		Term Proj.						
		Term Proj.		topic and						
		Selection		report #1						
				due						
16	17	18	19	20	21	22				
				Term Proj.						
				topic and						
				report #2						
				due						
23	24	25	26	27	28	29				
				Term Proj.						
				topic and						
				report #3						
				due						
December 2008										

S	Μ	Т	W	Th	F	Sat.				
	1	2	3	4	5	6				
				Term Proj.						
				topic and						
				report #4						
				due						
7	8	9	10	11	12	13				
		Term Proj.		Term Proj.	Last day					
		Pres.		Pres.	of classes					
14	15	16	17	18	19	20				
		Final								
		report due								