Physics 640

October 21, 2008
Project 4
Week 7 \& 8:
-Introduction to Molecular Dynamics/Metropolis Algorithm/Monte Carlo
Molecular Dynamics:
Numerical algorithm to solve Newton's equations:
$-\frac{d \Phi}{d t}=f=m \ddot{x}=m \frac{d^{2} x}{d t^{2}}$
where Φ is the interaction potential between molecules. Typical interaction potential between molecules are:
-Hard spheres
-Hooke's Law
-Lennard-Jones
The Lennard-Jones interaction between two molecules located at x_{1} and x_{2} is (no external forces are considered!):
$\Phi\left(x_{1}, x_{2}\right)=\frac{1}{\left|x_{1}-x_{2}\right|^{12}}-\frac{2}{\left|x_{1}-x_{2}\right|^{6}}$
This potential is repulsive at short distances and no interacting at large distances between molecules, being the point of minimum potential at mid range.

Assuming equal masses molecules, for a system of 4 molecules, we need to solve the following equations:

1) $m \frac{d^{2} x_{1}}{d t^{2}}=-\frac{d \Phi}{d x_{1}}=12 \sum_{j=2}^{4}\left[\frac{1}{\left(x_{1}-x_{j}\right)^{13}}-\frac{1}{\left(x_{1}-x_{j}\right)^{7}}\right]$
2) $m \frac{d^{2} x_{2}}{d t^{2}}=-\frac{d \Phi}{d x_{2}}=12 \sum_{j=1,3,4}\left[\frac{1}{\left(x_{2}-x_{j}\right)^{13}}-\frac{1}{\left(x_{2}-x_{j}\right)^{7}}\right]$
3)...
4)...
-Use finite-difference to approximate the derivatives
-The differential equations of $2^{\text {nd }}$ order require two initial conditions for each molecule: position and velocity

Example in this input file "md.in" for "molec_dyn.f"

4	0.001	0.10	60.0
0.50	0.00	0.00	
-1.00	0.00	-0.00	
-0.50	0.00	0.00	
1.00	0.00	-0.00	
0.00	-1.00	0.00	
0.00	0.00	1.00	
0.00	1.00	0.00	

$0.00 \quad 0.00-1.00$

* NATOM -Number of atoms (IN) is 4
* H - Time step. (IN) is 0.001
* HP - Time interval between printing. (IN) is 0.10
* TEND - Time at end of computation: TEND = H*NSTEP. (IN) is 60
* The next 8 lines specify the initial positions (cartesian coordinates) and velocities of the atoms
Example output file "md.out"
4
600

0.000000	0	$-4.078430 \mathrm{E}+00$	$2.000000 \mathrm{E}+00$	$-2.078430 \mathrm{E}+00$
0.000000	1	$5.000000 \mathrm{E}-01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.000000	1	$-1.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.000000	2	$-5.000000 \mathrm{E}-01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.000000	2	$1.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.000000	3	$0.000000 \mathrm{E}+00$	$-1.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.000000	3	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$1.000000 \mathrm{E}+00$
0.000000	4	$0.000000 \mathrm{E}+00$	$1.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.000000	4	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$-1.000000 \mathrm{E}+00$
0.000000	0	$-3.617130 \mathrm{E}+00$	$1.538704 \mathrm{E}+00$	$-2.078426 \mathrm{E}+00$
0.100000	1	$4.475015 \mathrm{E}-01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.100000	1	$5.895949 \mathrm{E}-01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.100000	2	$-4.475015 \mathrm{E}-01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.100000	2	$-5.895949 \mathrm{E}-01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
0.100000	3	$0.000000 \mathrm{E}+00$	$-9.753933 \mathrm{E}-01$	$9.917767 \mathrm{E}-02$
0.100000	3	$0.000000 \mathrm{E}+00$	$4.894474 \mathrm{E}-01$	$9.754606 \mathrm{E}-01$
0.100000	4	$0.000000 \mathrm{E}+00$	$9.753933 \mathrm{E}-01$	$-9.917767 \mathrm{E}-02$
0.100000	4	$0.000000 \mathrm{E}+00$	$-4.894474 \mathrm{E}-01$	$-9.754606 \mathrm{E}-01$

WRITE (3, 99) INT(1000. *K*H), 0, PE, KE, PE+KE
DO I = 1, NATOM
WRITE (3, 99) K*H, I, X (I) , Y(I) , Z(I)
WRITE $(3,99) K * H, I, U(I), V(I), W(I)$
END DO
(where k is from the time looping)
*NATOM is 4
*NSTEP is 600
*Then for each time iteration line " 0 " contains information on PE, KE, and $\mathrm{PE}+\mathrm{KE}$ for all atoms

Outcomes for Project 4 part a), to be included in the report:

1) Animation of the position of a chosen number of molecules (4 or higher) over time given at least two different initial conditions. You should be able to confirm a result from your intuition in these animations based on the initial conditions. Explain in report.
2) Animate the motion of one of the molecules in phase space (x and v_{x})
