Physics 640 November 8, 2007

Project 5 Week 6 & 7: Time-Frequency Analysis

Project 5:

- a) Develop a Matlab code that allows you to recognize a vowel from a recording (wav file) using the Wigner transform.
- b) Write a Matlab code to demonstrate the advantage of using wavelet transform versus Fourier transform in signal recovery

Matlab code to calculate the Wigner function; and wavelet subroutines will be available

Chirp signal with two perturbations in time Wigner transform showing linear dependence of frequency w.r.t. time

Start by recording one vowel to use as a gold standard. Should be able to determine if a given wav file contains that same vowel or not by doing correlation between the two Wigner function 2D plots ("corr2")

Human voice processing is very intensive, will need to use a very short piece of your recording.

How do we get the wav file ?

-Plug the microphone into the back of the computer, then use Microsoft Sound Recorder (under Accessories/Entertainment). Use "Save As" to save it into a .WAV file.

A.wav - Sound Recorder
Save in: 🕼 Desktop 🔹 🖛 📰 -
My Documents Fa07pr2-pI My Computer Fa07pr2-pII My Network Places Nove 6, 2007 E103-Sp07_Part II Shared Fa07pr0-pI Fa07pr0-pII Fa07pr0-pII Fa07pr1-pI
File <u>n</u> ame: <u>Save</u>
Save as type: Sounds (*.wav) Cancel
Format: PCM 22.050 kHz, 8 Bit, Mono Change

You can do some manual editing of the sound sequence by using the sliding bar and select "Delete Before/After Current Position"

What reference files should we use?

To identify a vowel between a,e,i,o,u, record at least one file per vowel, then perform the Wigner transform on each vowel. When you are given a new file, perform the Wigner transform, then use "corr2" to find max correlation with your five references. Suppose the new file has highest correlation with a reference file containing an "e", then you say the new file contains a recording of an "e"

How to perform the Wigner transform?

The Matlab code provided does not start with a subroutine name and defined arguments as with the "perform_wavelet_transform"

%Program wvd.m

In this case you can embed your code within this same file. You will need to replace the defined signal f with the input from your WAV file.

Option b)

Recovered pattern using wavelet transform

The code provided, "perform_wavelet_transform.m", can perform direct and inverse 2D wavelet transforms. You would need to create your own 2D signal, add noise and do the analysis to recover the signal . Write your own Matlab code, when wavelet transform is needed, call in this subroutine.

```
y = perform_wavelet_transform(x, Jmin, dir, options);
°
    'x' is either a 1D or a 2D array.
%
    'Jmin' is the minimum scale (i.e. the coarse channel is of size
°
2<sup>Jmin</sup>
°
        in 1D).
°
    'dir' is +1 for fwd transform and -1 for bwd.
°
    'options.wavelet_vm' is the number of Vanishing moment (both for
primal and dual).
    'options.wavelet_type' can be
%
°
        'daubechies', 'symmlet', 'battle', 'biorthogonal'.
```

How to call a subroutine in Matlab?

-Use m.file name containing the subroutine (without the .m), plus the required arguments (within parentheses). For the perform_wavelet_transform:

a) signal x

b) use Jmin = 5.5

c) "dir" indicates whether you want to do direct (+1), or inverse (-1) wavelet transform

For example: perform_wavelet_transform(x, 5.5, +1) will do the direct wavelet transform on the signal x

Currently this subroutine works with 2D signal x

1101.2007							
S	М	Т	W	Th	F	Sat.	
4	5	6	7	8	9	10	
		Pr. 5					
		assign					
11	12	13	14	15	16	17	
		Pr 5 due					
		Term Pr.					
18	19	20	21	22	23	24	
		Term Pr.					
		Prelim					
		report					
25	26	27	28	29	30		
Dec. 2007							
S	М	Т	W	Th	F	Sat.	
						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
		Term Pr.		Last class			
		due: Pres		Pres.			
16	17	18	19	20	21	22	

Nov. 2007