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Applications of the convolution to obtaining output signals of linear systems of known impulse response.  

Graphs generated using Matlab 
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Introduction to signals and noise elimination using Matlab 
 
%This code will generate a signal, add noise, show the Fourier transform, 
%then reconstruct the signal. 
  
% Sinusoid generation 
t=-0.02:0.005:0.02; %time series t (sec): we use 9  points 
freq=100; %period is 0.01s 
f=sin(2*pi*freq*t); 
figure(1),plot(t,f) 
t1=-0.02:0.001:0.02;%time series t1 (sec): we use 41 points 
f1=sin(2*pi*freq*t1); 
figure(2), plot(t1,f1) 
t2=-0.02:0.0001:0.02;%time series t2 (sec): we use 401 points 
f2=sin(2*pi*freq*t2); 
figure(3), plot(t2,f2) 
  
 
 

 
Not like a sinusoid (9 points)   Peaks are cut (41 points) 

 
Peaks are included (401 points)  Peaks are included (81 points)* 
*Although 81 points shows a good sinusoid; 401 points is needed for the noise elimination shown below. 



%add noise to the sinusoid in figure 3 
f2n=f2+1*randn(1,length(t2)); %randn gives a gaussian noise (white noise) 
figure(4), plot(t2,f2n) 
 
%show frequency spectrum for the signal in figure 4 (with noise) using fft 
ff2n=fft(f2n); 
figure(5), plot(abs(ff2n)) 
 

 
Added white noise of amplitude 1  Spectrum* of signal with noise in figure 4 
 
*Spectrum: graph with different frequencies with their amplitudes 
Noise oscillatates a lot, we cut out the high-frequency portion of the spectrum before doing inverse Fourier Transform to 
recover the signal without noise (we apply a low-pass filter) 
 
 
%do lowpass filter 
band=floor(length(t2)/100)+1;%10; 
filt_one=ones(1,band); 
filt_zero=zeros(1,length(t2)-band); 
filt=[filt_one filt_zero]; 
ff2n=ff2n.*filt; 
figure(6), plot(abs(ff2n)) 
  
%show inverse Fourier Transform 
iff2n=ifft(ff2n); 
figure(7) ,plot(t2,real(iff2n)/max(real(iff2n))) 
 

 
spectrum with low-pass filter applied  Recovered signal without noise (Inverse FFT) 
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Differences between a continuous-time and a discrete-time signals 
 

Continuous–time: always periodic Sinusoids 
Discrete-time: not always periodic (only when ω is a multiple of π)* 

* ej 3πn was periodic (N=2); ej3n was not periodic 
 
To visualize this first difference between continuous-time and discrete-time signals, write 
Matlab code and see figure 1 below. 
 
%Periodic and non-periodic signals (continuous-time and discrete-time) 
%9/11/07 
  
%Continuous and discrete-time periodic sinusoids 
tc=0:.05:10; 
td=0:1:10; 
omega=3*pi; 
figure(1), subplot(4,1,1), plot(tc,cos(omega*tc)) 
title('continuous-time signal of period T=2/3 s; angular freq.=3*pi') 
xlabel('t (s)')  ;
ylabel('f(t)'); 
subplot(4,1,2), stem(td,cos(omega*td)) 
title('discrete-time signal of period N=2; angular freq.=3*pi') 
xlabel('time index n'); 
ylabel('f[n]'); 
  
%Continuous periodic and discrete-time non-periodic sinusoids 
tc=0:.05:10; 
td=0:1:10; 
omega=3; %angular frequency is not a multiple of Pi 
figure(1), subplot(4,1,3), plot(tc,cos(omega*tc)) 
title('continuous-time signal of period T=2*pi/3 s; angular freq.=3') 
xlabel('t (s)'); 
ylabel('f(t)'); 
subplot(4,1,4), stem(td,cos(omega*td)) 
title('discrete-time signal of angular frequency not a multiple of Pi; 
angular freq.=3') 
xlabel('time index n'); 
ylabel('f[n]'); 
 



 
 
 
The second difference between continuous-time and discrete-time signals is  
ej2t (angular frequency 2) is not the same as ej(2+2π)t(angular frequency is 2+2π); while 
ej2n (discrete-time signal with angular frequency 2) is the same as ej(2+2π)n(discrete-time 
signal with angular frequency is 2+2π); 
 

( ) jnnjjnnj eeee ==+ ππ 222  
To visualize this second difference, write Matlab code and see figure 2 below: 
 
% Continuous-time signals with omega2=omega1+2*pi 
tc=0:.05:20; 
omega1=2; 
figure(2), subplot(4,1,1), plot(tc, cos(omega1*tc)) 
title('continuous-time signal of period T=pi s; angular freq.=2') 
xlabel('t (s)'); 
ylabel('f(t)'); 
omega2=2+2*pi; 
subplot(4,1,2), plot(tc, cos(omega2*tc)) 
title('continuous-time signal of period T=(2*pi)/(2+2*pi) s; angular 
freq.=2+2*pi') 
xlabel('t (s)')  ;
ylabel('f(t)'); 
  
% Discrete-time signals with omega2=omega1+2*pi 
td=0:1:20; 
omega1=2; 
figure(2), subplot(4,1,3), stem(td, cos(omega1*td)) 



title('discrete-time signal of angular frequency of a multiple of pi; 
angular freq.=2') 
xlabel('time index n'); 
ylabel('f[n]'); 
omega2=2+2*pi; 
subplot(4,1,4), stem(td, cos(omega2*td)) 
title('discrete-time signal of angular frequency of a multiple of pi; 
angular freq.=2+2*pi') 
xlabel('time index n'); 
ylabel('f[n]'); 
 
 

 



1.10 Fundamental period of x(t)=2*cos(10t+1) – sin(4t-1) 
 
This is a combination of two sinusoids: 
1)First sinusoid:     x1(t+T1)=x1(t) or 10T1=n1 2π or T1=n12π/10={2π/10, 4π/10, 6π/10, 
8π/10, π, .....} 
2)Second sinusoid: x2(t+T2)=x2(t)  or 4T2=n2 2π or T2=n22π/4={π/2, π, 3π/2.....} 
 
When is the first time both signals repeat themselves? T1=T2= π, this is the period of the 
combined signal x(t) 
 
1.11 Fundamental period of x[n]=1 + exp(j 4πn/7) - exp(j 2πn/5) 
This is a combination of two complex exponentials (discrete-time) 
1)First signal:  x1[n+N1]=x1[n] or 4πN1/7=2πn1 or N1=n1 7/2={7, 14, 21, 28, 35, 42, ...} 
2) Second signal: x2[n+N2]=x2[n] or N2=n2 5={5, 10, 15, 20, 25, 30, 35, 40, ....} 
 
Both signals come back to the same value at N1=N2=35, this is the period of the 
combined signal! 
 
1.36 x(t) = exp (jω0t); fundamental frequency ω0, fundamental period T0=2π/ ω0
Look at the discrete time signal with t=nT (T is the time increment): 
x[n]= exp(j ω0nT) 
(a) Show that x[n] is periodic if and only if T/T0 is a rational number 
A discrete-time sinusoid is periodic when the angular frequency is a multiple of π: 
ω0T=k π   or   2 π T/T0 = k π (k integer)   or   T/T0 = k/2, this is a rational number since k 
is an integer 
 
(b) Suppose x[n] is periodic, i.e., T/T0= p/q (p and q are integers); what is the 
fundamental period N0 of x[n]? 
x[n+N0]=x[n]  or  exp(j ω0T(n+N0)) = exp(j ω0Tn)   or  
exp(j ω0Tn) exp(j ω0TN0) = exp(j ω0Tn) or  
exp(j ω0T N0) = 1  or   ω0N0T = 2πm (m integer)  or  2π N0 T/T0= 2πm (m integer) 
or  N0 p/q = m   or  N0 = m q/p 
 
For example: suppose q=7, p=3  → N0= m 7/3, fundamental period is 7 (remember 
problem 1.11) 
For example: suppose q=28, p =12  → N0= m 28/12 = m 7/3 (irreducible fraction), 
fundemental period is 7 
 
In conclusion N0 is q is q/p is irreducible; mathematically N0 = q/gcd(q,p) 
gcd is the greatest common divisor (check: in the case of q=28; p=12: we have 
28/gcd(28,12) = 28/4=7 
 
Since the fundamental period is N0 = q/gcd(q,p); the fundamental frequency ω0’ for the 
discrete-time x[n] is  
ω0’=2π/N0 = 2π q/gcd(q,p) 
 



c) Assuming x[n] is periodic, i.e. p/q is a fractional number, how many periods T0 of the 
original signal are needed to obtain samples that form one period of x[n]? 
 
One period of x[n] in time index is N0; in time is N0T. How many periods of T0 we have 
in this? 
 
N0T/T0= q/gcd(q,p) T/T0 = q/gcd(q,p) p/q = p/gcd(q,p) 


