Problem 11.13

Sketch the magnitude characteristic of the bode plot for the transfer function.

$$H(jw) = \frac{100(jw)}{(jw+1)(jw+10)(jw+50)}$$

Suggested Solution

$$H(jw) = \frac{\frac{1}{S}(jw)}{(jw+1)(\frac{jw}{10}+1)(\frac{jw}{50}+1)}$$

Problem 11.18

Sketch the magnitude characteristic of the bode plot for the transfer function.

$$H(j\omega) = \frac{100(j\omega)^{2}}{(j\omega+1)(j\omega+10)^{2}(j\omega+50)}$$

Suggested Solution

$$H(j\omega) = \frac{100(j\omega)^{2}}{(j\omega+1)(j\omega+10)^{2}(j\omega+50)}$$
$$H(j\omega) = \frac{(1/50)(j\omega)^{2}}{(j\omega+1)(0.1j\omega+1)^{2}(0.02j\omega+1)}$$

poles:1,50 and 2@ 10 r/s

zeros: 2 @ dc

also: 1/50 = -34 dB

Problem 11.29

Find H(jw) if its amplitude characteristic is shown in fig 29.

Suggested Solution

The initial slope of -20 dB/dec will cut the odB line at w=40r/s. Therefore the gain is 40. The zeros are at w=50r/s and w=1000r/s. The pole are ar w=0 and there is a double pole at w=400.:

$$H(j\omega) = \frac{40(\frac{j\omega}{50} + 1)(\frac{j\omega}{1000} + 1)}{j\omega(\frac{j\omega}{100} + 1)^2}$$

Problem 11.50

Determine the value of C in the network shown in fig 11.50 in order for the circuit to be in resonance.

Suggested Solution

AT RESONANCE $V_S(t)$ AND $I_S(t)$ ARE IN PHASE. SO, THE IMPEDANCE SEEN BY THE SOURCE, Z_S , IS PURELY RESISTIVE.

$$Z_{S} = \left(R_{1} + \frac{1}{jwc}\right) \square \left(R_{2} + \frac{1}{jwL}\right) = R_{EQ} + jo$$

$$Z_{S} = \left(4 + \frac{1}{j2c}\right) \square \left(6 + j8\right)$$

$$Z_{S} = \frac{24 + \frac{4}{C} + j(32 - \frac{3}{C})}{10 + j(8 - \frac{1}{2C})} = \frac{N(jw)}{D(jw)} = R_{eq}$$

IF Zs IS RESISTIVE, THEN THE PHASE ANGLES OF N(jw) AND D(jw) MUST BE EQUAL.

$$\frac{32-3/C}{24+4/C} \Rightarrow 64C^2 - 25C + 1 = 0 \Rightarrow C = 45.2mF, 345.4mF$$