Problem 9.49

A transmission line with impedance 0.08 - j 0.25Ω is used to deliver power to a load. The load is inductive and the 3 load voltage is $220 \angle 0^{\circ}$ V rms at 60 Hz. If the load requires

Suggested Solution

$$Z_{line} = .08 + j.25$$

 $V_{Load} = 220 \angle 0^{\circ}$ at 60 Hz
 $P_{load} = 12kW$ $P_{Line} = 560kW$ Find pf at load.
 $P_{line} = 560 = I^{2}(.08)$ yeilds $I = 83.67A$
 $P_{load} = IV \cos \theta = 12kW = (220)(83.67) \cos \theta$
 $\theta = \cos^{-1} \frac{12000}{(220)(83.67)} = \boxed{.65 = pf \ lagging}$

Problem 9.52

Given the network in Fig P 9.52, determine the input voltage Vs.

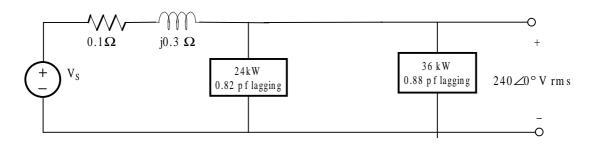
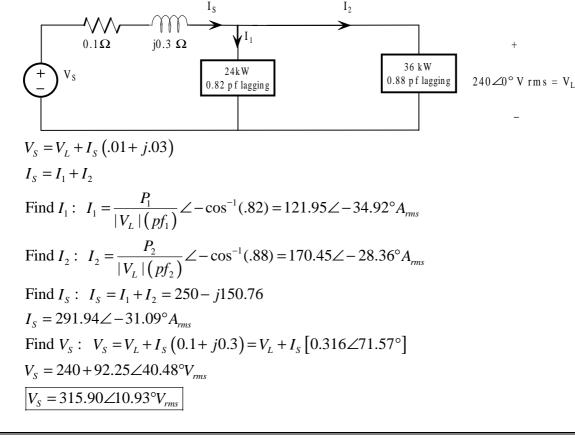



Figure P 9.52

Suggested Solution

Problem 10.5

A positive-sequence three-phase balanced wye voltage source has a phase voltage of $V_{an} = 240 \angle 90^{\circ} \text{ V rms}$. Determine the line voltages of the source.

Suggested Solution

$$V_{ab} = \sqrt{3} \cdot |V_{an}| \angle (\theta_{V_{on}} + 30^{\circ}) = 415.7 \angle 120^{\circ} \text{ V rms}$$

 $\mathbf{V}_{bc} = 415.7 \angle 0^{\circ} \text{ V rms}$

 $V_{ca} = 415.7 \angle -120^{\circ} \text{ V rms}$

Problem 10.19

In a balanced three-phase wye-wye system, the load impedance is $20 + j12 \Omega$. The source has an *abc*-phase sequence and $\mathbf{V}_{an} = 120 \angle 0^{\circ}$ V rms. If the load voltage is $\mathbf{V}_{AN} = 111.49 \angle -0.2^{\circ}$ V rms, determine the magnitude of the line current if the load is suddenly short circuited.

Suggested Solution

$$I_{aA} = \frac{111.49 \angle -0.2^{\circ}}{20 + j12} = 4.78 \angle -31.16^{\circ} \text{ A rms}$$

$$V_{line} = 120\angle 0^{\circ} - 111.49\angle -0.2^{\circ} = 8.52\angle 2.62^{\circ} \text{ V rms}$$

$$\mathbf{Z}_{line} = \frac{\mathbf{V}_{line}}{\mathbf{I}_{aA}} = \frac{8.52 \angle 2.62^{\circ}}{4.78 \angle -31.16^{\circ}} = 1.78 \angle 33.78^{\circ} \ \Omega$$

$$|\mathbf{I}_{aA_{SC}}| = \frac{120}{1.78} = 67.42 \text{ A rms}$$