Connecting resistors

$I=I_{1}+I_{2}$
R_{p} : equivalent nesistance for
a parallel connection of $R_{1} \& R_{2}$
Ohm's Law on $R_{1} \& R_{2}$:
ougnal: $I=\frac{V}{R_{1}}+\frac{V}{R_{2}}=V \underbrace{\frac{1}{R_{1}}+\frac{1}{R_{2}}})\}$ equavant $I=\frac{V}{B_{f}}$

Conclusion: $\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

$$
r R_{p}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}
$$

Cunent divisim: $\left\{\begin{aligned} & I_{1}=\frac{V}{R_{1}}=I \frac{1}{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)} \cdot \frac{1}{R_{1}} \\ &=I \frac{1}{\frac{R_{1}+R_{2}}{R_{1} \cdot R_{2}}} \cdot \frac{1}{R_{1}}\end{aligned}\right.$

Series Connection
(Voltage division)

$$
V=V_{1}+V_{2}
$$

R_{S} : equesadent nesstance for a series connection of $R_{1} \& R_{2}$
Ohn's Law:
onginal: $V=V_{1}+V_{2}=I_{5} \cdot R_{1}+I_{5} \cdot R_{2}$
quavalat:

$$
V=I_{d} \cdot R_{s}
$$

Conclution: $R_{S}=R_{1}+R_{2}$
Veltage division: $\left\{\begin{array}{l}V_{1}=I_{s} \cdot R_{1}=\frac{V}{R_{1}+R_{2}} \cdot R_{1} \\ a V_{1}=V \cdot \frac{R_{1}}{R_{1}+R_{2}}<V\end{array}\right.$

$$
V_{1}+V_{2}=V \cdot \frac{R_{1}}{R_{1}+R_{2}}+V \cdot \frac{R_{2}}{R_{1}+R_{2}}=V=I_{5} \cdot R_{2}=V \cdot \frac{R_{2}+R_{2}}{R_{1}+R_{2}}
$$

$$
=\left.I \quad \begin{array}{ll}
\left(R_{1}+R_{2}\right. & R_{1}+R_{2}
\end{array}\right|_{I_{2}=I \cdot \frac{R_{1}}{R_{1}+R_{2}}<I} ^{R_{1}+R_{2}}<I \quad l
$$

$\xrightarrow{\text { ongind }} \quad$ equivelant $\quad \frac{\text { Power Consumption }}{P=I \cdot V} \rightarrow$ oignal

Ch 25 Eletrical Crisuits
\rightarrow linear ciranits
Elentric coruits, 2 types
\rightarrow linear relationship

(2) $R_{S}^{\prime} \& C^{\prime}$ s: solve waing asymptotic analyjo
$(t \rightarrow 0 \& t \rightarrow \infty)$ $c t \rightarrow 0 \& t \rightarrow \infty$
or solution to differeatial quations.

1) Cirmit analyoi using parallel \& serres consection:

c) R_{23} is in series w/ R_{1}

$$
\Rightarrow R_{123}=R_{1}+R_{23}
$$

- Observations:
(i) Reduce orjginel cirmust to a simplest one with one battory \& one resstor
(ii) Then nse othm' Law to calculate $I_{1}=\frac{V}{R_{123}}=\frac{V}{R_{1}+\frac{R_{2} \cdot R_{3}}{R_{2}+R_{3}}}$

1) Use curent division $\left\{\begin{array}{l}I_{2}=I_{1} \cdot \frac{R_{3}}{R_{2}+R_{3}}=\frac{V}{R_{1}+\frac{R_{2}-R_{3}}{R_{2}+R_{3}}} \cdot \frac{R_{3}}{R_{2}+R_{3}} \\ I_{3}=I_{1} \frac{R_{2}}{R_{2}+R_{3}}\end{array}\right.$
2) Use voltage division:

$$
\begin{aligned}
& I_{2}=\frac{V_{23}}{R_{2}}=\frac{V \cdot \frac{R_{2} \cdot R_{3}}{R_{2}+R_{3}}}{R_{1}+\frac{R_{2} \cdot R_{3}}{R_{2}+R_{3}}} \cdot \frac{1}{R_{2}} \\
& I_{3}=\frac{V_{23}}{R_{3}}=\cdots
\end{aligned}
$$

2) Cinaurt analysis using loop on Node analyas:

For some circuits reduction to a simple $\sqrt{ } \sqrt{\vec{I}}\{R$ is not possible using only senses \& parole $V_{R_{1}}$ connect ion: (when there are more han on d battery or

observations: (i) $R_{1} \& R_{2}$ are not in serves
(not same cunents goring through
(ii) $R_{1} \notin R_{3}$ are not in in parallel (not same voltage a anoas both of then?)
Ground or zero potential (critical when. using loop or node analysis!)

Loop Analysis (2 hops in this example)
Kinchoff's down: total voltage dillenence acosis elements in a closed loop iso $\sum_{i} V_{i}=0$
\rightarrow fore V_{i} will be + some -
b Sign convention
\rightarrow Assume a direction for the cunt 1 in each loop! ($C W I_{1} \& I_{2}$ in left \& night loops, respectively)

1) If this current goes through battery from - to $\rightarrow \rightarrow$ battery voltage is positive. Negative of this cunent goo form + fo $^{-}$
2) Voltage dillenence a coos any visitor is always negate tue

Node Analyos
Kirchoff's Law: total current ink out of any node is a conourt is 0 $\sum_{i} I_{i}=0$
${ }^{i} I_{i}$ - done I_{i} will be + some 4 Sign convention

1) Any cunust going into node is positive
2) Any current leasing a node is negative
Assign a name for the voltage at each node (in this example: $\left.V_{a} \& V_{b}\right)$

Loop Analysis

- 2 loops in this cirant
- We have assumed cbekwise (CW) unnents in each loop: $I_{1} \& I_{2}$
kinchofft's Laws:

$$
\begin{align*}
& \text { Loft's Laws: } \tag{2}\\
& \text { Loop 1: }+V_{1}-I_{1} \cdot R_{1}-V_{2}-I_{1} \cdot R_{3}=0 \text { 1 }
\end{align*}
$$

Lop 2: $+V_{2}-I_{2} \cdot R_{2}=0$
Set of 2 equations with 2 unknowns: $I_{1} \& I_{2}$ (provided we are given $V_{1}, U_{2}, R_{1}, R_{2}, R_{3}$)
(2) $\rightarrow I_{2}=\frac{V_{2}}{R_{2}}$
(1) $V_{1}-V_{2}=I_{1}\left(R_{1}+R_{3}\right) \rightarrow I_{1}=\frac{V_{1}-V_{2}}{R_{1}+R_{3}}$

Node Analyois

- 2nodes in this circuit (a, b)
- we called voltages there $V_{a}, \underline{V_{b}}$

Krechaff's Laws:
Node a: $I_{1}-I_{2}-I_{2}^{\prime}=0$
Node b: $I_{2}+I_{2}^{\prime}-I_{1}=0$
(Fame equation as for node a!)
\triangle There is only one indepen dent
node in this cracuit!
Write currents in terns of voltages $V_{a} \& V_{b}$ or $V_{1} \& V_{2}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
I_{1}=\frac{V_{1}-V_{a}}{R_{1}} \\
V_{a}=V_{2}+I_{1} \cdot R_{3} \quad \text { (form rode a to } \\
I_{1} \\
I_{1}=\frac{V_{1}-\left(V_{2}+I_{1} \cdot R_{3}\right)}{R_{1}} \\
I_{1} R_{1}+I_{1} R_{3}=V_{1}-V_{2} \\
I_{1}=\frac{V_{1}-V_{2}}{R_{1}+R_{3}}
\end{array}\right.
\end{aligned}
$$

also $I_{2}=\frac{V_{2}}{R_{2}}$
i Node equation: a: $I_{1}-I_{2}-I_{2}^{\prime}=0$

$$
\frac{V_{1}-V_{2}}{R_{1}+R_{3}}-\frac{V_{2}}{R_{2}}-I_{2}^{\prime}=0
$$

Provided we are given $V_{1}, V_{2}, R_{\alpha}, R_{2}, R_{3}$

$$
\rightarrow I_{2}^{\prime}=\frac{V_{1}-V_{2}}{R_{1}+R_{3}}-\frac{V_{2}}{R_{2}}
$$

$\frac{\text { Circuit Analysis Example: }}{R_{1}}$

$$
\begin{aligned}
& \varepsilon_{1}=6 \mathrm{~V} ; \quad \varepsilon_{2}=1.5 \mathrm{~V} ; \quad \varepsilon_{3}=4.5 \mathrm{~V} \\
& R_{1}=270 \Omega ; R_{2}=150 \Omega ; \\
& R_{3}=560 \Omega ; R_{4}=820 \Omega
\end{aligned}
$$

Find current through R_{3} with direction (up a down)

1) Using Loop Analyoio:

How many loops? 2 loops \rightarrow assume CW directions $I_{1} \& I_{2}$ (needed to apply Align conventions for Kurchoff's law !)
Loop 1: $+\varepsilon_{1}^{v}-I_{1} \cdot R_{1}^{v}-\left(I_{1}-I_{2}\right) \cdot \tilde{R}_{3}-\varepsilon_{2}^{v}-I_{1} \cdot \tilde{R}_{2}=0(1)$, fytem of 2
Loop 2: $+\bar{\varepsilon}_{2}-\left(I_{2}-I_{1}\right) \cdot \bar{R}_{3}-I_{2} \cdot \check{R}_{4}-\varepsilon_{3}^{v}=0$ (2)
Find current through $R_{3}=$ find $I_{1} \& I_{2}$!
Algebraic manipulations:

$$
(1)+(2) \Rightarrow \quad \varepsilon_{1}-\varepsilon_{3}-I_{1} \cdot\left(R_{1}+R_{2}\right)-I_{2} \cdot R_{4} \equiv 0
$$

(2)

$$
\rightarrow \text { folve for } I_{1}: \quad I_{1}=\frac{\varepsilon_{1}-\varepsilon_{3}-I_{2} \cdot R_{4}}{R_{1}+R_{2}} \text { (3) }
$$

$$
\begin{aligned}
& \varepsilon_{2}-\varepsilon_{3}-I_{2} \cdot\left(R_{3}+R_{4}\right)+I_{1} \cdot R_{3}=0 \\
& \left.\varepsilon_{2}-\varepsilon_{3}-I_{2}\right)\left(R_{3}+R_{4}\right)+\frac{\varepsilon_{1}-\varepsilon_{3}+R_{2}}{R_{1}+R_{2}} R_{3}-I_{2} \frac{R_{3} R_{4}}{R_{1}+R_{2}}=0 \\
& \varepsilon_{2}-\varepsilon_{3}+\frac{\varepsilon_{1}-\varepsilon_{3}}{R_{1}+R_{2} R_{3}}=\frac{I_{2} \cdot\left(R_{3}+R_{4}+\frac{R_{3} \cdot R_{4}}{R_{1}+R_{2}}\right)}{I_{2}}=\frac{\varepsilon_{2}-\varepsilon_{3}+\frac{\varepsilon_{1}-\varepsilon_{3} R_{1}}{R_{1}+R_{2}}}{\left(R_{3}+R_{4}+\frac{R_{3} \cdot R_{4}}{R_{1}+R_{2}}\right)}
\end{aligned}
$$

Ply in given values: $I_{2}=\frac{-3+\frac{1.5}{420} 560}{\left(1380+\frac{560 \cdot 820}{420}\right)}=-0.4 \cdot 10^{-3} \mathrm{~A}$ or -0.4 mA
Use (3) for $I_{1}=\frac{1.5-\left(-0.4 \cdot 10^{-3}\right) \cdot 820}{420}=\frac{420}{4.36 \cdot 10^{-3} \mathrm{~A} \text { or } 4.36 \mathrm{~mA}}$
\Rightarrow Current through R_{3} is $I_{1}-I_{2}=4.36 \mathrm{~mA}-(-0.4 \mathrm{~mA})=4.76 \mathrm{~mA}$ positive downumed.

$$
\begin{aligned}
& \varepsilon_{1}=6 \mathrm{~V} ; \quad \varepsilon_{2}=1.5 \mathrm{~V} ; \quad \varepsilon_{3}=4.5 \mathrm{~V} \\
& R_{1}=270 \Omega ; R_{2}=150 \Omega ; \\
& R_{3}=560 \Omega ; R_{4}=820 \Omega
\end{aligned}
$$

Find cuneut through R_{3} with direction (up ar down)
2) Now using Node Analysis:

How many nodes? Visual inspection: one independent node a
(i) Assign directions (assume, choose) for the 3 cunents that meet at this node! $I_{1}(\text { in })_{i} I_{2}$ (out); I_{3} (out)
(ii) Ground location is essential in node analysis
\rightarrow To write the currents in terms of voltages (battery voltages and some other voltage)
Kirchoff's Law for current at node a : $I_{1}-I_{2}-I_{3}=0$
We don't know any of these cuneuts but we know the battery voltages: we need to write these enneuts in terms of \mathcal{E}_{1}^{\prime} \& $\& R_{s}^{\prime}$: (i) Ohm's Law @ $R_{L}: I_{L}=\frac{\Delta V_{1}}{R_{1}}=\frac{V_{A}-V_{a}}{R_{1}}=\frac{\widetilde{\varepsilon_{1}-I_{1} \cdot R_{2}}-\widetilde{\left(I_{3} \cdot R_{3}+\varepsilon_{2}\right)}}{R_{1}}$

(ii) Ohm's Low $\in R_{4}: \quad I_{2}=\frac{V_{a}-\varepsilon_{3}(b)}{R_{4}}=\frac{I_{3} R_{3}+\varepsilon_{2}-\varepsilon_{3}}{R_{4}}$

Kirchoff's Law for currents © node a:

$$
I_{1} \Theta I_{2} \Theta I_{3}=0 \text { r } \frac{\varepsilon_{1}-\varepsilon_{2}-I_{3} R_{3}}{R_{1}+R_{2}} \Theta \frac{I_{3} R_{3}+\varepsilon_{2}-\varepsilon_{3}}{R_{4}} \Theta I_{3}=0
$$

Algebraic manipulation to solve for $I_{3}=$

$$
\begin{gathered}
\frac{\varepsilon_{1}-\varepsilon_{2}}{R_{1}+R_{2}} \Theta \frac{\varepsilon_{2}-\varepsilon_{3}}{R_{4}} \Theta I_{3}\left(\frac{R_{3}}{R_{1}+R_{2}}+\frac{R_{3}}{R_{4}}+1\right)=0 \\
I_{3}=\frac{\frac{\varepsilon_{1}-\varepsilon_{2}}{R_{1}+R_{2}}-\frac{\varepsilon_{2}-\varepsilon_{3}}{R_{4}}}{\left(\frac{R_{3}}{R_{1}+R_{2}}+\frac{R_{3}}{R_{4}}+1\right)}=\frac{\frac{4.5}{420}-\frac{-3}{820}}{\left(\frac{560}{420}+\frac{560}{820}+1\right)} \\
I_{3}=\oplus 4.76 m A \text { downward or © } R_{3}!
\end{gathered}
$$

Analysis of Commits with Resistors \& Capacitors:
$\rightarrow\left\{\begin{array}{l}\text { Asymptotic analysis }\left\{\begin{array}{l}t \rightarrow 0 \\ \text { when switch is closed or circuit starts } \\ t \rightarrow \infty \\ \text { when switch hal been closed } \\ \text { sufficiently long }\end{array}\right. \\ \text { Solution of a differential equation }\end{array}\right.$

What happens when switch is closed? a capacitor C is connected to commit. E for e.m.f (elan tromotive force)

25.60

Determine went in R_{2} when $\left\{\begin{array}{l}\text { switch is closed uncharged } t=0 \\ \text { after it is closed sufficuatly long } t \rightarrow \infty\end{array}\right.$
(i) $e t=0$ switch is just closed: Q still $0, \vec{E}=0, V_{c}=0 \rightarrow$ both capacitors $C_{1} \& C_{2}$ act like shrit-cizu.t! Between thenar terminals \rightarrow like a wire
et =0

this "wee shortcromits $R_{2} \& R_{3}$ Wires offer very low or zero vas stane to currents. $\Rightarrow R_{2} \& R_{3}$ act like they ae not there! (no current through them or $I_{2}=I_{3}=0$)
(iii) $@ t \rightarrow \infty: C_{1} \& C_{2}$ are fully charged \rightarrow no fur then curent through them they act like open warcurts:

HW 4 updated: Ch 27: Questions: 1, 8
Problems: $14,37,39,42,44,68$
25.75

Write loop \& node equations \& find the time constant

Time constant $\Sigma($ tan $)$: time for cunent across the capacitor to

$$
\dot{\varepsilon} \frac{\square=R C}{T_{C}^{C}} \Rightarrow\left\{\begin{array}{l}
\text { decay by a factor of } e \\
I(t)=I_{0} e^{-\frac{t}{R C}} \\
I(t=R C)=I_{0} e^{-1}=\frac{I_{0}}{e} \Rightarrow \tau=R C
\end{array}\right.
$$

In 25.75 the cranit has 2 resistors $R_{1} \& R_{2} \Rightarrow \tau$ is different!

$$
\left\{\begin{array}{l}
\text { 1) } \varepsilon-I_{1} \cdot R_{L}-\left(I_{1}-I_{C}\right) \cdot R_{2}=0 \\
\text { 2) }-\left(I_{C}-I_{1}\right) \cdot R_{2}-V_{C}=0
\end{array}\right.
$$

Solve for $I_{c}(t)$ to find e

$$
\begin{align*}
& \text { 2) } \Rightarrow-V_{C}=\left(I_{c}-I_{1}\right) \cdot R_{2} \\
& C \equiv \frac{Q}{V_{c}} \Rightarrow-\frac{Q}{C}=-\left(I_{1}-I_{c}\right) \cdot R_{2} \text { (a) } \\
& \text { 1) da) } \Rightarrow \varepsilon-I_{1} \cdot R_{1}-\frac{Q}{C}=0 \Rightarrow I_{1}=\frac{\varepsilon-\frac{Q}{C}}{R_{1}} \tag{b}
\end{align*}
$$

$$
\begin{aligned}
& \text { b) in a) } \frac{\hat{d}}{\frac{1}{C}}=I_{1} \cdot R_{2}-I_{c} \cdot R_{2} \stackrel{(b)}{=}\left(\varepsilon-\frac{Q}{C}\right) \cdot \frac{R_{2}}{R_{1}}-I_{c} \cdot R_{2} \\
& \left.\left.\frac{d}{d t}(Q)\left(1+\frac{R_{2}}{R_{1}}\right)=\varepsilon \frac{R_{2}}{R_{1}}-I_{c} \cdot R_{2}\right] \Rightarrow I_{c} \frac{1}{c}\left(1+\frac{R_{2}}{R_{1}}\right)=-R_{2} \frac{d I_{c}}{d t} \Rightarrow \int\left[-\frac{d t}{R_{c}\left(1+R_{2}\right.} R_{1}\right)=\frac{d C_{c} c}{I_{c}}\right] \\
& \begin{aligned}
\Rightarrow & \ln I_{C}=-\frac{\left(1+\frac{R_{2}}{R_{1}}\right)}{R_{2} C} t^{+\operatorname{contt}}=-\frac{\frac{R_{1}+R_{2}}{R_{1}}}{R_{2} C} t^{+ \text {cont }}=-\frac{R_{1}+R_{2}}{R_{1} R_{2} C} t \stackrel{+ \text { cont }}{=} \frac{-t}{\frac{R_{1} R_{2}}{R_{1}+R_{2}} \cdot C}+\operatorname{con} t .
\end{aligned}
\end{aligned}
$$

$I_{C}(t)=I_{0} e^{-\frac{R_{1} R_{2}}{R_{1}+R_{2}} \cdot C \Rightarrow \text { Time cons } \tan \dot{t}_{i} \quad C=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \cdot C \text { r }}$

Node equation: one: $I_{1}-I_{2}-I_{C}=0$ (1)

Write $I_{L} \in I_{2}$ in terms of voltages $\varepsilon \& V_{C}$, solve for $I_{C}(t)$ to find r

$$
\begin{aligned}
& \left.\frac{d}{d t}\left[\frac{\varepsilon}{R_{1}}-\frac{Q}{C}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-I_{c}=0\right] \Rightarrow-\frac{I_{c}}{c}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{d I_{c}}{d t}=0 \Rightarrow\left[\frac{d I_{c}}{I_{c}}=-\frac{d t(1}{c}+\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\right] \\
& \ln I_{c}=-\frac{t}{c}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\operatorname{con} t \quad \Rightarrow I_{c}(t)=I_{0} e^{-\frac{t}{c}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)}
\end{aligned}
$$

time constant: $\quad \tau=C\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}$

$$
\text { or } \begin{aligned}
\zeta & =C\left(\frac{R_{1}+R_{2}}{R_{1} \cdot R_{2}}\right)^{-1} \\
C & =C \frac{R_{1} R_{2}}{R_{1}+R_{2}} \text { fame no with } \text { hop equations! }
\end{aligned}
$$

Ch26 Magnetic Field:

Electuc field

Density of electure freld lines is higher closer to charge \sim fiuld strength decereas awiny form charge (inversesghane Lew), …

Electisc dipole: all field
lines are closed
Effect: change dirention of (moving) charges
(ink droplets in printers)
$\vec{F}_{E}=q \cdot \vec{E} \quad(\vec{E} \cdot$ elateric field)

Magnetic field

No equivalent: magnetic monopole has not been found a there is no single magnefic "pole"

Magnetic dipole: all field lines are closed

Effect: keep moving charges
in circuler trajutories
(mannetic confinement for fusion eners \rightarrow)

$$
\begin{aligned}
& \text { Non energz }) \\
& \vec{F}_{B}=q(\vec{v}) \times(\vec{B} \text { manotic } \\
& \text { Held }
\end{aligned}
$$

A charge can feel the electric field when it is moving or NOT field when moving $\vec{v} \neq 0$ (76)
(i) $q=0$ Neutral particles don't feel the magnetic field
(ii) A static charged particle $q \neq 0$ but $\vec{v}=0$
(iii) A moving charge going parallel to the magnetic fold: $\theta=0^{\circ} ; 180^{\circ} \rightarrow \sin \theta=0 \Rightarrow \vec{F}_{B}=0$
\vec{B} Charged particle going though a region of uniform magnetic field: \vec{B} pointing out of page ©

(out of pye)

- - Region of unfrom \vec{B}

$$
\vec{B}=B \hat{k}
$$

$\odot \quad \odot$
(1) A charge $+q$ travels in +y direction:

$$
\begin{aligned}
& \vec{v}=v \hat{\jmath} \\
& L \vec{F}_{B}=q \vec{v} \times \vec{B}=q v B \underbrace{\hat{\jmath} \times \hat{k}}_{\hat{\imath}}
\end{aligned}
$$

Effect of \vec{B} : pull charged particle in
$+x$ direction : adding a v_{x} do anestion: adding a v_{x} to an originally only
v_{y} vebouty!

Effect of \vec{B} :

UCM: particle travels on a circular trajectory at constant speed (but not constant velocity)
\rightarrow equines a radial acceleration towards center of curvature $\Rightarrow a=\frac{v^{2}}{R} \quad$ (R: radius of cowatiure)
If a charged particle travels in a ${ }^{R}$ eon of uniform $\vec{B} \rightarrow F_{B}$ provides this radial acceleration

$$
\begin{aligned}
& F_{B}=q \psi+B=m \cdot \frac{v^{2}}{R} \Rightarrow R=\frac{m v}{q B} \\
& \vec{v} \perp \vec{B} \Rightarrow \sin \theta=\sin \rho_{0}=1
\end{aligned}
$$

Particle physico: subatomic particles: e, phi muons, neutrinos, eff.

if same mass m, lases $v \rightarrow$ larges orbit (radius R) $\left\{\begin{array}{l}\text { 'farmer' lanes } m \rightarrow \text { larges } \\ \text { obit. }\end{array}\right.$

- R : orbital radius; T : orbital period: time to complete one obit: $T=\frac{2 \pi R}{v}=\frac{2 \pi R}{\frac{q B R}{m}}=\frac{2 \pi \mathrm{~m}}{q B}$

Calumation of Magnetic Ficld:

Elentric field
Sowne \rightarrow charje

$$
d \vec{E}=\frac{k d q}{r^{2}} \hat{r}
$$

Conomb's Law inusse-spuane law $: \sim \frac{1}{r^{2}}$ $\hat{\imath}$ radal unit vecter

Miguetie fied
Source \rightarrow maving cherge a cunent

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I \vec{d} \times \hat{r}}{r^{2}}
$$

Brot-Savart's Law inverse-spure law $: \sim \frac{1}{r^{2}}$

$$
\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}}
$$

\rightarrow permeabilty in Vacnum drection of field: $\overrightarrow{d l} \times \hat{r}$ \Rightarrow mannotic fiedd due to a line of cument waps avound the unnent (RHR)
line f
(moving
chorye)
Dustion of \vec{B} in velation to its tansee I is given by RHR if RH fingers clove in dnection of \vec{B}, thumb points in the direction of sousce I !

Magnetic field due to a loop of cunent (superposition

Notes: (i) $\quad \overrightarrow{l l} \times \hat{r}=d l 1 \cdot \sin 90^{\circ}=d l$ cunents is $2 d B \cos \theta \hat{\imath}$
(ii) $\cos \theta=\frac{a}{r}$
(iii) total field due to top \& bottom element of concent is $2 \frac{\mu 0}{4 \pi} \frac{I d l}{i^{2}} \frac{a}{2} \hat{i}$ Total, fred \vec{B} due to whole wing:

$$
\begin{aligned}
& \vec{B}=\int_{\substack{\text { Half } \\
\text { kif }}} d \vec{B}=\frac{2 \mu_{0} I a}{2 / \pi r^{3}} \hat{\imath} \int_{\substack{H_{a} \text { kIf } \\
\text { Nay }}} d l=\frac{\mu_{0} I a}{2 T / r^{3}} H a \hat{\imath}=\frac{\mu_{0} I a^{2}}{2 r^{3}} \hat{\imath} \\
& \vec{B}=\frac{\mu \rho}{2} \frac{I_{a}^{2}}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{\imath}
\end{aligned}
$$

Very far andy from ring of concent: $x \gg a \rightarrow x^{2}+a^{2} \approx x^{2}$

$$
\vec{B}=\frac{\mu_{0}}{2} \frac{J_{a^{2}}}{\left(x^{2}\right)^{3 / x}} \hat{\imath}=\frac{\mu_{0}}{2} \frac{I a^{2}}{x^{3}} \quad \text { or } B \sim \frac{1}{x^{3}} \text { invesse-cube }
$$ electric dipole!

26.44 Application of Lorentz's force: $\quad \vec{F}_{B}=q \vec{v} \times \vec{B}$

(BD)

$$
\begin{aligned}
& \vec{v}_{2}= \pm v_{2} \hat{\imath} \quad\left(v_{2} ?\right) \\
& \vec{F}_{B_{2}}=2.8 \cdot 10^{-16} \mathrm{~N} \hat{\jmath}
\end{aligned}
$$

Observations: (i) $\vec{F}_{B}=q \vec{v} \times \vec{B}$ by definition of noossporduct \vec{F}_{B} is \perp to both $\vec{v} \& \vec{B}$ (b/c RHR)

Conclusions: $\quad \vec{v}_{2}=-v_{2} \hat{\imath}$!

Continue with document camera
26.44 (Cont.)

Conclusions: (RHR) $\left\{\begin{array}{l}\vec{v}_{2}=-v_{2} \hat{i} \quad \text { (q>0, protons) } \\ \vec{B}=B \hat{k}\end{array}\right.$
Proton\#1: $\quad \vec{F}_{q=+e}=\underbrace{7.4 \cdot 10^{-16}} \mathrm{~N} \hat{i}=e \vec{v}_{1} \times \vec{B}=\underbrace{e v_{1} B}_{\hat{i}}(\underbrace{+\hat{\jmath} \times \hat{k}})$

$$
\begin{aligned}
& L 7.4 \cdot 10^{-16}=1.6 \cdot 10^{-19} \cdot 3.6 \cdot 10^{4} \mathrm{~B} \\
& B=\frac{7.4 \cdot 10^{-16}}{1.6 \cdot 3.6 \cdot 10^{-15}}=\frac{0.74}{1.6-3.6}=0.128 \mathrm{~T} \\
& \text { (Tesla) }
\end{aligned}
$$

Proton |12:

$$
q=+e
$$

$$
\begin{aligned}
2.8 \cdot 10^{-16} & =1.6 \cdot 10^{-14} v_{2} 0.128 \\
v_{2} & =\frac{2.8 \cdot 10^{-16}}{1.6 \cdot 10^{-19} \cdot 0.128}=\frac{2.8}{1.6 \cdot 0.128} 10^{3} \\
v_{2} & =1.37 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Cyclotron (awiselerate charged particles to high speed by running them through cizular orbits multiple fires)
\rightarrow We un also accelerate changed particles to high speed using an electro field $\& a$ very long funnel
\rightarrow But cyclotron uses $\vec{B} \& \vec{E}$ can do the job in a smaller area like a hospital lab.

lariat obit
highostspeed Cyclotron
Use radius of
Clydoton R

1) Two dee's with a gap l/w them, where an alternating eluthre frill is apphed:
Lift, night, left, etc..
2) Aunform \vec{B} fill the dee's pointing out of page
3)

$$
\begin{aligned}
& r=\frac{m v}{q B} \rightarrow R=\frac{m v_{\text {max }}}{q B} \\
\rightarrow & v_{\text {max }}=\frac{g B R}{m} \\
\rightarrow & K \varepsilon_{\text {max }}=\frac{1}{2} m\left(\frac{q B R}{m}\right)^{2}=\frac{(q B R)^{2}}{2 m}
\end{aligned}
$$

Note: for $v \ll c=3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$: Newtonian mechanics applies butif $r \rightarrow C$: we need relativistic connections. \rightarrow synchrotron

Velocity Selector:
We can pick among those ions with different velocities, particles ones with a selected velocity by cunning them thous C a region fueled with both $\vec{E} \& \vec{B}$.

For example, to pick among ions with valocortres in random direction, those with velocities in the x-direction:

For there ions with $\vec{v}=v \hat{\imath}\left\{\begin{array}{l}\vec{F}_{E}=q \vec{E}=q E \hat{k} \\ \vec{F}_{B}=q v B(\underbrace{(-\hat{j} \hat{j}}_{-\hat{k}})=-q v B \hat{k}\end{array}\right.$
$\rightarrow \vec{F}_{\text {net }}=\vec{F}_{E}+\vec{F}_{B}=(q E-q u B) \hat{k}^{-\hat{k}}$ could be zero If $\vec{F}_{\text {ret }}=0 \rightarrow$ Dons go through unaffected:

$$
E-V B=0 \quad \sim \quad V=\frac{E}{B}
$$

Those ions with $\vec{v}=\frac{E}{B} \hat{i}$ then me "selected".

Ch 26 (cont.)
Calculations of frelds

Electric
(i) Vector superposition \& Conlomb's law
(ii) Gans' Law

$$
\underbrace{\oint \vec{E} \cdot d \vec{A}}_{\substack{\left(\phi_{E} \\(\text { eletrice fhax) }\right.}}=\frac{\text { qenclosed }}{\varepsilon_{0}}
$$

Gamusan surface so that $\oint_{E}=E \cdot A$
$L\left\{\begin{array}{l}\vec{E} \text { constant on } G-\text {-sinface } \\ \vec{E} .\end{array}\right.$ on E II d \vec{A}

- Srde task: caluubte chasge enclosed by G-surgae
(iii) Electrie potential V (scalor) (arthmetic addition)

$$
\begin{aligned}
& \vec{E}=-\vec{\nabla} V \\
& \vec{\nabla} \equiv \frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
\end{aligned}
$$

(i) Veitor superposition \& Brot-Savart's Law
(ii) Ampere's Law

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{\text {encloned }}
$$

Ampervan loop so that $\oint \vec{B} \cdot l \overrightarrow{C l}=B l$
$L\left\{\begin{array}{l}\vec{B} \text { constant abong loop } \\ \vec{B} \text { tangential to Amperian } \\ \vec{B} \| d \vec{l}\end{array}\right.$

- Lide task : calcubte cunent endlosed by $A-l o o p$.
(iii) Vector potential \vec{A}

$$
\vec{B}=\vec{\nabla} \times \vec{A}
$$

4 Rotational of \vec{A}
o cuol of \vec{A}

Magnetic field due to a long line of unsent I using Ampere's Law:
 in red.

La) Ampertan loop $=\left\{\begin{array}{l}\vec{B} \text { constant } \\ \vec{B} \text { tangential }\end{array}\right\}$ a bong
\rightarrow Circle of radius r centered e current
(ii) If θ is an angle on $X Z$ plane starting from x-axis $\Rightarrow \hat{\theta}$ is a unit vector to indicate direction of magnetic field: $\vec{B}=B(r) \hat{\theta}$
(iii) Ampere's Law $\left\{\begin{array}{l}\text { a) LHS: } \\ \text { b) RHS: }\end{array}\right.$

$$
\rightarrow \vec{B}=\frac{\mu_{0} I}{2 n \pi} \hat{\theta}
$$

26.66) Coaxial cable:

$$
\text { Current } I \rightarrow \vec{B}!\left\{\begin{array}{l}
0<n<a \\
a<r<b \\
n>b+c
\end{array}\right.
$$

 in each of these 3 veins to fud magnetic field!
a) Inside inner conduetor: $0<r<a$

BHS of Ampere's Law: μ_{0} Ienclosed

$$
\begin{aligned}
& \text { Ienclosed }=\mu_{0} I \cdot \frac{A r^{2}}{H a^{2}} \\
& \text { iproportional to area } \\
& \text { enilosed by Amperion loop }
\end{aligned}
$$

enilosed by Amperion loop

$$
\rightarrow B-2 \pi R_{2}=\mu_{0} I \frac{r^{\not \alpha}}{a^{2}} \rightarrow B=\frac{\mu_{0} I}{2 \pi a^{2}} r \text { B lineanly inneaser with } s \text { ! }
$$

b) B/w inner solid conchutor \& outer hollow shell conduefor: $a<r<b$

Ampescan loop = vide of rachins r centerel at axis of coaxid cable (shown in real)
$\triangle \vec{B}$ consficent \& tangentiol to this

$$
\text { loop } \rightarrow \oint \vec{B} \cdot d \vec{l}=B \cdot 2 \pi r
$$

RHS of Ampere's Low: $\mu_{0} I_{\text {encloed }}=\mu_{0} I$

$$
\rightarrow B \cdot 2 \pi_{2}=\mu_{0} I \Rightarrow B=\frac{\mu_{0} I}{v_{0}}
$$

(feld due to lory line of cunenf)
\rightarrow Curent in the outes condueting shell doesn't, affeet this intervor region!
c) \vec{B} outside outer conclucting, shell $r>b+c=$

Amperan loop: cine of radius so centered Q coaxial cable axis

$$
\begin{aligned}
& \oint \vec{B} \cdot d \overrightarrow{C l}=B 2 \pi r \\
& \mu_{0} I_{\text {endorsed }}=\mu_{0}(I-I)=0 \\
& B \cdot N_{r}=0 \Rightarrow B=0
\end{aligned}
$$

effect of coaxial cable is to shield the environment from the fields crated by current ing ide.
26.74

\rightarrow CunentIis wappiry around shell \rightarrow CHR $=\vec{B}$ points along axis to the left: \rightarrow remember \vec{B} due to a ring of cuneut points along axis of ring away from it
a) $B(r)$? $r<R$: Amperan loop is a rectangle of sides $a \& b$

$$
\left\{\begin{aligned}
\oint_{A B C D} \vec{B} \cdot d \vec{l} & =\int_{A B}^{\vec{B}} \cdot d \vec{l}+\int_{B C}+\int_{C D}+\int_{P A} \int_{0}\left\{\begin{array}{l}
\text { aide } \\
\\
\\
=B b+ \\
\mu_{0} I_{\text {enclave }}
\end{array}=\mu_{0} I \cdot \frac{b}{l} \quad\left\{\begin{array}{l}
\text { po } \\
\text { the of } \\
\vec{B} \\
\text { the of }
\end{array}\right.\right.
\end{aligned}\right.
$$

\rightarrow diode of length b (one side) is
the other trade of length b is outside shell where
$\vec{B}=0$ the other two sades of length a are \perp to \vec{B}

$$
\Rightarrow B \cdot \sigma=\mu_{0} I \frac{b}{l} \rightarrow B=\frac{\mu_{0} I}{l}
$$

b) $B(r) \quad r>R \quad B=O$

