Refrigerators: reversed heat engine

\[\begin{array}{c}
\text{Th} \\
\uparrow \\
\text{(kitchen)}
\end{array} \quad \begin{array}{c}
\text{TC} \\
\uparrow \\
\text{(inside fridge)}
\end{array} \quad \begin{array}{c}
\text{Qe} \\
\uparrow \\
\text{(electrical work on fridge)}
\end{array} \quad \begin{array}{c}
\text{W} \\
\end{array} \]

C.O.P. (Coefficient of Performance): \[\text{C.O.P.} = \frac{Q_e}{W} \]

2nd Law of T.D.: it is impossible to transfer heat from a cold reservoir to a hot reservoir without requiring any work.

3rd Law of T.D.:

\[\Delta S = \int \frac{dQ}{T} \]

Charge of entropy b/w states 1 & 2

Entropy of a closed system can never decrease \((\Delta S \geq 0)\)
3rd law of T.D.: disorder in the universe gets increased.

Heat engine: operate in cycle (2nd half of cycle is to bring engine in system back to original state) \(\rightarrow\) representation in PV diagram is a closed loop!

Type 1: Carnot engine
Type 2: Otto cycle

\(4\) reversible process (2 isothermal, 2 adiabatic)

\(4\) reversible process (2 adiabatic, 2 isovolumic)
Carnot Engine: efficiency by a Carnot engine is the maximum achievable so far. \(\eta_{\text{Carnot}} = \eta_{\text{max}} \)

\[
\eta_{\text{Carnot}} = \eta_{\text{max}} = 1 - \frac{|Q_c|}{|Q_h|} = \frac{W}{Q_h}
\]

(definition of efficiency: \(\eta = \frac{W}{Q_h} \))

1st Law of TD:

\[
|Q_c| = |Q_{cd}| = nRT_c \ln \left(\frac{V_c}{V_d} \right)
\]

 Isothermal process:

\[
DU_{cd} = 0 \rightarrow Q_{cd} = W_{cd} = nRT_c \ln \left(\frac{V_b}{V_c} \right)
\]

\[
|Q_c| = |Q_{cd}| = nRT_c \ln \left(\frac{V_c}{V_d} \right)
\]

\[
\Delta U_{AB} = \text{change of total energy in B & P, ideal gas} \rightarrow \Delta U_{AB} = 0 \rightarrow Q_{AB} = W_{AB}
\]

(4th Law of TD)

\[
Q_{AB} = nRT_h \ln \left(\frac{V_b}{V_a} \right)
\]

\[
|Q_h| = |Q_{AB}| = nRT_h \left(\ln \left(\frac{V_b}{V_a} \right) \right)
\]
Before plugging these, $|Q_h|, |Q_c|$ into the Carnot, we will derive the relationships V_A, V_B, V_C, V_D: they are related because $B \rightarrow C \rightarrow D \rightarrow A$

\[
\begin{align*}
B \rightarrow C: & \quad \text{adiabatic expansion:} & TV^{3-1} &= \text{constant} \\
& & T_B V_B^{3-1} &= T_C V_C^{3-1} \\
& & \left(\frac{V_B}{V_C}\right)^{3-1} &= \frac{T_C}{T_B} = \frac{T_C}{T_B} \\
D \rightarrow A: & \quad \text{adiabatic compression:} & T_D V_D^{3-1} &= T_A V_A^{3-1} \\
& & \left(\frac{V_D}{V_A}\right)^{3-1} &= \frac{T_A}{T_D} = \frac{T_D}{T_C} \\
& & \frac{V_B}{V_C} &= \frac{V_A}{V_D} \\
& & \frac{V_B}{V_A} &= \frac{V_C}{V_D}
\end{align*}
\]

\[
\eta_{\text{max}} = \eta_{\text{Carnot}} = 1 - \frac{|Q_c|}{|Q_h|} = 1 - \frac{\frac{mRT_c \ln \left(\frac{V_C}{V_D}\right)}{\frac{mRT_h \ln \left(\frac{V_B}{V_A}\right)}}}{T_C}{T_H} \\
\text{Max efficiency for any heat engine}
\]
Otto Cycle Engines

\[\epsilon_{\text{Otto}} < \epsilon_{\text{Comet}} = \epsilon_{\text{max}} \]

Entropy:

\[\Delta S_{12} = \int_{1}^{2} \frac{dQ}{T} \]

1) Isothermal:

\[\Delta S_{12} = \frac{1}{T} \int_{1}^{2} dQ = \frac{\Delta Q}{Q_2 - Q_1} \]

2) Isovolumetric:

\[C_v = \frac{1}{n} \frac{dQ}{dT} \]

\[-dQ = nC_v dT \]

\[\Delta S_{12} = \int_{1}^{2} \frac{dQ}{T} = nC_v \int_{1}^{2} \frac{dT}{T} = nC_v \ln \left(\frac{T_2}{T_1} \right) \]

End of block of T.O.

Ch 16: Temp. & heat

Ch 17: 1st Law of T.O.: \[\Delta U = Q - W \]

Ch 19: Thermal Behavior of Matter: \[Q \rightarrow \{1) DT 2) \text{Phase change}\} \]

Ch 29: 2nd (heat engines, refrigeration) \[\text{Laws of T.O.} \]

\[\alpha, \beta \]
Ch 20 Electric Charge, Force, Field

- **Charge:** is a multiple of e or e^+ (Coulomb $\rightarrow C$)
- **Charge distribution:** a discrete or continuous group of charge
- **Fields (electric):** charges interact through their electric field E.
- **Force (electrice):** $F = qE$ (N): force felt by a test charge of value q in the presence of E

Electron is the elementary charge: $e^- = 1.6 \times 10^{-19}$ C

SI unit for a charge (Coulomb):

We have electrons, we are neutral or not electric, there are also positive charges.

The proton has a positive charge $e^+ = 1.6 \times 10^{-19}$ C

2 types of charges (electrical): $+$ and $-$

Charge distributions interact through their electric fields:

- **Electric field E_1:** pointing away from the distribution
- **Electric field E_2:** also away from the distribution ($+$ charge)

These two charge distributions through their electric fields E_1 & E_2 will repel each other.
\[\mathbf{E}_1 \text{ pointing towards the charge distribution (negative)} \]

These two distributions through their electric fields \(\mathbf{E}_1 \) and \(\mathbf{E}_2 \) will repel each other.

\[\rightarrow \text{ same type of charge } (+ \delta + \text{ or } -\delta -) \text{ repel each other.} \]

\[\rightarrow \text{ opposite type of charge } (+\delta - \text{ or } -\delta +) \text{ attract each other.} \]

Field lines can go from \(+Q_1\) to \(-Q_2\).

\[\text{If any problem } \rightarrow \text{ can stay as close as possible} \]

\[\rightarrow \text{ opposite charges attract each other through their electric fields.} \]
How much work on gas in this cycle: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$?

$$W_{1231} = W_{12} + W_{23} + W_{31}$$

W$_{12}$: adiabatic

$$W_{12} = nRT \ln\left(\frac{V_1}{V_2}\right) = nRT \ln\left(\frac{V_1}{V_2}\right) = \frac{P_1 V_1 \ln\left(\frac{V_1}{V_2}\right)}{R T_1}$$

1$\rightarrow2$: adiabatic

$$P_1 V_1^\gamma = P_2 V_2^\gamma \Rightarrow \left(\frac{V_1}{V_2}\right)^\gamma = \frac{P_2}{P_1} \Rightarrow \frac{V_1}{V_2} = \left(\frac{P_2}{P_1}\right)^{\frac{1}{\gamma}}$$

$$\Rightarrow W_{12} = 50 \times 10^3 \times \frac{25}{1000} \ln\left(3^{\frac{1}{1.67}}\right) = \frac{50 \times 25}{1.67} \ln 3 = 822 J$$

1000L in 1 m3

$$W_{12} = \frac{P_1 V_1 - P_2 V_2}{\gamma - 1} = \frac{1 - 3 \times 3^{\frac{1}{1.67}}}{0.67} = \frac{1 - \left(\frac{3}{3^{\frac{1}{1.67}}}\right)}{0.67} \times 50 \times 16 \times \frac{25}{10}$$

$$= \left[1 - \frac{3^{\frac{1}{1.67}}}{3}\right] \times 100 = 1033 J$$

$$W_{1231} = 822 J - 1033 J = -211 J$$

Work done by gas is: $-211 J$
Quantitative description of the electric field \mathbf{E}

Electric field due to a charge Q at a point r from Q has intensity kQ/r^2, direction along the radial direction from Q and point r: \hat{n} (unit vector).

$$\mathbf{E} = \frac{kQ}{r^2} \hat{n}$$

$K =$ electric constant \(9 \times 10^9 \text{ Nm}^2\text{/C}^2\)

$Q =$ net charge creating the field

$r =$ separation from charge to point where field is measured

$\hat{n} =$ radial unit vector (always points away from the charge)

Electric field around a $+Q$:

Higher line density @ 1 (compared to 2) indicate stronger electric field @ smaller separation r to the charge

Note: radial unit vector \hat{n} always points away from the charge or center where the charge is located. Direction of \mathbf{E} is parallel to \hat{n} if Q is positive. Opposite direction if Q is negative.
Electric field

\[\mathbf{E} = k \frac{Q}{r^2} \hat{\mathbf{r}} \]

Gravitational field

\[\mathbf{g} = \frac{G M}{r^2} \hat{\mathbf{r}} \]

Similarities:
- Inverse square law
- Radial direction (\(\hat{\mathbf{r}} \))
- Electric constant
- Proportional to charge
- In this field

Differences
- Charge can be + or -
 - Field can be attractive (\(Q < 0 \))
 - or repulsive (\(Q > 0 \))
- \(k = 9 \times 10^9 \text{Nm}^2\text{C}^{-2} \)
- Mass has no sign.
 - Grav. field is always attractive.
- \(G = 6.67 \times 10^{-11} \text{Nm}^2\text{kg}^{-2} \)
Calculation of the Electric Field (Direct method):

1. Due to one charge
2. Due to two charges (diplde)
3. Continuous ring of charge
4. Infinite line of charge

Electric field by one charge, q_1

\[\hat{E}_a = k \frac{q_1}{r_a^2} \hat{r}_a \]

Can calculate \hat{E} at any point around q_1

\[\hat{E}_b = k \frac{q_1}{r_b^2} \hat{r}_b \]

For a second charge (test charge) q_{test} comes into the picture (field created by q_1) it will feel a force:

\[\vec{F} = q_{test} \hat{E} \]

- Attractive if $q_{test} > 0$
- Repulsive if $q_{test} < 0$

In a field created by $-q_1$, the test charge q_{test} would feel a force:

\[\vec{F} = q_{test} \hat{E} \]

- Attractive if $q_{test} > 0$
- Repulsive if $q_{test} < 0$
F = \vec{q}_1 \vec{E}_a = \frac{k \vec{q}_1 \vec{q}_2}{r^2} \hat{\mathbf{r}}$

This is the force applied by \(q_1 \) on \(q_2 \).

By 2nd Newton's Law (action & reaction):

\(q_2 \) applies a same force on \(q_1 \), in the opposite direction:

\[
\vec{F} = -k \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}
\]

Electric field by two positive charges: along the mid line by the two charges.

Electric field @ \(P \) due to charge \(\#1 \):

\[
\vec{E}_1 = k \frac{q_1}{r^2} \hat{\mathbf{r}}_1 = E_{1x} \hat{\mathbf{i}} + E_{1y} \hat{\mathbf{j}} = E_1 \cos \alpha \hat{\mathbf{i}} - E_1 \sin \alpha \hat{\mathbf{j}}
\]

Electric field @ \(P \) due to charge \(\#2 \):

\[
\vec{E}_2 = k \frac{q_2}{r^2} \hat{\mathbf{r}}_2 = E_{2x} \hat{\mathbf{i}} + E_{2y} \hat{\mathbf{j}} = E_2 \cos \alpha \hat{\mathbf{i}} + E_2 \sin \alpha \hat{\mathbf{j}}
\]

Same magnitudes \(\Rightarrow E_1 = E_2 \)

Total electric field @ \(P \):

\[
\vec{E} = \vec{E}_1 + \vec{E}_2 = 2E_1 \cos \alpha \hat{\mathbf{i}} \quad \text{(only x-component)}
\]
Back to polar form: (using separation \(r \) instead of cartesian coordinates, \(x \) & \(y \))

\[
\vec{E} = 2E_0 \cos \alpha \ \hat{\alpha} = \frac{2kq}{r^2} \frac{x}{r} \ \hat{i} = \frac{2kq x}{r^3} \ \hat{i}
\]

\[
\cos \alpha = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{x}{r}
\]

\[
E = \frac{2kq x}{\left(x^2 + \left(\frac{d}{2}\right)^2\right)^{3/2}} \ \hat{\alpha}
\]

Electric field by 2 charges of value \(\pm q \)

@ \(\pm \frac{d}{2} \) along the y-axis

Unit: \(\frac{N}{C} \) (SI)

Electric field by a dipole: along mid-line \(y = 0 \) of the 2 charges.

\[
\vec{E}_1 = \frac{kq}{r^2} \ \hat{n}_1 = (E_1 \cos \alpha \ \hat{i} - E_1 \sin \alpha \ \hat{j})
\]

\[
\vec{E}_2 = -\frac{kq}{r^2} \ \hat{n}_2 = (E_2 \cos \alpha \ \hat{i} - E_2 \sin \alpha \ \hat{j})
\]

\[
\vec{E} = \vec{E}_1 + \vec{E}_2 = -2E_1 \sin \alpha \ \hat{j}
\]

\[
E = -\frac{kq d}{r^3} \ \frac{d}{\sin \alpha} \ \hat{j} = \frac{-kq d}{\sqrt{x^2 + \left(\frac{d}{2}\right)^2}} \ \frac{d}{\sin \alpha} \ \hat{j}
\]

\[
\sin \alpha = \frac{d}{2r}
\]

(if I switch \(+q \) \(\rightarrow \) \(-q \) points along \(+y \))
Electric field due to a continuous ring of charge: at a point along its axis

\[E = \frac{kQx}{(x^2 + a^2)^{3/2}} \hat{y} \] (N/C)

Electric field by an infinite (very long) line of charge:

\[E = \frac{2k\lambda}{y} \hat{j} \] (perpendicular to the line of charge)

Linear density of charge is \(\lambda \) (charge per unit length)
Ideal, diatomic: \(C_V = \frac{5}{2}R \)
\[
\begin{align*}
\text{a) constant vol} & \quad \Delta S_{12} = \int_1^2 \frac{dQ}{T} \\
\text{b) constant } P & \quad \Delta S_{12} = \int_1^2 \frac{dQ}{T} \\
\text{c) adiabatically} & \quad \Delta S_{12} = 0
\end{align*}
\]
\[
\begin{align*}
\text{constant volume} & \quad C_V = \frac{1}{n} \frac{dQ}{dT} \rightarrow dQ = C_V n dT \\
\text{constant pressure} & \quad C_P = \frac{1}{n} \frac{dQ}{dT} \rightarrow dQ = C_P n dT \\
\text{adiabatic} & \quad dQ = 0 \rightarrow \Delta S_{12} = 0
\end{align*}
\]

a) Isothermal:
\[
\begin{align*}
\Delta S_{12} &= \int_1^2 \frac{C_V n dT}{T} \\
&= nC_V \int_1^2 \frac{dT}{T} \\
&= nC_V \ln \left(\frac{T_2}{T_1} \right)
\end{align*}
\]
\[
\begin{align*}
&= 5 \times \frac{5}{2} \times 8.314 \ln \left(\frac{500}{300} \right) = 53.1 \text{ J/°K}
\end{align*}
\]

b) Isobaric:
\[
\begin{align*}
\Delta S_{12} &= nC_P \ln \left(\frac{T_2}{T_1} \right) \\
&= 53.1 \times \frac{7}{5} \text{ J/°K} = 74.3 \text{ J/°K}
\end{align*}
\]
\[
C_P = C_V + R = \frac{7}{2}R
\]
Given in the problem

\[P \]

\[\begin{align*}
V_3 &= \frac{V_1}{5} \\
V_1 &= V_4
\end{align*} \]

\[P \]

\[\begin{align*}
\text{adiabatic expansion } Q=0 \\
\text{combustion} \\
\text{adiabatic } Q=0 \text{ compression}
\end{align*} \]

\[P \]

\[e = 1 - \frac{T_4}{T_3} \text{ only for a Carnot engine! max.} \]

\[Q_c = Q_{41} = n c_v \Delta T = n c_v (T_i - T_f) \]

\[Q_h = Q_{23} = n c_v \Delta T = n c_v (T_3 - T_2) \]

\[e = 1 - \frac{|T_i - T_f|}{|T_3 - T_f|} \]

\[TV \text{ const.} \]

\[1 \to 2 \quad \frac{T_1 V_1^{\gamma-1}}{T_2 V_2^{\gamma-1}} \]

\[3 \to 4 \quad \frac{T_3 V_3^{\gamma-1}}{T_4 V_4^{\gamma-1}} \]

\[V_i = V_4, \quad V_e = V_3 \]

\[e = 1 - \frac{|T_4 (\frac{T_i}{T_4} - 1)|}{|T_3 (1 - \frac{T_i}{T_3})|} \]

\[\Rightarrow e = 1 - \frac{T_4}{T_3} \]
\[\frac{\gamma - 1}{\gamma - 1} = \frac{T_4}{T_3} = \frac{V_3}{V_2} \rightarrow \left[\frac{T_4}{T_3} = \left(\frac{V_3}{V_2} \right)^{\gamma - 1} = \left(\frac{\frac{V_1}{5}}{V_4} \right)^{\gamma - 1} = \frac{1}{5^{\gamma - 1}} \right] = 5^{1 - \gamma} \]

\[e = 1 - \left(\frac{T_4}{T_3} \right) = 1 - 5^{1 - \gamma} \rightarrow \text{Otto cycle} \]

b) Find \(T_{\text{max}} \) in terms of \(T_{\text{min}} \)

\[\begin{align*}
&\text{ideal gas: } PV = nRT \\
&\text{solve for } P_2 V_2 \\
&\left\{ \begin{array}{ll}
2 & P_2 V_2 = nR T_2 \\
3 & P_3 V_3 = nR T_3 \\
& 3V_2 V_2
\end{array} \right.
\]

\[\frac{T_4}{T_3} = 5^{1 - \gamma} \rightarrow T_3 = \frac{T_4}{5^{1 - \gamma}} = 3T_1 \]

\[\text{can we relate } T_4 \text{ and } T_1? \]

\[T_3 = 3x5^{1 - \gamma} T_1 \]

\[\begin{align*}
\text{previous page:} & \quad \text{adab} \quad \text{122} \\
\text{334} & \quad \left\{ \begin{array}{ll}
& \frac{T_1}{T_4} = \frac{T_2}{T_3} = \frac{1}{3} \\
& \frac{T_4}{T_3} = 3T_1
\end{array} \right.
\end{align*} \]

c) For a constant engine \(\left\{ \frac{T_h}{T_c} = T_3 \right\} \rightarrow e_{\text{max}} = 1 - \frac{T_c}{T_h} = 1 - \frac{T_1}{T_3} \]

\[e_{\text{max}} = 1 - \frac{1}{3\times5^{1 - \gamma}} = 1 - \frac{5^{1 - \gamma}}{3} \]

\[e_{\text{stot}} = 1 - 5^{1 - \gamma} < e_{\text{max}} \]
\(\eta = 0.2 \)

\[P \]
\[Q \]

isothermal
\(\Delta U = 0 \rightarrow Q = W \)

\[P_1 V_1 \ln \left(\frac{V_3}{V_1} \right) = 8 \times 1.013 \times 10^5 \times \frac{1}{10^2} \ln 2 = 561.7 \text{ J} \]

\[Q_4 = Q_{34} = P_3 V_3 \ln \left(\frac{V_4}{V_3} \right) = 2.05 \times 1.013 \times 10^5 \times \frac{3.224}{10^2} \ln \left(\frac{1.612}{3.224} \right) \]

\[= 464.1 \text{ J} \]

heat rejected.

c) Work done: \(W \)
\[\text{Cycle: } \Delta U = 0 \rightarrow W = Q_{\text{net}} = |Q_4 - 1| = 561.7 - 464.1 = 97.6 \text{ J} \]

\(\alpha = Q_3 + Q_4 \)

d) \(\eta = \frac{W}{Q_4} = \frac{97.66}{561.7} = 0.1739 \) or \(17.39\%\)

e) Compare with: \(\epsilon = 1 - \frac{T_c}{T_h} = 1 - \frac{P_3V_3}{nR} = 1 - \frac{P_2V_2}{nR} \)

\[T_h = \frac{P_2V_2}{nR} = \frac{2.05 \times 1.013 \times 10^5 \times 3.224}{10^5} = 4897.4 \text{ K} \]

\[T_c = \frac{P_3V_3}{nR} = \frac{2.05 \times 3.224}{4 \times 2} = 549.7 \text{ K} \]

\(T_c - T_h = 402.6 \text{ K} \)
\[\vec{F} = q \vec{E} \rightarrow \text{can find interactions (electric) b/w objects by knowing their electric fields.} \]

\[\Rightarrow \text{How to calculate the electric field?} \]

1) **Direct method:** Vector superposition (e.g. \(\vec{E} \) by 2 charges:
\[\vec{E} = \vec{E}_1 + \vec{E}_2 \) \) (Ch 20)

2) **Using Gauss Law** (symmetry) (Ch 21)

3) **Using Electric Potential** (using derivative, similar to mechanics: \(\vec{F} = -\frac{dU}{dx} \)) (Ch 22)

1) **Direct Method:** (vector superposition)

Electric field due to a continuous ring of charge, at a point away its axis (perpendicular to the ring)

From results for \(\vec{E} \) due to 2 positive charges:
\[d\vec{E} = \frac{2k dq}{(x^2 + a^2)^{3/2}} \hat{c} \]
To get \vec{E} by the whole ring:

$$ \vec{E} = \int_{\text{Half Ring}} \frac{2kQ}{(x^2+a^2)^{3/2}} \, dq $$

(Uniformly distributed charge on the ring)

$$ \vec{E} = \frac{kQx}{(x^2+a^2)^{3/2}} \hat{z} \quad (\frac{N}{C}) $$

Electric field due to a very long line of charge (with linear charge density $\lambda = \frac{dq}{dx}$)

$$ dq = \lambda \, dx $$

$$ d\vec{E} = \frac{2k\lambda dx \hat{y}}{(y^2+x^2)^{3/2}} \hat{j} $$

$$ \vec{E} = \int_{\text{Half line}} \frac{dq}{\text{Line}} $$

Table for integrals:

$$ \int \frac{dx}{(x^2+a^2)^{3/2}} = \frac{x}{a^2(x^2+a^2)^{1/2}} $$
\[E_{\text{axial}} = 2k \lambda y \int \left[\frac{x}{y^2} \left(\frac{x^2}{x^2 + y^2} \right)^{1/2} \right]_{x=0}^{x=\infty} = \frac{2k \lambda \hat{j}}{y} \]

(Unlike a finite charge distribution, the field decreases as \(\frac{1}{y} \) not \(\frac{1}{y^2} \).)

Method #2: Using Gauss Law

Electric flux: \(\Phi = \oint E \cdot d\mathbf{A} \)

Closed surface integral

Electric field \(d\mathbf{A} \) is perpendicular to the element of area. For a spherical surface, \(d\mathbf{A} \) points along the radial direction: \(d\mathbf{A} = dA \hat{r} \)

Element of surface area: \(d\mathbf{A} = dA \hat{r} \)

Scalar product of two vectors: \(\hat{A} \cdot \hat{B} = AB \cos \theta \)

Examples: \(W = \hat{P} \cdot d\mathbf{A} \)

- Top: \(d\mathbf{A} = dA \hat{j} \)
- Bottom: \(d\mathbf{A} = -dA \hat{j} \)
- Left: \(d\mathbf{A} = -dA \hat{i} \)
- Right: \(d\mathbf{A} = dA \hat{i} \)
- Front: \(d\mathbf{A} = dA \hat{k} \)
- Back: \(d\mathbf{A} = -dA \hat{k} \)
Electric flux: \[\Phi = \oint \mathbf{E} \cdot d\mathbf{A} = \Phi_{\text{closed surface}} = \int_{\text{closed surface}} \mathbf{E} \cdot d\mathbf{A} = E_l \oint dA \]

If there is symmetry so that \(E_l \) is constant over the surface, \[E_l \oint dA = E_l A \]

\[E \cdot dA = E \cdot dA \cdot \cos \theta = \frac{E_l}{\cos \theta} \cdot dA \]

Component of \(E \) that is perpendicular to the surface.

We will use Gauss Law to calculate electric fields in these simple symmetry situations.

Gauss Law:

\[\Phi_{\text{closed surface}} = \frac{\text{charge enclosed by surface}}{\varepsilon_0} \]

\(\varepsilon_0 = \text{dielectric constant in vacuum} \)

\[\varepsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \, \text{C}^2 \text{Nm}^{-2} \]

\[k = \frac{1}{4\pi \varepsilon_0} \]

\(k = 9 \times 10^9 \, \text{Nm}^2 \text{C}^{-2} \)
Meaning of Gauss Law:

\[\Phi_{\text{closed surface}} = \frac{q}{\varepsilon_0} \]

However, to calculate \(\vec{E} \) using Gauss law, our Gaussian surface exhibits high symmetry.

1) Using Gauss law to calculate \(\vec{E} \) due to a point charge

First of all: determine the Gaussian surface (with high symmetry so
\[\phi = E_1 A \]
otherwise it will take additional efforts to calculate \(\vec{E} \))

Gaussian surface: sphere centered @ the charge.

Also for this Gaussian surface
\(E_1 = E \) (\(E \) is radial so it is perpendicular to the surface)

\[E_1 A = \frac{Q}{\varepsilon_0} \]
\[E_1 = \frac{Q}{4\pi\varepsilon_0 r^2} = \frac{kQ}{r^2} \]

off-centered sphere will not allow
\[\phi = E_1 \int dA \]
Using Gauss law and a highly symmetrical Gaussian surface (sphere centered @ charge) we have derived an expression for the electric field due to a point charge \(E = \frac{kQ}{r^2} \) that agrees with what we know from Chapter 20.
21.49

E = 26 kN/C

Charge stay on surface of balloon at R = 0.7m from center.

4) E (r = 0.5m or inside balloon)

Using Gauss Law:
1) Det: Gaussian surface = sphere centered at center of balloon

2) \[\Phi_{\text{Gaussian surface}} = \oint E \cdot dA = EA \]

- \(E \): electric field on Gaussian surface
- \(A \): area of Gaussian surface = \(4\pi r^2 \)
3) **Gauss Law:** \[\phi = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]
\[E_{4\pi r^2} = \frac{Q}{\varepsilon_0} \rightarrow \frac{E(r = 0.5 m)}{\varepsilon_0} = 0 \]

1) **$E(r = 1.9 m, \alpha$ outside balloon)**

2) Determine Gaussian surface \to sphere centered at center of balloon

3) \[\phi = E_{4\pi r^2} \]

4) \[\phi = \frac{9q_{\text{enclosed}}}{\varepsilon_0} \hspace{1cm} (\text{Gauss Law}) \]

\[E_{4\pi r^2} = \frac{Q}{\varepsilon_0} \rightarrow E(r > R) = \frac{Q}{4\pi \varepsilon_0 r^2} = \frac{kQ}{r^2} \]

(like that of a point charge!)

Alternatives:

- **Find Q**
- **Then $E(r = 1.9 m)$**

Observations:

\[E(r = R) = \frac{kQ}{0.7^2} = 26 \text{ kN/C} \]

\[E(r = 1.9 m) = \frac{kQ}{1.9^2} \]

\[\frac{E(r = 1.9 m)}{E(r = 0.9 m)} = \frac{0.9^2}{1.9^2} \rightarrow E(r = 1.9 m) = \frac{0.9^2}{1.9^2} \times 26 \text{ kN/C} \]

\[Q = \frac{1.9^2 \times 3.53 \times 10^3}{9 \times 10^9} = 1.62 \mu C \]

\[= 3.33 \text{ kN/C} \]
Ink jet printer:

Ink drop while carrying field region, feels a downward force $F = qE/m$, downward acceleration: $a_y = \frac{F}{m} = \frac{qE}{m}$, constant downward acceleration.

Min v for ink drop to make it through field region:

During time it takes to go $A \rightarrow B$ (x direction), it should be going not more than AC (y direction).

x direction: $t_{AB} = \frac{L}{v}$.

Motion in x direction:

is NOT affected by E → uniform motion.

y direction: constant acceleration motion: $y = \frac{1}{2}a_y t^2$.

$y = \frac{1}{2}a_y t_{AB}^2 < \frac{d}{2}$.

$\frac{1}{2} \cdot \frac{qE}{m} \cdot \frac{L^2}{v^2} < \frac{d}{2}$ → $\frac{qEL^2}{mv^2} < \frac{d}{2}$.

$\frac{d}{L} \sqrt{\frac{qE}{md}} < v$.

$\nu_{\text{min}} = L \sqrt{\frac{qE}{md}}$.
\[
E_1 = \frac{380}{160} = \frac{x_1}{x_2} \left(\frac{x_2^2 + a^2}{x_1^2 + a^2} \right)^{3/2}
\]

\[
\left[\frac{380}{160} \right]^{2/3} = \left(\frac{1}{3} \right)^{2/3} \frac{0.15^2 + a^2}{0.05^2 + a^2} \quad \Rightarrow \quad a = 0.07 m
\]

\[
E_1 = \frac{kQx_1}{(x_1^2 + a^2)^{3/2}} \quad \Rightarrow \quad Q = \frac{E_1 (x_1^2 + a^2)^{3/2}}{kx_1}
\]

\[
= \frac{380 \times 10^3 (0.05^2 + 0.07^2)^{3/2}}{9 \times 10^9 \times 0.05}
\]

\[
Q = 538 \text{ nC}
\]
Method 2: Calculation of \(E \) using Gauss Law.

Example 2: Very long line of charge (linear charge density \(\lambda \))

\[
\lambda = \frac{dq}{dx}
\]

Using Gauss Law to find electric field:

1) Gaussian surface: such that \(E \) is constant on the surface:

\[
\phi = \oint E \cdot dA = E \cdot A
\]

A cylinder of radius \(r \) with its axis along the line of charge.

2) Gaussian surface:

- **Body**: \(E_1 = E \)
- **Left side**: \(E_1 = 0 \) (\(E \) perpendicular to the left side has to point along \(-x\) since all electric fields are perpendicular to \(x \))
- **Right side**: \(E = \)

Similarly \(E_1 = 0 \)

\[
\phi = E_1 A = E_1 A_{\text{Body}} + E_1 A_{\text{Left}} + E_1 A_{\text{Right}} = E_1 A_{\text{Body}} = E A_{\text{Body}}
\]

\[
\phi = E, \text{ net}
\]

3) Gauss Law:

\[
E \cdot \Delta x = \left(\frac{AR}{\varepsilon_0} \right) \implies E = \frac{\lambda}{2\pi\varepsilon_0 r} = \frac{2\lambda}{4\pi\varepsilon_0 r} = \frac{2kA}{r}
\]
Method #3 Electric Potential (Ch. 22)

Electric Potential

Potential energy difference by points A & B in mechanics:

\[\Delta U_{AB} = -q \int_{A}^{B} \mathbf{F} \cdot d\mathbf{l} \]

Electric interaction:

\[\mathbf{F} = q \mathbf{E} \]

Electric potential energy difference by points A & B:

\[\Delta U_{AB} = -q \int_{A}^{B} \mathbf{E} \cdot d\mathbf{l} \] (unit SI: J)

Electric potential difference by points A & B:

\[\Delta V_{AB} = \frac{\Delta U_{AB}}{q'} = -\int_{A}^{B} \mathbf{E} \cdot d\mathbf{l} \] (unit SI: V/C)

\[\mathbf{E} = -\nabla \Delta V_{AB} \]

\[\nabla : \text{gradient vector} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \]
Electric field can be calculated by differentiating the electric potential with a minus sign.

Example #1: Calculation of \(\vec{E} \) for a point charge using the Electric Potential

For a point charge \(q \): \(V(r) = \frac{kq}{r} \) \(\rightarrow \) \(\vec{E} = -\nabla V = -\left(\frac{\partial V}{\partial r} \right) \hat{r} = -\frac{1}{r^2} \cdot \hat{r} \)

\[
\vec{E} = \frac{kq}{r^2} \hat{r}
\]

First time contact with electric potential:

\[
\Delta V_{AB} = -\int_{A}^{B} \vec{E} \cdot d\vec{l} = -\int_{A}^{B} \frac{kq}{x^2} \cdot \hat{r} \cdot dx = -kq \int_{A}^{B} \frac{dx}{x^2}
\]

Use a reference point (zero potential: \(x_A \rightarrow \infty \))

\[
\Delta V_{AB} = kq \left(\frac{1}{x_B} - \frac{1}{x_A} \right) \]

Always same reference point \(0 \rightarrow \infty \) \(\rightarrow \) Convention is Electric potential due to a point charge, is a scalar (unit \(\frac{V}{m} \) or \(V \))
Example #2: Calculation of \vec{E} due to 2 point charges at a point p along the midline between the 2 charges.

$V_1 = \frac{kq}{r}$

$V_2 = \frac{kq}{r}$

What is V at P, due to 2 point charges?

$V(P) = \frac{2kq}{r} \Rightarrow V = V_1 + V_2$

Electric field due to charge #1

Electric field due to charge #2

Strength for Method #3

Adding numbers instead of vectors

$\vec{E}(P) = -\nabla V = -\frac{\partial V}{\partial x} \vec{i}$

$= -2kq \frac{\partial}{\partial x} \frac{1}{[x^2 + \frac{d^2}{4}]} \vec{i} = -2kq \frac{2}{\partial x} [x^2 + \frac{d^2}{4}]^{-\frac{1}{2}} \vec{i}$

$= kq [x^2 + \frac{d^2}{4}]^{(-\frac{1}{2})} 2x \vec{i} = 2kq x \left[x^2 + \frac{d^2}{4} \right]^{-\frac{3}{2}} \vec{i}$

$\vec{E} = \frac{2kq x}{\left[x^2 + \frac{d^2}{4} \right]^{3/2}} \vec{i}$
a) \[V(x, y) = V_1(x, y) + V_2(x, y) \]
 due to charge #1
 due to charge #2
 \[= \frac{kq}{r_1} + \frac{kq}{r_2} = \frac{kq}{(x-a)^2 + y^2}^{1/2} + \frac{kq}{(x-a)^2 + y^2}^{1/2} \]

b) What is \(V(x, y) \) approximately if \(P \) is very far away from the two charges: \(x \gg a \) & \(y \gg a \)

 \[V(x, y) \approx \frac{kq}{(x^2 + y^2)^{1/2}} + \frac{kq}{(x^2 + y^2)^{1/2}} = \frac{2kq}{r} \]
 \(r \to \text{Far away the electric potential is that of one point charge of value } 2q \)
V(x,y) = kq \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = kq \left[\frac{1}{(x-a)^2 + y^2} - \frac{1}{(x+a)^2 + y^2} \right]

a) \parallel dipole axis \parallel x-axis \rightarrow y=0

V(x,0) = kq \left[\frac{1}{x-a} - \frac{1}{x+a} \right] = kq \left[\frac{x-a - x+a}{(x-a)(x+a)} \right]

\Rightarrow \frac{V}{x^2 - a^2} = \frac{kq 2a}{x^2 - a^2} = \frac{kq p}{x^2 - a^2} \approx \frac{kq p}{x^2}

\Rightarrow \begin{cases} 0^\circ \text{ to axis} \\ \theta = 0.1 \text{m.} \\ n \gg a \end{cases}

dipole sep. \ll (2a)

\Rightarrow x = 10 \text{cm} (\text{data})

= 2.61 \times 10^3 \text{ V}

b) \phi \in \{45^\circ \text{ to axis} \}

\begin{cases} \phi = 0.1 \text{m.} \\ n \gg a \end{cases}

V(\phi y) = kq \left[\frac{1}{(x-\phi y)^2} - \frac{1}{(x+\phi y)^2} \right]

31 \text{ July, 67}
Here polar coordinates are more useful.

\[V(x,y) = k \frac{q}{4 \pi \varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = k \frac{r_1 - r_2}{r_1 r_2} \approx k \frac{2 a \cos \theta}{r^2} \quad \text{P very far away} \]

\[\begin{align*} \alpha &= 45^\circ \\ \rho &= 0.1 \, \text{m} \\
V(x,y) &= \frac{k_0 q}{4 \pi \varepsilon_0} \left(\frac{2 a \cos \theta}{r^2} \right) = \frac{9 \times 10^9 \times 2.9 \times 10^{-9} \cos 45^\circ}{0.1^2} = 1.85 \, \text{kV} \]

\[c) \quad \alpha = 90^\circ: \quad V(x,y) = \frac{9 \times 10^9 \times 2.9 \times 10^{-9} \cos 90^\circ}{0.1^2} = 0 \]
(22.31) \[V(x, y, z) = 2xy - 3xz + 5y \]

\[P(x = 1m, y = 1m, z = 1m) \]

c) \[V(1, 1, 1) = 2 - 3 + 5 = 4 \]

b) \[\vec{E} = -\nabla V = -\frac{\partial V}{\partial x} \hat{i} - \frac{\partial V}{\partial y} \hat{j} - \frac{\partial V}{\partial z} \hat{k} \]

\[\vec{E} = \hat{i}(2y - 3z) - \hat{j}(2x + 10y) - \hat{k}(-3x) \]

\[\vec{E}(1, 1, 1) = \hat{i}(-1) - \hat{j}(12) - \hat{k}(-3) \]

\[= \hat{i} - 12\hat{j} + 3\hat{k} \left(\frac{N}{C} \right) \]

(22.70)

\(r_a = 0.05 \text{ m} \)

\(Q = 60 \text{nC} \)

Concentric sphere

\(r_b = 0.15 \text{ m} \)

\(Q = -60 \text{nC} \)

Concentric shell

\(V(r = r_a) = \Delta V_{\text{qA}} = -\int_{\infty}^{A} \frac{kQ}{r^2} \, dr \)

\[= \frac{kQ}{r_a} \]

(True if there was an outer shell)

\[V(r = r_a) = \Delta V_{\text{qA}} = \Delta V_{\text{qB}} + \Delta V_{\text{qBA}} \]

\[E \text{ outside } \begin{cases} \text{ Gaussian surface} & \text{ outer shell} \\ \text{conducting shell} & \text{ inner shell} \end{cases} \]

\[\begin{aligned} \Delta V_{\text{qB}} &= -\int_{B}^{A} \frac{kQ}{r^2} \, dr = kQ \left[\frac{1}{r_b} \right]^{A} \\ &= kQ \left[\frac{1}{r_a} - \frac{1}{r_b} \right] = 9 \times 10^5 \times 60 \times 10^{-7} \\ &\quad \left[\frac{1}{0.05} - \frac{1}{0.15} \right] \\ V(r = r_a) &= 7200 \text{ V} \end{aligned} \]
\[V(r=r_a) = \Delta V_{aA} = \Delta V_{AB} + \Delta V_{BA} \]

\[= \int_0^B \frac{kQ}{r^2} \, dr = kQ \left[-\frac{1}{r} \right]_0^B = \frac{kQ}{r_B} = \frac{9 \times 10^8 \times 2 \times 60 \times 10^4}{6.15} \]

\[= 7200 \text{ V} \]

\[V(r=r_a) = 7200 + 7200 = 14400 \text{ V}. \]

22-67

\[\lambda = -\frac{75\mu C}{m} \]

\[\lambda = +\frac{75\mu C}{m} \]

b) Coaxial cable

\[\Delta V_{AB} = -\int_{A}^{B} E \cdot dr \]

Field in inner & outer conductor

Gaussian Law with 6-surface of radius \(r \) \(r_a < r < r_b \)

Electric due to inner conductor (very long wire)

\[E = \frac{2kQ}{r^2} \]
$$\Delta V_{AB} = -\int_{A}^{B} \frac{2k\lambda}{r} dr = -2k\lambda \int_{A}^{B} \frac{dr}{r} = -2k\lambda \ln\left(\frac{r_B}{r_A}\right)$$

$$= -2 \times 4 \times 10^9 \times 75 \times 10^{-9} \ln\left(\frac{10 \times 10^3}{2 \times 10^3}\right) = -2170 \text{V}$$

b) if a far outer conductor charged to $+150 \text{nC/m}$

$$\Delta V_{AB} \text{some} = -2170 \text{V} \quad \text{(since this would not change the electric field inside outer conductor, it only changes field outside outer conductor)}$$

c) \[\vec{E}(x=0, y=0) = \vec{E}_1 + \vec{E}_2 = \frac{k_e}{x^2} \times 2 \int = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times x^2}{0.6 \times 10^{-9}} \int \left(\frac{N}{C}\right) \]

$$= 8 \times 10^9 \int \left(\frac{N}{C}\right)$$

b) \[\vec{E}(x=2 \text{mm}, y=0) = 2E_y \int = 2 \left(\frac{k_e}{x^2}\right) \sin \alpha \int = 2 \frac{k_e a}{x^2} \int \]

$$= 2 \frac{k_e a}{(x^2 + a^2)^{3/2}} \int = 2 \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 0.6 \times 10^{-9}}{(2 \times 10^{-9})^2 + (0.6 \times 10^{-9})^2} \int$$

$$= 190 \times 10^6 \frac{N}{C}$$

c) \[\vec{E}(x=-20 \text{mm}, y=0) = j \int \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 0.6 \times 10^{-9}}{(20 \times 10^{-9})^2 + (0.6 \times 10^{-9})^2} \int = 216 \times 10^3 \frac{N}{C} \]