If in general \vec{E} is polarized not in plane with page but at some angle \rightarrow it has a component II pe ob a component I page. The component ll page, at Beasts incident angle gets ns afluctor, but that 1 page will get tome of Caution.

Ch 31 Images \& Optical Instruments.
Image formation by a minor:
\rightarrow use at lend 2 rays.
How tull a minos thanfl we use to see our whole body?
a) same as height (body)
b) $2 / 3$ height $\underbrace{(1 / 2 \text { hoogh }}_{V}$

Miner: reflects all lights (moral coating the other side of glass)

Virtual image: image formed by extension rays, no light is converging at its location actually.

Curved mirror : egg. concave mirror

2) incident rays through F will reflect 11 axis
Image farmed by extension rays. \rightarrow virtual image $=$ no reel light rays converge at the image location: if you put a screen at the image location (behind the numor) there is us light on it!
Mirror equation:

$$
\frac{1}{l}+\frac{1}{e^{\prime}}=\frac{1}{f}
$$

(based geometry)
Magnification: $M=\frac{h^{\prime}}{h}=-\frac{l^{\prime}}{l}$

When do we git a seal image with concave minor?

Real image:
Lenten

Image formation with lenten::

Lems equation: $\quad \frac{1}{l}+\frac{1}{\ell^{\prime}}=\frac{1}{f}$ (time as minor eff.)

Eyes:

Near sighted (myopic)
Far sighted (hyperopic)

, retina
blunoed image: image of ${ }_{\text {is }}$ dot is a spot
consecutive lenses: diverging lever (concave)
\rightarrow foul lough $f(-)$

$$
\rightarrow \text { diopters }=\frac{1}{f(m)}
$$

conceive lever. converging lune (convex) $f(t)$

Ch32: Interference \& Diffraction:
Phyoical Opfics: wing wave propention in addition to geomethy $\rightarrow_{\text {superporition }}\left\{\begin{array}{l}\text { constuadive } \\ \text { desturtive } \\ \begin{array}{l}(\text { Iwave } \\ \text { out of phave }=0\end{array}\end{array}\right.$

Double-sht interference:

How did This briget spot? wave \#I \& wave \#2 travels parallel paths ($L \gg d$) to B, with e differene in distance travelled of $D_{\text {path }}=d \sin \theta$: Since \# $1 \& \# 2$ are ideaticol waves but havelled enfersent ditaness. \rightarrow they anvive at B \therefore different phese: 2 extreme stactions: $\left\{\begin{array}{l}\text { in } \\ \rightarrow \text { out of thave } \rightarrow \text { dust }\end{array}\right.$ ocone $\{\rightarrow$ out of phace \rightarrow dest fictiverer interfereer
A) Constinitive intenfereme $=$ wave 1 \& 2 arise at B in phase, producing a bright spot.

this inphare situation. will happen of Death $=m \ell(m=0,1,2 \ldots)$
porte $d \sin \theta_{m}=m \lambda(m=0,1,3 \cdots)$ θ_{m} cones ponds to different t brigit spots on the sheen.

$$
\left.\left.\begin{array}{rl}
y_{m} & =L \tan \theta_{m} . \\
& =L \tan (\sin -1 / n,-1 \\
d
\end{array}\right)\right), ~ \begin{aligned}
& \text {, length } \\
& \Delta \text { path }=m \lambda \quad(m=0,1,2, \cdots) \\
& 0 \text { phase }=m 2 \pi(m=0,12, \cdots) \\
& \frac{1}{\text { angle }}
\end{aligned}
$$

B) Destrueture Interference: dark spots: wave 182 arrive at D out of phase.

supposition

Three-sht interference:

Three identical waves after the shits form one wave a<<d
Again different distances travelled \rightarrow waves anive at different phases at B. $\overrightarrow{\text { extremes }}$, in phase (conifmetive interference) $\overrightarrow{\text { extremer }}$ situation out of phase (dist. inters)
A) Conitruetwe interference:

$$
\left.\begin{array}{l}
1 \&_{2}=\quad d \sin \theta_{m}=m \lambda \\
2 d 3=d \sin \theta_{m}=m \lambda \\
1 \& 3=2 d \sin \theta_{m}=2 m \lambda
\end{array}\right\} d \operatorname{dsin} \theta_{m}=m \lambda
$$

B) Destructive interference:

$$
\begin{aligned}
& \rightarrow 3 \text { waves } \longrightarrow \text { ont of phase by } \frac{A}{\frac{A}{3}}=\frac{2 \pi}{3}=120^{\circ} \text { hire } D=0
\end{aligned}
$$

loo of dank spots: $d \sin \theta_{n}=\left(n+\frac{1}{3}\right) \lambda \rightarrow d \sin \theta_{n}=\frac{n}{N} \lambda$

Interference in thin films:
(1) R(2) parallel like in doublesit

(a) when wave gets
\rightarrow Puticular to this thin flom interfersence uftrefeb from lown to higher $n \rightarrow$ itgets invented \rightarrow get a Dphare $=\pi$

$$
\text { (a Apath }=\frac{\Lambda}{2} \text {) }
$$

(b) 0 path $h_{12}=2 d$
(small θ_{1} in thin filons)
\rightarrow Interference b/w wave $\# 1$ \& wave A2 : enotieme sotuations: $\left\{\begin{array}{l}\text { in phase } 2 \text { constructure intuf.: } \\ \text { out-of phase or lestructure intuf: }\end{array}\right.$

$$
\begin{aligned}
& \frac{2 d}{\text { Apath }}=n \lambda+\frac{1}{2}=(2 n=0,1,2, \cdots) \\
& \Delta_{\text {path }}=2 d=(2 n+1) \frac{A}{2}+\frac{\lambda}{2} \\
& =\sin \frac{A}{8}+\lambda \\
& =(n+1) \lambda \\
& (n=0,1,2,-\cdots)
\end{aligned}
$$

Diffraction: superposition of waves in one shit.

Hnyghens principle: each point on a wave front is a source of wast.
\rightarrow each pout in the shit is a since of waves: eng. dots in above slit are source.

$$
a \sin \theta_{n}=(2 n+1) \lambda,(n=0,1,2 \ldots)
$$

loo of lank spots in a diffraction
Diffraction limit

$$
\theta_{\min }=\frac{1.22 \lambda}{D_{>}^{D} \text { diameter of shit. }}
$$

32.38 double-sht wing lases of $\lambda=633 \mathrm{~nm} ; d=6.5 \mu \mathrm{~m}$; $L=1.7 \mathrm{~m}$

$$
\begin{aligned}
& Y \uparrow \text { and berght } \\
& \text { vartingel } x \\
& \text { burght (truval) }
\end{aligned}
$$

sheen.

$$
\begin{aligned}
d \sin \theta_{n}=n \lambda & y_{1}=L \tan \theta_{1} \\
& \text { Vd broght : } n=2 \rightarrow \theta_{2}=\sin ^{\prime} \frac{2 \lambda}{d}
\end{aligned}
$$

a)

$$
\begin{aligned}
y_{2}-y_{1} & =L\left(\tan \theta_{2}-\tan \theta_{1}\right) \\
& =L\left(\tan \left[\sin ^{-1} \frac{y_{2}-L \tan \theta_{2}}{d}\right]-\tan \left[\sin ^{-1} \frac{\lambda}{d}\right]\right) \\
& =1.7\left\{\tan \left[\sin ^{-1}\left(\frac{2 \times 633 \times 10^{-9}}{6.5 \times 10^{-6}}\right]\right]-\tan \left[\sin ^{-1}\left(\frac{633 \times 10^{-9}}{65 \times 10^{-6}}\right)\right]\right\} \\
& =17.17 \mathrm{~cm}
\end{aligned}
$$

b)

$$
\begin{aligned}
y_{4}-y_{3} & =L\left\{\tan \theta_{4}-\tan \theta_{3}\right\} \\
& =L\left\{\tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]-\tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]\right\} \\
& =1.7\left\{\tan \left[\sin ^{-1}\left(\frac{4 \times 633 \times 10^{-9}}{6.5 \times 10^{-6}}\right)\right]-\tan \left[\sin ^{-1}\left(\frac{3 \times 633 \times 10^{-9}}{6.5 \times 10^{-6}}\right)\right]\right\} \\
& =20 \mathrm{~cm}
\end{aligned}
$$

30.28]

$\gamma=$ angular dupession

$$
\gamma=\theta_{2}^{\prime \prime}-\theta_{V}^{\prime \prime}
$$

all λ^{\prime} ':
$\lambda_{\text {ved }} \leftrightarrow \lambda_{\text {videt }}$
$\downarrow \quad \downarrow$
Prism: $\quad n_{\text {wod }}=1.582 \quad n_{\text {viobt }}=1.633$
Sholl's Law: left boundory.

Snell's law: Right boundery viret: $n_{v} \sin \theta_{v}{ }^{\prime}=1 \sin \theta_{v}{ }^{\prime \prime}$

$$
\begin{aligned}
\rightarrow \theta_{v}^{\prime \prime} & =\sin ^{-1}(1.633 \times \sin 34.5) \\
\theta_{v}^{\prime \prime} & =67.7^{\circ}
\end{aligned}
$$

Repent for ned ray:
Shell's law it left boundey:

$$
\begin{aligned}
1 \sin 45^{\circ}=1.582 \sin \theta_{2} \rightarrow \theta_{2} & =\sin -1\left(\frac{\sin 45^{\circ}}{1.582}\right) \\
& =26.5^{\circ}
\end{aligned}
$$

Snell's law ot ught bountery:

$$
\rightarrow \gamma=\theta_{2}^{\prime \prime}-\theta_{2}^{\prime \prime}=67.7-60.8=6.85^{\circ}
$$

$$
\begin{aligned}
& n_{2} \sin \theta_{1}^{\prime}=1 \sin \theta_{2}^{\prime \prime} \rightarrow \theta_{2}^{\prime \prime}=\sin ^{-1}(1.582 \sin 33.5) \\
& \theta_{2}^{\prime \prime}=60.8^{\circ} 7
\end{aligned}
$$

c) How many reflections?

Two reflections

1) Wart x axis: incident at $0^{\circ} \rightarrow$ exit at? θ_{2} ?

$$
\theta_{1}=90-\alpha=90-37.5=52.5 \%
$$

$$
\begin{aligned}
\theta_{1}+\theta_{2}+105^{\circ}=180^{\circ} \rightarrow \theta_{2}=180-105-\theta_{2} & =785-5 \\
& =82.5^{\circ}
\end{aligned}
$$

Geometry:

Perpendicular lines to the sides of an angle form the some angle.

$$
\begin{aligned}
& \theta_{2}+90+\alpha= \\
& 22.5+90+37.5
\end{aligned}
$$

$$
\text { exit direction } \begin{cases} & =150^{\circ} \mathrm{CCW} \\ \text { os } 360-150^{\circ} & =210^{\circ} \mathrm{CW}\end{cases}
$$

$$
\Delta y=L\left\{\tan \left[\sin ^{-1}\left(\frac{(2 n+3) \lambda}{21}\right)\right]-\tan \left[\sin ^{-1}\left(\frac{(2 n+1) \lambda}{2 \lambda}\right)\right]\right\}
$$

\rightarrow small angle approximation: for fading not two far form central spot (ayin of XY cords) compare $L=6.5 \mathrm{~km}$.

$\theta=$ smell aube.
$\zeta \tan \sim \sin$

$$
A y=L\left\{\frac{(2 n+3) \lambda}{2 d}-\frac{(2 n+1) \lambda}{2 d}\right\}=L\left\{\frac{3 \lambda}{2 d}-\frac{\lambda}{2 d}\right\}
$$

$A_{y}=\frac{L \lambda}{d}$ Notice that with small angle approx
$y_{n+1}-y_{n}$
(spots close min ix Dy) separation b/w consecutive fading spots dan not depend on notes n.)

$$
\begin{aligned}
& \Delta_{y}=\frac{6500 \times \lambda}{400} ; \quad \lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{103.9 \times 10^{6}}=\frac{3}{1.039} \mathrm{~m} \\
& L \Delta_{y}=\frac{6500 \times \frac{3}{1.039}}{400}=46.9 \mathrm{~m}
\end{aligned}
$$

\rightarrow Time sep. b/w fades : $\quad \frac{D y}{v}=\frac{46.9 \% \mathrm{k}}{60 \frac{\mathrm{ky}}{\mathrm{Lh}} \cdot \frac{\mathrm{k}}{3600 \mathrm{~s}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~kg}}}=2.82 \mathrm{~s}$
Every 2.82 s you would hear a fade, in the rachis signal $T=2.81 \mathrm{~s} \rightarrow$ How offer: $\frac{1}{T}=\frac{1}{2.82 \mathrm{~s}}=$
103.9 MHz FM radio
station antenna.

How often the signal appears fo fade?
\rightarrow since there are "dark" and "bight" spots a long that road due to interference b/w the two identical waves from autcunce of station C^{l} the offleiting building.

$\frac{\Delta_{y}}{v}=$ time b/w fades while droving at speed v

$$
\theta_{y}=y_{n+1}-y_{n}=L \tan \theta_{n+1}-L \tan \theta_{n}
$$

"Dart "spots or desinutive interference: $\quad d \sin \theta_{n}=(2 n+1) \frac{1}{2}$

$$
\begin{aligned}
\theta_{n} & =\sin ^{-1}\left[\frac{(2 n+1) \lambda}{2 d}\right] \\
\theta_{n+1} & =\sin ^{-1}\left[\frac{[2(n+1)+1] \lambda}{2 d}\right] \\
& =\sin ^{-1}\left[\frac{(2 n+3) \lambda}{2 d}\right]
\end{aligned}
$$

Visible spectrum:

$$
\begin{aligned}
& \lambda_{v}=400 \mathrm{~nm} \longrightarrow \lambda_{r}=700 \mathrm{~nm} \\
& \text { ned } \\
& \text { violet } \\
& \text { (Higher } f \text {) }(\text { lower } f)
\end{aligned}
$$

Lowest pair of consecutive orders fa overlap b/w visible section as dispersed by a grating?

$$
n_{v}>n_{r}
$$

For a same order n
spots for ned light ane further out than spot for vowed light
\downarrow
overlap of spot (violet) of order $n+1$ coincide with spot (red) of odes n.

$$
\begin{aligned}
& \sin \theta_{n}^{\text {red }}=\frac{n \lambda_{\text {red }}}{a}=\sin \theta_{n+1}^{\text {vibe }}=\frac{(n+1) \lambda_{\text {visit }}}{a} \\
& \rightarrow \quad{ }_{n} \lambda_{\text {url }}=(n+1) \lambda_{\text {violet }} \\
& n\left(\lambda_{\text {red }}-\lambda_{\text {viol }}\right)=\lambda_{\text {vial }} \rightarrow n=\frac{\lambda_{\text {viobt }}}{\lambda_{\text {red }}-\lambda_{\text {violet }}} \\
& =\frac{4}{7-4}=\frac{4}{3} \\
& n \text { : integer ono } \rightarrow n=2 \text { (vd) } \\
& =1.33 \text {. }
\end{aligned}
$$

31.50

$$
f=35 \mathrm{~cm}
$$

a) $l=40 \mathrm{~cm} \rightarrow$ sep. b/w $\circ f_{i}$? ℓ^{\prime} is + (Image: the other side of la use) $\left\{\begin{array}{c}\text { sep od i is } \\ l+l^{\prime}\end{array}\right.$

$$
\begin{aligned}
\frac{1}{l}+\frac{1}{l^{\prime}}=\frac{1}{f} \rightarrow \frac{1}{l^{\prime}}=\frac{1}{f}-\frac{1}{l}=\frac{l-f}{l f} \text { or } l^{\prime} & =\frac{l f}{l-f} \\
& =\frac{40 \times 35}{40-35}=280 \mathrm{~cm}
\end{aligned}
$$

sep. Obi is $40 \mathrm{~cm}+280 \mathrm{~cm}=320 \mathrm{~cm}$.

30.44

What is smallet n_{1} for no further fotel reflection.

1) At (4) \& (c) same ray paths regandless $n_{1}=1$ or langer (aguid) (Ciguinel)
2) at (b) $\theta \geqslant \theta_{e}$ since these was a totel interual seflection when $n_{1}=1 \quad\left(n_{2} \operatorname{Qin} \theta_{c}=1\right.$

$$
\left.\rightarrow \theta_{c}=\sin ^{-1}\left(\frac{1}{n_{2}}\right)\right)
$$

Wrhen prosm is in a liquid: $x_{1}>1 \rightarrow \theta_{c}^{\prime}=\sin ^{-1}\left(\frac{n_{1}}{n_{2}}\right)$
What shounked be n_{1} (ligud) to $\theta \leqslant \theta_{c}^{\prime} ? \rightarrow$ no longes total internal reflection at boundery (b).
From geometry: $\theta=45^{\circ} \quad 45^{\circ} \leq \sin ^{-1}\left(\frac{n_{1}}{n_{2}}\right)$

$$
\begin{aligned}
\sin 45^{\circ} & \left.\leq \sin \left(\sin ^{-1} \frac{n_{1}}{1.52}\right)\right) \\
1.52 \sin 45^{\circ} & \leq n_{1} \\
n_{1 \text { mi }}=1.52 \sin 45^{\circ} & =1.07
\end{aligned}
$$

$$
\left.\theta_{c}=\sin \left(\frac{1}{1.52}\right)=41^{\circ} \text { sine } \theta=45^{\circ} \geqslant \theta_{c}=4\right)^{\circ}
$$

\rightarrow Total intumal a eflestion at (5)

When $p^{2 x}$ ron is in a lifuid $n_{1}>1 \rightarrow \theta_{c}^{\prime}$ is larger than $\theta \rightarrow\left(\theta<\theta_{c}^{\prime}\right) \Rightarrow$ no borger total internal coflee tioi at (b)

$$
\lambda=633 \mathrm{~nm}
$$

D.fpaction
hidth of ceatzal peak? $\rightarrow 2 \theta_{1}=\theta_{1}$ angle for $1^{s t}$ darkspost.
Dask spot: $\quad a \sin \theta_{m}=/ m \lambda \rightarrow \theta_{1}=\sin ^{-1}\left(\frac{\lambda}{a}\right)$ orden.

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{633 \times 10^{-1}}{2.5 \times 10^{-6}}\right) \\
& =14.7^{\circ} .
\end{aligned}
$$

$$
2 \times 14.7^{\circ}=29.3^{\circ}
$$

