If in general E is polarized not in plane with pape but at some angle -> it has a component Il page d'a component I page. The component II pape, at Brewster incident angle gets us reflection, but that I page will get some reflection. Ch31 Images & Optical Justruments. Image formation by a minor: Ly use at least 2 rays. How tall a monor should be use to see our whole body? a) same as height (body) b) 2/3 hught @ 1/2 height h O=0 object Minon: reflects all hights (metal coating the other File of glass) (formed by extension rays) not real real rays Virtual image : image formed by extension rays, no light is converging at its location actually.

Curved mirror

FOR *l'(-)* / axis > Object. image center of the spherical minor Focal point:) incident ray II axis will reflect through F 2) incident rays through F will reflect Il axis Image formed by extension very. -> virtual image ins real light rays converge at that the image location: if you put a screen at the image breation (behind the monon) there is no light on it ! (based geometry) $\begin{vmatrix} 1 \\ e \\ e \\ e' \\ e' \\ f \\ f$ Mirror equation : Magnification: $M = \frac{h'}{h} = -\frac{\ell'}{\ell}$ » Signs: Mirnors f: f: f+ concave minor - - convex minor l': {+ if image on same orde of object. - if image on the other orde (virtuel image)

112 When do we get a real image with concave minor? *axis* rea Real image : converging leuse (convex leuse) Lenies : diverging leurse (concave leuse) Image formations with lenses: o F F F axis F e' Rules: 2) ray Hax:s will emerge through F 2) ray hitting center C gas straight three ; $\left|\frac{1}{e} + \frac{1}{e'} = \frac{1}{f}\right|$ lense equation: (some as minor eg.)

Eyes: to brain leure e > muscles to four leave to faraway objects or close by

Near sighted (myopic)

Far sighted (hyperopic)

, retine bluraed image : image of a dat is a syst

blumed image

considive lenses diverging lene (concave) foul length f (-) 4) diopters = $\frac{1}{f(m)}$

conective lesse. converging lune (convex) f(+)

Ch32: Interference & Diffraction:

Physical Optics: using wave properties in addition to geometry Superposition { constructive destructive (Iwave +(wave=0) out of phase

Double-sht interference: [L>>d] ⇒ 18 11 2.B D> _____ brught spot B> _____ bork spot B> _____ Brught spot $a f = \frac{10}{10}$ $a f = \frac{10}{10}$ $a f = \frac{10}{10}$ $a f = \frac{10}{10}$ $b = \frac{10}{10}$ $b = \frac{10}{10}$ $b = \frac{10}{10}$ $b = \frac{10}{10}$ ¥ L H sneen: result of superposition of 2 waves: rattern of dark & bright fringes. where → 2 waves after shits (a << λ) identical. How did this bright spot? wave #1 & wave #2, travels parallel paths (L>2d) to B, with e difference in distance travelled of Apath = dsin D: Since #1 & #2 are identical waves but travelled different distances - they arrive at B is different phase : 2 extreme situations : fin phase - const. ruleif. () out of phase - destructive intespecies

118

A) Constructive interference = waves 1 & 2 arrive at B in phase, producing a bright spot.

dark spots: wave 182 onice Vestmetwe Interference *b)* at D out of the wave #1 this mt-of-phase situation happens if atp $O_{path} = (2m+1)\frac{1}{2}$ (m=0,1,2,---) (all multiple of half wave lengths) $\overline{dsin} \Theta_m = (2m+1)\frac{\Lambda}{2}$ (n = 0, 1, 2, ...)On conesponds to different dork spots on the screen. Superpositors $a_{m} = L \tan\left[\sin^{-1}\left(\frac{(2m+1)A}{2d}\right)\right]$ m=0,1,2,---Spath = (2m+1) 2 (m=0,1,2-) > length D phase = (2m+1) T (m=0, 1,2-) angle

kυ

Three-shit interference: L>>d7 D Park B Bright L Three identical waves after the stits from one wave all Again déflerent distances travelled -> waves anive et déflerent phases at B. ______ in phase (constructive interference) estremet out of phase (dest. inherf.) phases at B. $dsin \Theta_{m} = m \lambda$ $dsin \Theta_{m} = m \lambda$ $dsin \Theta_{m} = m \lambda$ $dsin \Theta_{m} = 2m \lambda$ A) Constructive interference : 1 & 2 : zd3 : 1 & 3 : B) Destructive interference : N = # of shits.be of derk spots: $dsin O_n = (n + \frac{1}{3})\lambda \rightarrow dsin O_n = \frac{n}{N}\lambda$ more than 2

Interference in this films: O € parallel tike in doubb-sht expressiment. -> interference in this films a) when wave gets reflected from low n to higher n -> it gets inverted -> get a Ophare = TL -, Particular to this this flow interference (a Spath = 2) 6) Opath = 2d (small D, in thin Julms) -> Interference blu wave #1 le wave #2 : l'in phase à constructure interf. entreme situations: $\frac{2d}{\lambda_{\text{path}}} = n\lambda + \frac{\lambda}{2} = (2n+1)\frac{\lambda}{2}$ Apath (n=0,1,2,--) (out-of phase a lest metrice vaturf .: Opath = 2d = $(2n+1)\frac{A}{2} + \frac{A}{2}$ $= \frac{2n}{2} + \lambda$ $=(n+1)\lambda$ (n=0,1,2,-)

Diffraction: Superposition of waves in one shit. L»a dark spot Spath (b/w top & middle part) = 2 sin O Apath = (2n+1)2 Top & modele: - Areth = asin Q = (2n+1) A (n=0,1, L...) Dubruchere. Huyghens muche: each potet on a wave front is a source of wave. - each point in the shit is a source of waves: e.g. dots in above slit are source. $a \sin \theta_n = (2n+1)\lambda_1(n=0,1,2...)$ loc of lark opers in a diffraction Omin = <u>1.22</u> D Hameter of shif. Defraction limit :

/23

b)
$$y_4 - y_3 = L \left\{ \tan \theta_4 - \tan \theta_3 \right\}$$

$$= L \left\{ \tan \left[\sin^{-1} \left(\frac{4\lambda}{d} \right) \right] - \tan \left[\sin^{-1} \left(\frac{3\lambda}{d} \right) \right] \right\}$$

$$= 1.7 \left\{ \tan \left[\sin^{-1} \left(\frac{4 \times 633 \times 10^{-9}}{6.5 \times 10^{-6}} \right) \right] - \tan \left[\sin^{-1} \left(\frac{3 \times 633 \times 10^{-9}}{6.5 \times 10^{-6}} \right) \right] \right\}$$

$$= 20 \text{ cm}$$

$$\frac{30-22}{(1.52)}$$

$$\frac{1}{100} + \frac{1}{100} + \frac{1}{100}$$

X () 30.29 ns 120-75-02 a) How many reflections? Two reflections incident at $0^{\circ} \rightarrow exit$ at ? 1) Whit x axis : 0, ? $Q_1 = 90 - \chi = 90 - 37.5 = 52.5^*$ $O_1 + O_2 + |05" = 180" \rightarrow O_2 = 180 + |05 - O_2 = 195 - 52 - 52$ = \$2.5beometry: ß Perpendicular lines to the sides of an angle form $\Theta_2 + 90 + \alpha =$ the serve angle. 22-5+90 + 37.5 = 150° (CW / exit direction / 360 - 150° = 210° CW

$$b_{y} = L \left[t_{un} \left[\frac{2(n+1)\lambda}{24} \right] \right] - t_{un} \left[\frac{3(n^{-1} \left(\frac{(2n+1)\lambda}{24} \right)}{24} \right] \right]^{1/2}$$

$$b_{y} = L \left[t_{un} \left[\frac{2(n+1)\lambda}{24} \right] \right] - t_{un} \left[\frac{3(n^{-1} \left(\frac{(2n+1)\lambda}{24} \right)}{24} \right] \right]^{1/2}$$

$$b_{y} = L \left[\frac{(2n+3)\lambda}{24} - \frac{(2n+1)\lambda}{24} \right]^{1/2} = L \left[\frac{3\lambda}{24} - \frac{\lambda}{24} \right]^{1/2}$$

$$\int b_{y} = \frac{L\lambda}{4}$$
Notice that with dwall angle appears
$$f_{un} = b_{un} = b_{un} = b_{un} = b_{un} = b_{un}$$

$$f_{un} = b_{un} = b_{un} = b_{un} = b_{un} = b_{un}$$

$$\int b_{un} = b_{un} = b_{un} = b_{un} = b_{un} = b_{un} = b_{un}$$

$$\int b_{un} = b_{un}$$

$$b_{un} = \frac{b_{un} + b_{un}}{b_{un}} = b_{un} =$$

128 station antenna. 103 9 MHZ FM radis -> d= f'''-L = 6.5 km32.70 building How many time the segual appears to fade? -> since there are "dark" and "bright" spots along that mad due to interference b/w the two identical waves from antenne of effection & the offecting building. fade or dark spot Transmiller 1) yn Do d = 400m 0 L=6.5km Reflecting Titt Dy = the fine b/w fades while driving at speed or

"Darte spots or destructive interference : $dsin D_n = (2n+1)\frac{\lambda}{2}$ $O_{\mu} = Sin^{-1} \left[\frac{(2n+1)\lambda}{2d} \right]$ $\mathcal{O}_{n+1} = \operatorname{Sin}^{-1} \left[\frac{2(n+1)+1]\lambda}{2d} \right]$

 $= 4 \ln^{-1} \left[\frac{(2u+3)\lambda}{2d} \right]$

 $\rightarrow h_n = 700 \, \text{nm}$ $\lambda_v = 400 \mu m$ Visible speetrum: 37.42 red violet (lower f) (Higher f) Lowest pair of consecutive orders for overlap b/w visible spectra as dripensed by a grating ? $n_{\nu} > n_{\gamma}$ red (2) For a same order n spots for red light are further out than spot for wolf light overlap if spot (violet) of order n+) coincide with spot (red) of order 13 = sin $\mathcal{O}_{n+1}^{\text{videt}} = \frac{(n+1)\lambda_{\text{videt}}}{\alpha_{n+1}}$ sin Oned = nhred -> nhul = (n+1) hvolet n(Ared-Aviol) = Aviol > n = Aviolet And-Aviol) = Aviol > n = Aviolet $z - \frac{4}{7 - 4} = \frac{4}{3} = 1.33$ n: integer mly -> n=2 (red) n+1=3 (unlet)

 $\frac{1.52}{n_1}$ 30.44 What is smallest my for no further total reflections 1) at () () same vay paths regardless $n_1 = 1$ or larger (upwel) 2) at () () $Q \ge Q_e$ since these was a total internel reflections when $n_1 = 1$ ($n_1 Rin Q_e = 1$ $\rightarrow Q_e = sin^{-1}(\frac{1}{2})$ $\rightarrow Q_c = \sin^{-1}\left(\frac{1}{n_2}\right)$ When prism is in a liquid: my>1 → E'=sin-'(m') → What should be m (liquid) so [O < O(P) → no longer fotal internal reflection at boundary (6). From geometry: $\mathfrak{D} = 45^{\circ}$ $45^{\circ} \leq \sin^{-1}\left(\frac{\eta_{1}}{\eta_{2}}\right)$ $\sin 45^{\circ} \leq \sin \left(\sin^{-1}\frac{n_{i}}{1.52}\right)$ 1.52 Sin 45° & n, nimin = 1.52 & 45° = 1.07

 $Q_e = din\left(\frac{1}{1.52}\right) = 41^{-2}$ since $Q = 45^{\circ} \ge Q_e = 41^{-2}$ -> Total internel reflection at

When prism is in a liquid mixi - Oc' is larger than $\Theta \rightarrow (O < Oc') \Rightarrow$ no longer total intermel reflection at (D

 $\lambda = 633nm$ 32-27 bright central spot a=2.5µm D Diffaction hold of certal peak ? O, angle for 1st dark spit. 20, -> a tin Om = ml → Dark sport: $\mathcal{O}_{l} = \frac{\mathcal{S}(n^{-1}\left(\frac{\lambda}{a}\right))}{2}$ $= 410^{-1} \left(\frac{633 \times 10^{-1}}{2.5 \times 10^{-6}} \right)$ = 14.7°-. 2×14.7° 29.3º-