For Thought and Discussion

1. Explain why measurement standards based on laboratory proce-
dures are preferable to those based on specific objects such as the international prototype kilogram.
2. Which measurement standards are now defined operationally? Which are not?
3. When a computer that carries seven significant figures adds 1.000000 and 2.5×10^{-15}, what answer does it display? Why?
4. To raise a power of 10 to another power, you multiply the exponent by the power. Explain why this works.
5. A scientist and a creationist are arguing about the age of the Earth. What facts might the scientist use in estimating this age? 7. How would you determine the length of a curved line?
6. Write $1 / \sqrt{x}$ as x to some power.
7. Emissions of carbon dioxide from fossil-fuel combustion are often expressed in gigatonnes per year, where 1 tonne $=1000 \mathrm{~kg}$ But sometimes CO_{2} emissions are given in petagrams per year How are the two units related?

3e/ Second? The maximum speed of an electrical impuise is close to 55. 46. Estimate the light, $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
56. 47. When we write the number 3.6 as typical of a number wion . When we write the number 3.6 as typical of a number with two
significant figures, we're saying that the actual value is closer to 3.6 than to 3.5 or 3.7 ; that is, the actual value lies between 3.55 and 3.65 . Show that the percent uncertainty implied by two-significant-figure accuracy varies with the value of the number, being the lowest for numbers beginning with 9 and the highest for numbers beginning with 1 . In particular, what is the percent un-
58. 48. Continental drift occurs at about the rate at which your fing nails grow. Estimate the age of the Atlantic Ocean, assuming the eastern and western hemispheres have been drifting apart:
\checkmark 49. In the 1908 London Olympic Games, the originally inte marathon distance of 26 miles was extended by 385 yards so that the end was in front of the royal reviewing stand. This distance subsequently became standard. What is the marathon distance in
kilometers, to the Express the fo the nearest meter?
50 . Express the following with appropriate units and significant figres. (a), (d) plus 1 mm , (b) 1.0 m times 1 mm , (c) 1.0 m minus 51 Estimation problems were a favorit. Enrico Fermi. Here is one such problem attributed to him: What
is the number of piano tuners in Chicago? Explain how you would estimate this number
52. You are the owner of a small manufacturing company and wish to install some new computer-aided manufacturing equipment. A saies "epresentaive tells you the computer his company sells conontains more than 10 bill one else has. He claims each chip measures 5.0 mm by 50 bilion electronic components. Each chip is 90 nm on a side. Is the sales rep correct?
53. Cafe Milagro
bag of coffee costs $\$ 8.95$, excluding shipping. How much does his coffee cost per pound? If you order six 0.5 -kg bags, the shipng costs include the shipping? $\$ 6.66$
54. Suppose you drive your old classic car to an auro show in Canada. Your speedometer shows only miles per hour (mph). All the Canadian speed limits are in $\mathrm{km} / \mathrm{h}(\mathrm{kph})$! What speed limit in 80 kph , and 100 kph ? 55. While ind 100 kph ?
55. While in Canada, you go to a grocery store and purchase some denif meaus and cheese for sandwiches. You normally request onegrams of meat and cheese should you ask the clerk to slice?

Answers to Chapter Questions Answer to Chapter Opening Question All of them!

Answers to GOT IT? Question
1.1 (a) $2.998 \times 10^{-9}, 0.0008,3.14 \times 10^{7}, 0.041 \times 10^{9}, 55 \times 10^{6}$ (b) $0.0008,0.041 \times 10^{9}$ and 55×10^{6} (with two signfficant

Big Picture

The big ideas here are those of kinematics - the study of motion are the quantities that characterize motion:

Key Concepts and Equations

Average velocity and acceleration involve changes in position and velocity, respectively, occurring over a time interval Δt :
$\bar{v}=\frac{\Delta x}{\Delta t}$
$\bar{a}=\frac{\Delta v}{\Delta t}$
Here Δx is the displacement, or change in position, and Δv is the change in velocity. Instantaneous values are the limits of infinitesimally small time intervals and are given by alculus as the time derivatives of position and velocity:
$\nu=\frac{d x}{d t}$
$a=\frac{d v}{d t}$

Cases and Uses

is a speciar case that yields simple equation describing one-dimensional motion

$$
\nu=v_{0}+a
$$

$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
$$

These equations apply only in the case of constant acceleration

An important example is the acceleration of gravity, essentally constant near Earth's surface, with a magnitude of approximatel $9.8 \mathrm{~m} / \mathrm{s}^{2}$

vo Just before the peak, v, v is positive: just sfter, it's negaive.

For Thought and Discussion

${ }^{1}$ Under what conditions are average and instantaneous velocity
2. You're
picnic lunch. How does the stop affect y / h but stop a while for a picnic lunch. How does the stop affect your average velocity?
4. You check your odometer at the beginelocity?
again at the end. Under what conditions would the difference be tween the two readings represent your displacement? 5. Consider two possible definitions of average speed speed is the average of the vains of average speed: (a) average speed he average of the values of the instantaneous speed over erage velocity. Are these definitions is the magnitude of the average velocity. Are these definitions equivalent? Give examples . Is it possible to be at position $x=0$
7 Is it possible to have zero velocity and still be acceleratin?
8. If you know the initial velocity v_{0} and the initial and final heip y_{0} and y, you can use Equation 2.10 to solve for the time t when the object will be at height y. But the equation is quadratic in t, so
9. Starting from rest. an object undy, why is this?
9. Starting from rest, an object undergoes an acceleration given by $a=b t$, where t is time and b is a constant. Can you use the ex presion br for a in Equation 2.10 to predict the object's position 10. In which of the ve? Why or why not
would the average velocity over the interashs shown in Fig. 2.14 erage of the velocitocity over the interval shown equal the av

Exercises and Problems

Exercises

Section 2.1 Average Motion
3. In 2005 Asafa Powell of Jamaica set a world record in the $100-\mathrm{m}$ dash, with a time of 9.77 s . What was his average speed?
Marath Mizuki Noguchi of Japan won the Women's Olympic 20 s . What was Noguchi's 26 -mi, 385 -yd course in $2 \mathrm{~h}, 26$ min 15. Starting from home, you bicycle 24 km , in meters per second? turn around home, you bicycle 24 km north in 2.5 h and then (a) displacement at the straight home in 1.5 h . What are your over the first 2.5 h (c) average velocity for (b) average velocity he trip, (d) displacement for the entire tip heward leg of locity for the entire trip?
On January 14, 2005,
iter landed on Saturn's muygens probe from the Cassini Orm from Earth. How long did it take Huygenately 1.2 billion traveling at the speed of light, to reach Earth? Australian Peter Robertson won reach Earth? onship, completing the $1500-\mathrm{m}$ swim, $40-\mathrm{km}$ bicycle champi0 -kri run in $1 \mathrm{~h}, 49 \mathrm{~min}, 31 \mathrm{~s}$. What was Robertsorse, and
18. Taking Earn's orbit to be a circle of radius $1.5 \times 10^{8} \mathrm{~m}$, deter mine the speed of Earth's orbital motion in (a) meters per second and (b) miles per second.
19. What is the conversion factor from meters per second to miles per
hour? 20. If the a state highways, how much less time did

[^0]
(a)

(b)

i
(c)

(d)

11 If you travel in a straight line at $50 \mathrm{~km} / \mathrm{h}$ for 1 h and at $100 \mathrm{~km} / \mathrm{h}$ for another hour, is your average velocity $75 \mathrm{~km} / \mathrm{h}$? If not, is it 2 If you tess
12. If you travel in a straight line at $50 \mathrm{~km} / \mathrm{h}$ for 50 km and then at $100 \mathrm{~km} / \mathrm{h}$ for another 50 km , is your average velocity $75 \mathrm{~km} / \mathrm{h}$? If
not, is it more or less?
on interstate highways each year as a result of the 1995 increas in the speed limit from $55 \mathrm{mi} / \mathrm{h}$ to $65 \mathrm{mi} / \mathrm{h}$?
Section 2.2 Instantaneous Velocity
19. 21 On a single graph, plot distance versus time for the two trips from tify graphically Mo the trip, he instantaneous velocity. 20.22. For the motion ploted in Fig
πy in the positive x direction, (b) the greatest velocity in the ive x direction, (c) any times when the object is instantaneously at rest, and (d) the average velocity over the interval shown.

H1GuME 2.15 Exercise 22
23. A model rocket is launched straight upward. Its altitude y as $c=4.9 \mathrm{~m} / \mathrm{s}^{2}$, is the given by $y=b t-c r^{2}$, where $b=82 \mathrm{~m} / \mathrm{s}$, differentiation to find a general expression for the rocker's veloc. ity as a function of time. (b) When is the velocity zero?

Section 2.3 Acceleration
A giant eruption on the Sun propels solar material from rest to a
final speed of $450 \mathrm{~km} / \mathrm{s}$ over a period of 1 h . What is the acceleration of this material in $\mathrm{m} / \mathrm{s}^{2}$?
28. 25 Starting from rest, a subway train first accelerates to $25 \mathrm{~m} / \mathrm{s}$ and then begins to brake. Forty-eight seconds after starting, 1 is mov ing at $17 \mathrm{~m} / \mathrm{s}$. What is its average acceleration in this 48 -s interval?
9. 26. A space shuttle's mann engines cut off 8.5 min after launch, average acceleration daring this interval?
27 An egg drops from a second-story window and reaching a speed of $11.0 \mathrm{~m} / \mathrm{s}$ just before hitting the ground On contact with the ground, the egg stops completely in 0.131 s Calculate the average magnitudes of its acceleration while falling and while stopping.
31. 28. An airplane's takeoff speed is $320 \mathrm{~km} / \mathrm{h}$. If its average accelera tion is $2.9 \mathrm{~m} / \mathrm{s}^{2}$. how long is it on the runway after startung it ThrustSSC,
ThrustSSC, the world's first supersonic car, accelerates from res
to $1000 \mathrm{~km} / \mathrm{h}$ in 16 s . What is is acceleration
ection 2.4 Constant Acceleration
30. You're driving at $70 \mathrm{~km} / \mathrm{h}$ when you accelerate with constant ac celeration to pass another car. Six seconds later, you're dong $80 \mathrm{~km} / \mathrm{h}$. How far did you go in this tum
38. 31. Differentiate both sides of Equation 2.10, and show that you get 2. Electrons 2
acceleration over a distance of 3.8 cm . If they reach a final spee of $1.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$, what are (a) the electrons' acceleration and (b) the time spent accelerating.
41. 33. A rocket rises with constant acceleration to an altitude of 85 km at which point its speed is $2.8 \mathrm{~km} / \mathrm{s}$. (a) What is its acceleration?
(b) How long does the ascent take?
43, 34. Starting from rest a car accelerates $88 \mathrm{~km} / \mathrm{h}$ in 12 s . (a) What is its acceleration? (b) How far does th go in this time?
44. 35 A car moving initially at 50 mihh begins decelerating at a con stant rate 100 ft short of a stoplight. If the car comes to a full stop just at the light, what is the magnitude of iis deceleration?
45.36. In an X-ray tube, electrons are accelerated to a velocity of undergo rapid deceleration, producing X rays. If the stoppng time for an electron is on the order of $10^{-19} \mathrm{~s}$, approximately how far does an electron move while decelerating? Assume constant deceleration.
4737 The Barringer meteor crater in northern Arizona is 180 m deep and 12 km in diameter. The fragments of the meteor lie just
below the bottom of the crater If hese fragments decelerated at a constant rate of $4 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$ as they ploughed through the Earth in forming the crater, what was the speed of the meteor's impac at Earth's surface?
4838 A gazelle accelerates from rest at $4.1 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 60 m to outrun a predator. What is its final speed?
Section 2.5 The Acceleration of Gravity
39. You drop a rock into a deep well and 4.4 s later hear the splash.
61. 40. Your friend is sitting 6.5 m above you in a tree branch. How fast should you throw an apple so that it just reaches her?
2. 41. A model rocket leaves the ground, heading straight up at $49 \mathrm{~m} / \mathrm{s}$ re its speed and altitud at (b) s , (c) 4 s , and (d) 7 s ?
3. 42. A foul ball leaves the bat gonng stranght upward at $23 \mathrm{~m} / \mathrm{s}$ the distance berween the bat and the ground.
64, 43. A Frisbee is lodged in a tree branch 6.5 m above the ground. A rock thrown from below must be going at least $3 \mathrm{~m} / \mathrm{s}$ to dislodge che Frisbee. How fast must such a rock be thrown upward if leaves the thrower's hand 1.3 m above the ground?
65, 44 Space pirates kidnap an earthling and hold him umprisoned on one of the planets of the solar system. With nothing else to do, the $(170 \mathrm{~cm})$ to the floor. He observes that the watch takes 0.95 s to fall. On what planet is he being held? Hint. Consult Appendix E

Problems

, 45 You allow yourself 40 min to drive 25 mu to the arport, but you're caught in heavy traffic and average only $20 \mathrm{~m} / \mathrm{h}$ for the first 15 min . What must your average speed be on the rest of the trip if
3. 46. A fast base runner can get from first to second base in 3.4 s . If he leaves first base as the pitcher throws a $90 \mathrm{~m} / \mathrm{h}$ fastbail the 61 -ft distance to the catcher, and if the catcher lakes 0.45 s to carch and rethrow the ball, how fast does the catcher have to throw the ball diagonal of a square 90 ft on a side You drive the 4600 km from coast $65 \mathrm{~m} / \mathrm{h}(105 \mathrm{~km} / \mathrm{h})$. stopping an average of 30 min for rest and refueling after every 2 h of driving. (a) What is your average ve locity for the entire trip? (b) How long does the trip take'
6.48. I can run $90 \mathrm{~m} / \mathrm{s}$, 20% faster than my kid brother How muct head start should I give him in order to have a tue race over 100 m ?
749 A jetliner leaves San Francisco for New York, 4600 km away a second jet leaves wind, it makes only $700 \mathrm{~km} / \mathrm{h}$. When and where do the two planes pass each other?
22.50. The position of an object as a function of time is given by $x=b t+c\}^{3}$, where $b=1.50 \mathrm{~m} / \mathrm{s}$ and $c=0.640 \mathrm{~m} / \mathrm{s}^{3}$ To study thc limuting process leading to the definition of instantaneous velocifrom (a) 1.00 s to 3.00 s . (b) 150 s to 2.50 s , and (c) 195 s to 2.05 s . (d) Find the instantaneous velocity as a function of tume by differentiating, and compare its value at 2 s with your average velocties.
2451 The position of an object as a function of ume is given by $x=b t^{4}$ where b is a conslant. Find an expression for the instantancous over the interval from $t=0$ to any time t is one-fourthe of the instantaneous velocity at ?
26.52 In a drag race, the position of a car as a function of ume is given by $x=b t^{2}$. with $b=2.000 \mathrm{~m} / \mathrm{s}^{2}$ In an attempt to determine the car's velocity midway down a $400-\mathrm{m}$ track, two observers stand at the $180-\mathrm{m}$ and $220-\mathrm{m}$ marks and note the time when the car passes them. (a) What value do the two observers compute for
the car's velocity? Give your answer to four significant figures (b) By what percentage does this observed value differ from the actual instantaneous value at $x=200 \mathrm{~m}$?
36. 53. The position of an object is given by $x=b t^{3}$, where x is in meters, t is in seconds, and the constant b is $1.5 \mathrm{~m} / \mathrm{s}^{3}$. Determine (a) the the end of 25 Find and (b) he instantancous acceleration the end of 2.5 s . Find (c) the aveleration during the first 25 s
9, 54. If you square Equation 2.7, you' Equation 2.11 also gives an expression for v^{2} Equate the for ex v^{2} pressions for v^{2}, and show that the resulting equation reduces to Equation 2.10.
42. 55. On packed snow, the use of computerized antilock brakes can reduce the stopping distance for a car by 55%. By what percentage
is the stopping time reduced? is the stopping time reduced?
46. 56. A particle leaves its initial position x_{0} at time $t=0$, moving in the posive x direction with speed v_{0} but undergoing acceleration of
magnitude a in the negative x direction. Find expressions (a) the time when it returns to the position x_{0} and (b) its speed
49. 57 when it passes that point.

35 cm thick. It memerges at $32 \mathrm{~m} / \mathrm{s}$ slams through a wall of snow 35 cm thick. It emerges moving at $18 \mathrm{~m} / \mathrm{s}$. (a) How much time does it spend in the snow? (b) How thick a wall of snow would be needed ostop the puck entirely?
York at $110 \mathrm{~km} / \mathrm{h}$ when the engineer spots a cow on the New The train brakes to a halt in 1.2 min, stopping just in front of the cow, (a) What is the magnitude of the rrain's (constant) acceleration? (b) What is the direction of the acceleration? (c) How far was the train from the cow when the engineer first applied the
brakes?
59 A jetiner touches down at $220 \mathrm{~km} / \mathrm{h}$, reverses its engines to pro-
vide braking runway on which this aircraft can land, assuming constant decel eration starting at touchdown?
. 60 A motorist suddenly notices a stalled car and slams on the brakes, decelerating at the rate of $6.3 \mathrm{~m} / \mathrm{s}^{2}$. Unfortunately this isn't good enough, and a collision ensues. From the damage sustanned, police lision. They also measure skid marks $34 \mathrm{~km} / \mathrm{hat}$ the time of the col the rotorist goong when the brakes were first applied? (b) How much tirne elapsed from the initial braking to the collision?
. 61 A racing car undergoing constant acceleration covers 140 m 3.6 s . (a) If it's moving at $53 \mathrm{~m} / \mathrm{s}$ at the end of this interval, what wayel from travel from rest to the end of the $140-\mathrm{m}$ distance?
62 The maximum deceleration of a car on a dry road is about $8 \mathrm{~m} / \mathrm{s}^{2}$ If two cars are moving head-on toward each other at $88 \mathrm{~km} / \mathrm{h}$
$(55 \mathrm{~m} / \mathrm{h})$, and therr drivers apply their 85 m apar, will they collide' If so, at what relative speed If not, how far apart will they be when they stop' On the same graph
Plot distance versus time for both cars.
63 After 35 munutes of runnng, at the $9-\mathrm{km}$ pont in a $10-\mathrm{km}$ race, you find yourself 100 m behund the leader and moving at the up by the finish line? Assume that the leader if you are to catch speed throughout the entre race. You're speeding at 85 km
10 m behind the car in front of you, which is maving at the onily peed limit of $60 \mathrm{~km} / \mathrm{h}$. You slam on your brakes, and your car decelerates at $4.2 \mathrm{~m} / \mathrm{s}^{2}$ Assuming the car in front of you continues
at constant speed, will you collide? If so, rat what relative tsed? If not what will be the distance. if so, at what relative speed? not whe distance between the cars at their closest
.) 65 . The Mars rover Spirit landed in 2004 to explore the Martian sur face. Its landing was cushioned by airbags, and the rover bounce some 15 m vertically after its first impact. Assuming no loss of speed at contact with the Martian surface, what was Spirit's im pact speed?
Calculate the speed with which cesium atoms must be "tossed" in 1.0 s . See Application clock so that their up-and-down travel time
7. 67 A falling object travels one-four
second of its fall. Frone what hrth of its total distance in the las The defenders of a castle throwht was it dropped?
from a $15-\mathrm{m}$-high wall. If the rocks are thrown with an initia speed of $10 \mathrm{~m} / \mathrm{s}$, how much faster are they moving when they hil 69. The ground than if they were simply dropped?
69. Two divers jump from a $3.00-\mathrm{m}$ platform. One jumps upward a it on the way down. (a) What are pheir speeds as first passes water? (b) Which hits the water first and by how much?
1.70 A balloon is rising at $10 \mathrm{~m} / \mathrm{s}$ when its passenger throws a bal straight up at $12 \mathrm{~m} / \mathrm{s}$. How much later does the passenger catch
the ball?
76,71 the ball?
Landing on the Moon, a spacecraft fires its retrorockets and
comes to a complere comes to a complete stop just 12 m above the lunar surface. It
then drops freely to the surface. How long tes it what is its impact speed? Hint: Consult Appendix E . to fall, an
8.72. Launched from the ground ansult Appendix E . $4.6 \mathrm{~m} / \mathrm{s}^{2}$ It passes through a band of clouds 5.3 km thick, extendin upward from an altutude of 1.9 km . How long is it in the clouds?
79.73 A subway train is traveling at $80 \mathrm{~km} / \mathrm{h}$ when it approaches slower train 50 m ahead traveling in the same direction a $25 \mathrm{~km} / \mathrm{h}$. If the faster train begins decelerating at $2.1 \mathrm{~m} / \mathrm{s}^{2}$ while what relative speed will they collide?
2. 14 You toss a book into your dorm roon 4.2 m above the ground. (a) If the book leaves your hand 1.5 m above the ground, how fast must it be going to clear the sill (b) How long after $1 t$ leaves your hand will it hit the floor, 0.87 m
below the windowsill? below the windowsill?
84,75 Consider an object traversing a distance L, part of the way a speed v_{1} and the rest of the way at speed v_{2}. Find expressions for
the average speeds (a) when the object moves at each of the two speeds for half the total time and (b) when the object moves al each of the two speeds for half the distance
87.76 The position of a particle as a function of time is given by $x=x_{0} \sin \omega t$, where x_{0} and ω are constants. (a) Take derivatives re maximessions x elocity and acceleration. (b) What ate the table of derivaives in Appendix acceleration? Hint: Consult
77 the table of derivatives in Appendix A. Cal leaps often give the illusion of "hanging" near the top of the leap. To see why this is, consider a leap that takes an athete up a verical distance h. Of the total time spent in
91.78 A student is staring idly spent in the upper half (i.e., at $y>\frac{1}{2} h$)? A student is staring idly out her dormitory window when she sees $30-\mathrm{cm}$-high window. dow was it dropped?
12,79 A police radar has an
adar detector has a range of 1.9 km . The motorist is going $10 \mathrm{~km} / \mathrm{h}$ in a $70 \mathrm{~km} / \mathrm{h}$ zone when the radar detector beeps. Ai what rate must the motorist decelerate to avoid a speeding ticker?
\checkmark 80. For the trip in Exercise 15 , find the average speed for the entire trip. Show that this speed is equal to the time-weighted average of trip. Show that this speed is equal to the time
the speeds for the individual trip segments.
\checkmark 81. An object starts moving in a straight line from position x_{0}, at time $t=0$, with velocity v_{0}. Is acceleration is given by $a=a_{0}+b t$, where a_{0} and b are constants. Find expressions for (a) the instanwhere a_{s} and b and
taneous velocity and (b) the position, as functions of time.
\checkmark 82. You are keeping pace with another runner, at 6 minutes per mile, but are 10 m behind her when she is 100 m from the finish line.
What constant acceleration do you need to catch her at the finish if she maintains a constant speed? At what pace will you be running at the finish? Express acceleration in $\mathrm{m} / \mathrm{s}^{2}$ and pace in minutes per mile. (Pace is the reciprocal of speed.)
83. For the ball tossed in Example 2.6, (a) find its velocity just before it hits the floor. Suppose you had tossed a second ball straight down at $7.3 \mathrm{~m} / \mathrm{s}$ (from the same place 1.5 m above the floor).
(b) What would its velocity be just before it hits the floor? (b) What would its velocity be just before it hits the floor?
(c) When would the second ball hit the floor? (Interpret any (c) Whltiple answers.)
84. Undaunted when you threw him out of your office on a previous visit (see Problem 52 in Chapter 1), a computer sales representative now tries to sell you on the speed of his computer. Your manufacturing process requires that the computer be located such that
the travel time between the computer and the machinery is 10μ or less. The sales rep claims it will take data $8 \mu \mathrm{~s}$ to travel be tween the computer and the machine if the distance is 2 ft . Is still trying to fool you?
85. Your roommate is an aspiring novelist. Because you are taking physics your roommate asks your opinion on a matter of physics. seems the central character in the novel is kept awake at night by leaky faucet. The sink is 19.6 cm below the leaky faucet. At the instant one drop leaves the faucet, another strikes the sink below and two more drops are in between on the way down. How many drops per second are keeping the annoyed protagonist awake?
86. You and your physics major roommate become involved in a sinister plot to drop water balloons on students entering your dorm. Your room is 64 ft above the sidewalk. You plan to place an X on is dropped. The student will walk the distance from the X to the place the balloon hits in the time the balloon falls. After observing several students, you conclude most students walk at about $2 \mathrm{~m} / \mathrm{s}$ when coming into the dorm. How far from the impact point do you place the X ?
Estimate the time it would take you to travel from Los Angeles to New York (about 2800 miles) if you walk at 3 mi/h, ride a bike at $25 \mathrm{~km} / \mathrm{h}$, or drive a car at an average speed of $55 \mathrm{~m} / \mathrm{h}$.

Answers to Chapter Questions
Answer to Chapter Opening Question
Although the ball's velocity is zero at the top of its motion, its acceleration is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$, as it is throughout the toss.

Answers to GOT IT? Questions

2.1 (a) and (b); average speed is greater for (c).
2.2 (b) moves with constant speed; (a) reverses; (d) speeds up. 2.3 Halfway between the times. Because its acceleration is constant the police car's speed increases by equal amounts in equal times.
So it gets from 0 to half its final velocity-which is twice the car's velocity-in half the total time.
2.4 The dropped ball hits first; the thrown ball hits moving faster

3 Motion in Tivo and 'Three Dimensions

What's the speed of an orbiting satellite? How should I leap to win the long-jump competition? How do l engineer a curve in the road for safe driving? These and many other quesions involve motion in more than one dimension. In this chapter we extend the ideas of one-dimensional motion to these more complex-and more interesting-situations.

3.1 Vectors

We've seen that quantities describing motion have direction as well as magnitude. In Chapter 2, a simple plus or minus sign took care of direction. But now, in two or three dimensions, we need a way to account for all possible directions. We do this with mathematical quantities called vectors, which express both magnitude and direction. Vectors stand in contrast to scalars, which are quantities that have no direction.

Position and Displacement

The simplest vector quantity is position. Given an origin, we can characterize any position in space by drawing an arrow from the origin to that position. That arrow is a pictorial representation of a position vector, which we call \bar{r}. The arrow over the r indicates that this

[^0]:

