b) How fast ne you moving?

$$
v_{m_{x}}=-\frac{4.5}{65} 12 \cos (37.788)=-0.658 \mathrm{~m} / \mathrm{s}
$$

\rightarrow Collisions Inelastic: 2 colliding objects stick together after collision $K E$ is not consented.

$$
\vec{F}_{\text {net }} \text { external }=0 \rightarrow \vec{P}_{i}=\vec{P}_{f}
$$

(1D) Elastic Collision
initial

$$
v_{\pi i}=6.9 \times 10^{6} \mathrm{~m} / \mathrm{s} \quad v_{2 i}=-11 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

$$
m_{1}=m_{2}=m
$$

2 unknowns: $v_{\text {If }} \& v_{\text {If }} \rightarrow 2$ equations

$$
\|_{m_{1}=m_{2}}=m \rightarrow\left\{\begin{array}{l}
\text { L) } v_{1 i}+v_{2 i}=v_{1 f}+v_{2 f} \\
2) v_{1 i}^{2}+v_{2 i}^{2}=v_{1 f}^{2}+v_{2 f}^{2}
\end{array}\right.
$$

1) $\underbrace{(6.9-11) \times 10^{6}}_{-4.1 \times 10^{6}}=v_{1 f}+v_{2 f} \rightarrow 4.1^{2} \times 10^{12}=\underbrace{v_{1 f}^{2}}_{\underbrace{\left(6.9^{2}+11^{2}\right)}_{1 f} 10^{12}}+2 v_{1 f} v_{2 f}$
2) $\left(6.9^{2}+11^{2}\right) \times 10^{12}=v_{1 f}^{2}+v_{2 f}^{2}$

$$
\begin{aligned}
& \rightarrow v_{i f}=\frac{\left[4.1^{2}-\left(6.9^{2}+11^{2}\right)\right] 10^{12}}{2 v_{2 f}}=\frac{-151.8 \times 10^{12}}{2 v_{2 f}}=\frac{-75.9 \times 10^{12}}{v_{2 f}} \\
& \text { 1) }-4.1 \times 10^{6}=-\frac{75.9 \times 10^{12}}{v_{2 f}}+v_{2 f}=\frac{-75.9 \times 10^{12}+v_{2 f}^{2}}{v_{2 f}} \\
& -4.1 \times 10^{6} v_{2 f}=-75.9 \times 10^{12}+v_{2 f}^{2} \\
& v_{2 f}^{2}+41 \times 10^{6} v_{2 f}-75.9 \times 10^{12}=0 \\
& v_{i_{f}}=\frac{-4.1 \times 10^{6} \pm \sqrt{4.1^{2} \times 10^{12}+4 \times 75.9 \times 10^{12}}}{2} \\
& =\frac{-4.1 \times 10^{6} \pm 17.9 \times 10^{6}}{2}\left\{\begin{array}{l}
-11 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
+6.9 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{array}\right. \\
& \rightarrow V_{i f}=\frac{-75.9 \times 10^{12}}{V_{2 f}}=\frac{-75.9 \times 10^{12}}{6.9 \times 10^{6}}=-11 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

\rightarrow exchange of speeds in Delastre collurion!

(1) $\mathrm{CO}_{\mathrm{m}}^{2}$
exchauge of speeds in 10 elaste collinon (all same mass)

2D Elastic Gllision :

$$
\begin{array}{ll}
m_{1}=3.2 \mathrm{~kg} ; & m_{2}=0.35 \mathrm{~kg} \\
v_{1 i}=1 \mathrm{~m} / \mathrm{s} & v_{2 i}=0 \\
m_{1} \\
\underbrace{\longrightarrow}_{\overrightarrow{v_{i v}}} & \overbrace{v_{2 i}}^{m_{2}}
\end{array}
$$

in.kal

1) $m_{1} 1+m_{2} \cdot 0=m_{1} V_{V f} \cos \theta_{V}+\frac{m_{2} v_{2 f}}{V} \cos 45^{\circ}$
2) $0=m_{1} v_{1 f} \sin \theta_{1}+m_{v} v_{2 f} \sin 45^{\circ}$
3) $\quad \frac{1}{2} m_{1} \frac{1}{1}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$ All physiss is altready written down \rightarrow math manirulation:

$$
\begin{aligned}
& \text { (2) } \left.\rightarrow m_{2} v_{2} \frac{1}{\sqrt{2}}=-m_{1} v_{i f} \sin \theta_{1}\right]_{1)} i_{x}=k_{1} v_{1 f} \cos \theta_{1}-\lambda_{1} v_{1 f} \sin \theta_{1} \\
& 1=v_{1 f}\left(\cos \theta_{1}-\sin \theta_{1}\right)
\end{aligned}
$$

1) $m_{1}-m_{2} v_{2 f} \frac{1}{\sqrt{2}}=m_{1} v_{1 f} \cos \theta_{i}$
2) $-m_{2} v_{2} \frac{1}{\sqrt{2}}=m_{1} v_{1 f} \sin \theta_{1}$

$$
\begin{aligned}
& (1)^{2}+(2)^{2} \Rightarrow m_{1}^{2}+\underbrace{\frac{1}{2} m_{2}^{2} \cdot v_{2 f}^{2}}-\sqrt{2} m_{1} m_{2} v_{2 f}+\underbrace{+m_{1}^{2} v_{1}^{2}\left(\cos ^{2} \theta_{1}\right.}_{\underbrace{2}_{1}+i^{2} m_{2}^{2} v_{2}^{2})} \begin{array}{l}
\left.+\sin _{1}\right)
\end{array}
\end{aligned}
$$

\rightarrow (a) $m_{1}^{2}-\sqrt{2} m_{1} m_{2} v_{2 f}=m_{1}^{2} v_{1 f}^{2}-m_{2}^{2} v_{2 f}^{2}$
3) $\left[m_{1}=m_{1} v_{1 f}^{2}+m_{2} v_{2 f}^{2}\right]_{x m_{1}}$
(b) $m_{1}^{2}=m_{1}^{2} v_{1 f}^{2}+m_{1} m_{2} v_{2 f}^{2}$
(a)-(b) $\left[-\sqrt{2} m_{1} \dot{v}_{2} v_{2 f}=-m_{2}^{2} v_{2 f}^{2}-m_{1} n_{2} v_{2 f}^{2}\right] \times(-1)$

$$
\begin{aligned}
& m_{1} V_{2 f} \sqrt{2}=\underbrace{m_{2} v_{2 f}^{2}+m_{1} v_{2 f}^{2}}_{\left(m_{1}+m_{2}\right) v_{2 f}^{2}} \\
& m_{1} \sqrt{2}=\left(m_{1}+m_{2}\right) V_{2 f} \rightarrow V_{2 f}=\frac{m_{1}}{m_{1}+m_{2}} \sqrt{2} \\
& b=\frac{3.2}{3.2+0.35} \sqrt{2} \\
& v_{2 f}=1.27 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(3)
2)

$$
\begin{aligned}
& \sin \theta_{1}=-\frac{m_{2} v_{2}}{m_{1} v_{1} f} \frac{1}{\sqrt{2}} \\
& \theta_{1}=\sin ^{-1}\left[-\frac{0.35 \times 1.27}{3.2 \times 0.908} \frac{1}{\sqrt{2}}\right] \rightarrow v_{1 f}=0.908 \mathrm{~m} / \mathrm{s} \\
& \theta_{1}=-6.21^{\circ}
\end{aligned}
$$

Ch. 10 Rotational Motron:
Contant acceleration

Linear Motion

$$
\begin{align*}
\bar{v} & =\frac{v_{0}+v}{2} \\
v & =v_{0}+a t \tag{1}\\
x & =x_{0}+v_{0} t+\frac{1}{2} t^{2}(2) \\
\frac{v^{2}-v_{0}^{2}}{x-x_{0}} & =2 a \tag{3}\\
F & =m a
\end{align*}
$$

Rotational Motion

$$
\begin{aligned}
& \bar{\omega}=\frac{\omega_{0}+\omega}{2} \\
& \omega=\omega_{0}+\alpha t \\
& \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
& \frac{\omega^{2}-\omega_{0}^{2}}{\theta-\theta_{0}}=2 \alpha \\
& \tau=I \alpha
\end{aligned}
$$

ω : "omeja" : anguler vobity
α : "apha": anguler accelbuation
θ : "theta": augle
τ : "tau" : toque
I: Moment of inestia

Angular veloity: ω
$\bar{\omega}=\frac{\Delta \theta}{\Delta t} \rightarrow$ instantaneons angular velocity: $\omega=\frac{d \theta}{d t}$

Angular acceleration:

$$
\begin{aligned}
& \bar{\alpha}=\frac{\Delta \omega}{\Delta t} \rightarrow \alpha=\frac{d \omega}{d t} \\
& \text { Unit, } s I: \frac{1}{s^{2}} ; \frac{n a d}{s^{2}}
\end{aligned}
$$

Alternative: $\frac{\sigma}{s^{2}}$ or $\frac{\mathrm{rev}}{\min ^{2}} \ldots$

$v=R_{w}$ changing dr v
More generally:

$a_{n}=$ radial aculuation won-UCM
$a_{t}=$ tangential deceleration

$$
\left[\begin{array}{l}
a_{2}=\frac{v^{2}}{R}=\frac{R^{k} w^{2}}{R}=R w^{2} \\
a_{t}=\frac{d v}{d t}=\frac{d\left(R_{w}\right)}{d t}=R \frac{d w}{d t}=R \alpha
\end{array}\right.
$$

Torque:

'"eross-produst": "product another vector
$\hat{r}=$ a unit vector nama (perpendicular) to the plane formed by $\vec{r} \& \vec{F}$
Torque is a vector that is perpendicular to both $\vec{i} \& \vec{F}$. $\mu_{n}-t . S T . N m$

Example:

On bar: $\quad \vec{r}_{\text {Tot l }}=\vec{r}_{M}+\vec{r}_{m}=\vec{R} \times M \vec{y}+\vec{r} \times m \vec{j}$ $=R M_{g} \hat{k}-2 m g \hat{k}=(R M-n m) g \hat{k}$
$\vec{c}=\vec{n} \times \vec{F}:$ is \perp to both $\vec{r} \& \vec{F}$
eeg: $\vec{\tau}_{\otimes} \vec{r} \vec{r}$ \& \vec{F} in plane of sheen: \vec{r} direction (or direction of \hat{c}) is given by night hand rule RHR: wight hand fingas along $1 s^{s t}$ vector (\vec{r}), as you tron there fingers towed \vec{F}, thumb indicates direction of ta que.
\rightarrow here tagore is into the siren.

\rightarrow here tine is out of seen.

Total togs on bar is 0 when $R M=\pi m \Rightarrow \frac{R}{r}=\frac{m}{m}$

Analog of $2^{\text {nd }}$ Newtons's Law:

Moment of inertia:

Difference cst. mass maestro (m in Nestor's Law): also is important its portions int axis of notation
 $I_{1}<I_{2}$

Parallel axis theorem:
Solid sphere, of mass M; valine R

$$
((v)) I_{1}=\frac{2}{5} M R^{2}
$$

Rolling Motion \longrightarrow non skidfing li.g. car moves under solling motion of wheels under nomal conchtior.

For rolling (non skidding) motoin: sep. b/4 1 l 2 is $T R$! CM moving in linean motion b/w 1 l 2 :

$$
\left\{\begin{array}{l}
v_{C M}=\frac{\pi R}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t}=\frac{\pi}{\Delta t}
\end{array}\right\} \begin{aligned}
& v_{C M}=\omega R \\
& \text { translation } \\
& \text { For solling motions. }
\end{aligned}
$$

(2)

(2)
 trauslation of Cm
$K E=\left\{\begin{array}{l}\text { linean motroin (2) }=\frac{1}{2} m V_{c m}^{2} \\ { }_{20} \text { olloy motion (3): } \frac{1 m V_{c m}^{2}+\frac{1}{2} I \omega^{2}}{2}\end{array}\right.$

$$
=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} I\left(\frac{v_{c m}}{R}\right)^{2}=\frac{1}{2}\left(m+\frac{I}{R^{2}}\right) v_{c m}^{2}
$$

conpened to (2) (skibllig only) \rightarrow volling motos: extro inestia lue rotation

Moment of inertia:
\rightarrow Round and symmetrical object:
sphere wit cuter axis: $\alpha=\frac{2}{5}$ glandes wot center mass $=\alpha=\frac{1}{2}$
thin rod of length L wit center ax: $\alpha=\frac{1}{12}$

$$
\rightarrow I=\frac{1}{12} M L^{2}
$$

- Rolling motion of sound \& symmetrical objet:

$$
\begin{gathered}
K E=\frac{1}{2} M V_{c m}^{2}+\frac{1}{2} I w^{2}=\frac{1}{2} M V_{c m}^{2}+\frac{1}{2} \frac{I}{R^{2}} V_{c m}^{2} \\
\left.\quad \begin{array}{l}
\quad \\
=\frac{1}{2}(M P
\end{array}\right) \frac{v_{c m}}{R} \\
\left.R^{2}\right) v_{c m}^{2}=\frac{1}{2}(M+\alpha M) V_{c m}^{2} \\
\downarrow \\
\frac{I}{R^{2}}=\alpha M
\end{gathered}
$$

R Rolling (moving forward with rotation) $\rightarrow K E=\frac{1}{2} m(1+\alpha) v_{c m}^{2}$ Skidding (moving forward without rotation) $\rightarrow K E=\frac{1}{2} M v_{c m}^{2}$

$$
\left\{\begin{array}{l}
\text { For a same Total KE } \rightarrow\left\{\begin{aligned}
& \text { rolling } \rightarrow \text { lower } V_{c m}!\rightarrow A B S \\
& \text { skidding }
\end{aligned} \begin{array}{rl}
\text { Braking } \\
\text { System. }
\end{array}\right.
\end{array}\right.
$$

10.57

$$
\begin{aligned}
& m_{2}=2.4 \mathrm{~kg} \\
& m_{1}=0.85 \mathrm{~kg} \\
& R=0.05 \mathrm{~m}
\end{aligned}
$$

μ_{k} ? b/w block \& sloje

$$
\begin{aligned}
R T & =I \alpha=\frac{1}{2} m_{1} R^{k} \frac{a}{R} \\
\rightarrow & T=\frac{1}{2} m_{1} a
\end{aligned}
$$

$$
\mu_{K}=\frac{m_{2} g \sin 30^{\circ}-m_{2} a-T}{m_{2} g \cos 30^{\circ}} \stackrel{\downarrow}{2.4 \times 9.81 \sin 30^{\circ}-2.4 \times 1.6-\frac{1}{2} .85 \times 16} \frac{m_{2} g \sin 30^{\circ}-m_{2} a-\frac{1}{2} m_{1} a}{m_{2} g \cos 30^{\circ}}
$$

$$
=\frac{2.4 \times 9.81+\sin 30^{2}-2.4 \times 1.6-\frac{1}{2} 0.85 \times 1.6}{2.4 \times 4.81 \times \cos 3 \theta^{2}}=0.36 .
$$

Chis: Rotational Vectors \& Angular Momentum:

Rotational

Linear

$$
\vec{F}=m \vec{a}
$$

More generally:

$$
\vec{F}_{\text {ret, eseterul }}=\frac{d \vec{p}}{d t}
$$

$\vec{p}=$ linear momentum

$$
\vec{p}=m \vec{v}
$$

$$
\vec{r}=\vec{r} \times \vec{F} \rightarrow \vec{r}=I \vec{\alpha}
$$

More generally:

$$
\vec{\tau}_{\text {net, internal }}=\frac{d \vec{L}}{d t}
$$

\vec{L} : angular momentum

$$
\vec{L}=\vec{r} \times \vec{p}
$$

coss product.
\vec{L} is a vector that is perpendicular to both $\vec{r} \& \vec{p}$

$$
L=r p \sin \theta \quad \begin{aligned}
& (\theta=\operatorname{arp} b \\
& \vec{r} \& / \vec{p})
\end{aligned}
$$

Direction is given by the RHR: wight hand fingers along $1^{\text {st }}$ vector of the noss-product $=\vec{r}$, as these fingers form toward the $2^{\text {nd }}$ verfor \vec{p}, thumb indicates direction of \vec{L} :

(\vec{r} \& \vec{p} on plane of sheen)

What is the angular momentum of m wat prot?

Do we have a goodreason to beheve in $\overrightarrow{c_{n t}}=\frac{d \vec{l}}{d t}$? $\vec{L}=\sum_{\substack{i \\ \text { componenti of a tystem }}} \vec{L}_{i}=\sum_{i} \vec{n}_{i} \times \vec{p}_{i}$

$$
\begin{aligned}
& \frac{d \vec{L}}{d t}=\sum_{i} \frac{d}{d t}\left(\vec{r}_{i} \times \vec{p}_{v}\right)=\sum_{i}\left(\frac{d \overrightarrow{r_{i}}}{d t} \times \vec{p}_{i}+\overrightarrow{r_{i}} \times \frac{d \vec{p}_{i}}{d t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \vec{L}}{d t}=\underbrace{\sum_{i} \vec{\tau}_{i}}_{\vec{z}_{e} t} \\
& \Rightarrow \vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t} \text { yes. }
\end{aligned}
$$

Importance conseguence:
if $\vec{\tau}_{\text {net }}=0 \rightarrow \vec{L}$ is conterved
Sunnany $\left\{\begin{array}{l}\vec{F}_{\text {het }}, \text { estionl }=0 \rightarrow \vec{P}_{i}=\vec{P}_{f} \\ \vec{\zeta}_{\text {ret, esotual }}=0 \rightarrow \vec{L}_{i}=\vec{L}_{f}\end{array}\right.$

$$
{\overrightarrow{L_{i}}}^{=}=\vec{L}_{f}
$$

Sytem with 2 comprenects: can (1) \& can (2) $\rightarrow \vec{L}_{\text {Total }}=\vec{L}_{1}+\vec{L}_{2}$

$$
\begin{aligned}
& \vec{L}_{\text {Tokl }}=\underbrace{\vec{r}_{1} \times \vec{p}_{1}}_{\begin{array}{c}
\text { on } \times Y \\
\text { plave }
\end{array}}+\underbrace{\vec{r}_{L_{2}} \times \vec{p}_{p_{2}}}_{\begin{array}{c}
\text { on } \times Y \\
\text { plane }
\end{array}} \\
& \left(\vec{p}_{i}=m_{i} \cdot \vec{v}_{i}\right) \\
& \vec{p}_{v} \| \vec{v}_{i} \\
& \begin{array}{l}
\vec{r}_{1}=x_{1} \hat{\imath}+y_{1} \hat{\jmath} \\
\vec{p}_{1}=m_{1} \vec{v}_{1}=-m v \hat{\imath}
\end{array} \| \begin{array}{l}
\vec{r}_{2}=x_{2} \hat{\imath}+y_{2} \hat{\jmath} \\
\vec{p}_{2}=m v \hat{\imath}
\end{array} \\
& \vec{L}_{\text {total }}=\left(x_{1} \hat{\imath}+y_{1} \hat{\jmath}\right) \times(-m v \hat{\imath})+\left(x_{2} \hat{\imath}+y_{2} \hat{\jmath}\right) \times(m v \hat{\imath}) \\
& =-m \vee y_{1}(\underbrace{\hat{\jmath} \times \hat{\imath})}_{-\hat{k}}+m v y_{2} \underbrace{(\hat{\jmath} \times \hat{\imath})}_{-\hat{k}} \\
& {\underset{x}{x}}_{\hat{\jmath}_{\hat{\phi} \rightarrow i}} \quad \Rightarrow \vec{L}_{\text {Totel }}=3 m v \hat{k}+3 m v \hat{k} \\
& =6 \operatorname{mov} \hat{k}=6 \times 1800 \times 25 \hat{k} \\
& =27 \times 10^{4} \mathrm{Js} \text { or } \frac{\mathrm{kg} \mathrm{~m}^{2}}{\mathrm{~s}}
\end{aligned}
$$

Disk: R,M \rightarrow wit cental axis $F=\frac{1}{2} M R^{2}$

Find I' with the hole; wat central axis

$$
I^{\prime}=I-I_{\text {tole }}=\underbrace{\frac{1}{2} m R^{2}}_{\text {wot ca }}-\underbrace{I_{\text {HEl }}}_{\text {wot cal }}
$$

Mom of inert for a disk int Axis at the edge:
Candled axis theorem:

$$
\begin{aligned}
I_{\text {Hole }}=\frac{1}{2} m\left(\frac{R}{4}\right)^{2}+m\left(\frac{R}{4}\right)^{2} & =\frac{3}{2} m \frac{R^{2}}{16} \\
& =\frac{3}{32} m R^{2}
\end{aligned}
$$

Find m : mass a bust of racing $\frac{R}{4}$:

$$
\begin{aligned}
& m=\frac{M\left(\frac{R}{4}\right)^{2}}{\pi R^{2}} M=\frac{M}{16} \rightarrow I_{\text {Hole }}=\frac{3}{32} \cdot \frac{M}{16} R^{2} \\
& I^{\prime}=\frac{1}{2} M R^{2}-\frac{1}{2} M \frac{3 R^{2}}{16^{2}}=\frac{1}{2} M R^{2}(\underbrace{\left(1-\frac{3}{16^{2}}\right)}_{0.988}=0.494 m R^{2}
\end{aligned}
$$

$$
\begin{aligned}
& R=0.25 \mathrm{~m} \\
& I_{D}=0.0154 \mathrm{kgm}^{2} \\
& \omega_{i}=22 \mathrm{npm} \quad(\text { rev. per mira }) \\
& m=19.5 \mathrm{~g}=0.0195 \mathrm{~kg}
\end{aligned}
$$

(a) We expert $w f>w_{i}$: with the mouse at the axis \rightarrow it no longer contributes to the total moment of inertia:

$$
\begin{aligned}
& \vec{\zeta}_{\text {net, enteral }}=0 \\
& \text { System of disk }+ \\
& w_{f} V_{n}
\end{aligned}
$$

$$
w_{f}=\frac{I_{i}}{I_{f}} w_{i}=\left[\frac{\left(I_{0}+m R^{2}\right)}{I_{D}} / 22 \mathrm{ipm}\right.
$$

$$
w_{f}=\frac{0.0154+0.0195 \times 0.25^{2}}{0.0154} 22 \mathrm{npm}
$$

$$
=23.7 \mathrm{rpm}
$$

$$
\text { Work done by mouse: }=K E_{f}-K E_{i}
$$

$$
\begin{aligned}
& =N E_{f}-K E_{i} \\
& =\frac{1}{2} I_{f} w_{f}^{2}-\frac{1}{2} I_{i} w_{i}^{2}=\frac{1}{2} I_{f}\left[w_{f}^{2}-\frac{w_{f}}{w_{i}} w_{i}^{R}\right]
\end{aligned}
$$

is $S I_{2}$

$$
=\frac{1}{2} I_{f} \omega_{f}^{2}\left[1-\frac{\omega_{i}}{\omega_{f}}\right]
$$

$237 \frac{\mathrm{nox}}{\mathrm{m} / \mathrm{h}} \cdot \frac{20 / 4}{60 \mathrm{~s}} \cdot \frac{2 \pi \times 0.25}{200}=\frac{\mathrm{Y}_{5} \mathrm{~s}^{-1}}{0.62}$

$$
=\frac{1}{2} 0.0154 \times 0.62^{2}\left[1-\frac{22}{23.7}\right]=2 \times 10^{-4} \mathrm{~J}
$$

$9.33 ; 9.57 ; 11.47 ; 11.51 ;$
(9.33) 1D Elastic collision b/w 2 protons $m_{1}=m_{2}=m$

$$
\begin{aligned}
& \vec{v}_{1_{i}}=\underset{\sim}{6.9 \times 10^{6} \mathrm{~m} / \mathrm{s} \hat{i} \quad \vec{v}_{2 i}=11 \times 10^{6} \mathrm{~m} / \mathrm{s}(\hat{i})} \\
& V_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} V_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} V_{2 i} \stackrel{m_{1}=m}{=} \times \frac{2 / 2}{2 m} v_{2 i} \\
& V_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} V_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}=\frac{2 / \mathrm{h}}{2 \mathrm{~m}} v_{1 i} \\
& \vec{v}_{1 f}=11 \times 10^{6} \mathrm{~m} / \mathrm{s}(-i) \quad \overrightarrow{v_{2 f}}=6.9 \times 10^{6} \mathrm{~m} / \mathrm{s} \hat{i} \\
& \leftarrow \\
& \text { (1) }
\end{aligned}
$$

(9.57) $2 D$ inelestre collisioin: $\quad \vec{P}_{i}=\vec{P}_{f}$

Pythagoras Ther.
\rightarrow come to a ${ }^{\text {shys }}$ at the end of 22 m due t firetoos. $\mu_{k}=0.91$

Both cans we up their Lotal KE after wollinin by skiolaling 22m: with proction: $F_{k}=\mu_{k} N \rightarrow$ work done a frecton: $F_{k} d$

$$
\begin{align*}
& =\frac{\mu_{k} N d=\mu_{k}\left(m_{1}+m_{2}\right) g d}{} \rightarrow \frac{1\left(m_{1}+m_{2}\right) v_{f}^{2}=\mu_{k}\left(m_{1}+m_{2}\right) g d}{} \rightarrow \frac{v_{f}^{2}=2 \mu_{k} g d /(2)}{\left(m_{1}+m_{2} v_{2 i}^{2}\right.}=2 \mu_{k} g d \\
& (1) \&(2) \rightarrow \frac{m_{1}^{2} v_{1 i}^{2}+m_{2}^{2} v_{2}^{2}}{}=\frac{1}{m_{1}} \sqrt{2 \mu_{k} g d\left(m_{1}+m_{2}\right)^{2}-m_{2}^{2} v_{2 i}^{2}} \tag{43}
\end{align*}
$$

Chak: if at leart one of the cass exceeded cimut of $25 \mathrm{~km} / \mathrm{h}$
a) Assume car \#2 (Burek) going at speed himit of $25 \mathrm{~km} / \mathrm{h}=6.94 \mathrm{~m}$

$$
\begin{aligned}
G V_{11}=\frac{1}{1200} \sqrt{2 \times 0.91 \times 9.81 \times 22(3400)^{2}-2200^{2} \times 6.94^{2}} & =54.66 \mathrm{~m} / \mathrm{s} \\
& =197 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

b) Now switch: $m_{2}=1200 \mathrm{~kg}$ (Toyote)

$$
m_{1}=2200 \mathrm{~kg} \text { (Rusck) }
$$

Assume can \#n (Totyote) going at speed hunt int interseetiois at $6.94 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
V_{1 i} & =\frac{1}{2200} \sqrt{2 \times 0.91 \times 9.81 \times 22 \times(3400)^{2}-1200^{2} \times 6.94^{2}}=30.4 \mathrm{~m} / \mathrm{s} \\
& =109 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Ch12: Static Equilhbrium:
\rightarrow Apphiation of force \& torpue Balence:

1) $\sum_{i} \vec{F}_{i}=0$
2) $\sum_{i} \vec{\tau}_{i}=0$

System will wot mure nor sotate under these two conditions. \rightarrow static equilimiom.

Location of cheld so scale reaching is a) 100 N
b) 300 N
a) Boond is in skatic equilbiviun $\rightarrow 4$ fries acting on boand:

$$
m_{m}, M_{g}, N_{p}, N_{s} \rightarrow N_{p}+N_{s}-m g-M_{g}=0
$$

Priot $\rightarrow 3$ torgus acting on boand: no torque form \vec{N}_{p} sine $\vec{r}_{p}=\begin{aligned} & \vec{r} \quad(\vec{r} \text { : puot to apptication prit) } \\ & \vec{r}+\vec{r}=0\end{aligned}$

$$
n_{m}=\frac{0.4 \times 10 \times 981-1.6 \times 100}{40 \times 9.81}=0.19 \mathrm{~m} \quad \text { (hom pirot) }
$$

\rightarrow from left: be. of child is $0.8-0.19=0.61 \mathrm{~m}$
b) $\rightarrow r_{m}=-0.62 \mathrm{~m} \rightarrow$ loc. chill for left $\rightarrow 0.8+0.62$ (hompiot) $\quad=1.42 \mathrm{~m}$.
(10.58)

$\stackrel{\omega}{\sim}$ Bike wheal

$$
\rightarrow \text { Friction. } \mu_{k} N \rightarrow \vec{\zeta}_{k}=\vec{i} \times \vec{F}_{k}=-R_{j} \times \mu_{k} N \hat{\imath}
$$

$$
=R_{\mu_{k}} N \underbrace{(-\hat{\jmath} \times \hat{\imath})}_{\hat{k}}
$$

$$
\rightarrow \tau=I \alpha \rightarrow \alpha=\frac{\tau}{I_{\text {wheel }}}=\frac{k_{\mu_{k}} N}{m R^{7}} \quad \begin{aligned}
& \text { decelerction } \\
& \text { during } \Delta t=3.15
\end{aligned}
$$

$$
\omega_{f}=171 \mathrm{mpm}
$$

(11.47) Fromabore

initiol

pine

$$
\vec{L}_{f}=I_{f} \vec{w}_{f}{\overrightarrow{c \omega \rightarrow w_{f}}(-\hat{k})}
$$

$$
\begin{aligned}
=-I w_{i} \hat{k}+\underset{m \times v}{ } \hat{k} \\
\hat{k} \\
(\hat{i} \times \hat{j})
\end{aligned} \quad=-\left(I+m x^{2}\right) w_{f} \hat{k}
$$

11.51

$$
\vec{\tau}_{\text {net }}^{\text {exat }}=0
$$

$$
\left.\begin{array}{l}
R_{1}=2.3 \mathrm{~cm} ; m_{1}=0.27 \mathrm{~kg} \\
R_{1}=3.5 \mathrm{~cm} ; m_{2}=0.44 \mathrm{kj} \\
\omega_{1}=1802 \mathrm{pm}
\end{array}\right\} \quad D_{i s k s}=I_{\substack{\text { cunt }_{20 l} \\
\alpha \times i s}}=\frac{1}{2} R^{2}
$$

(a)

$$
\begin{aligned}
& L_{1}=I_{2} \omega \\
& \omega^{\prime}=\frac{I_{2}}{I_{1}+I_{2}} \omega=\frac{1}{\frac{I_{1}}{I_{2}}+1} \omega=\frac{1}{\frac{m_{1} R_{1}^{2}}{m_{2} R_{2}^{2}}+1} 180 \mathrm{npm} \\
& \omega^{\prime}=142 \mathrm{xpm} .
\end{aligned}
$$

(b) Fraction of instal $K E \operatorname{los} t$ into friction.

$$
\frac{K E_{i}-K E_{f}}{K E_{i}}=\frac{\left(\left(\frac{k}{2} m_{2}^{2} R_{2}^{2}\right) w^{2}-\frac{1}{2}\left[k_{1} R_{1}^{2}+\frac{1}{2} m_{2} R_{2}^{2}\right] w^{\prime 2}\right.}{4 m_{2} R_{2}^{2} w^{2}}
$$

Here $K E=\frac{1}{2} I \omega^{2}$ (just watation, no hanslation of $C M$ por neither (i) por (f) stuations)

$$
\begin{aligned}
& =1-\left[\frac{m_{1} R_{1}^{2}}{m_{2} R_{1}^{2}}+1\right]\left(\frac{\omega^{1}}{\omega}\right)^{2} \\
& =1-\left[\frac{0.27 \times 2.3^{2}}{0.44 \times 3.5^{2}}+1\right]\left(\frac{142}{180}\right)^{2}=0.210221 \%
\end{aligned}
$$

