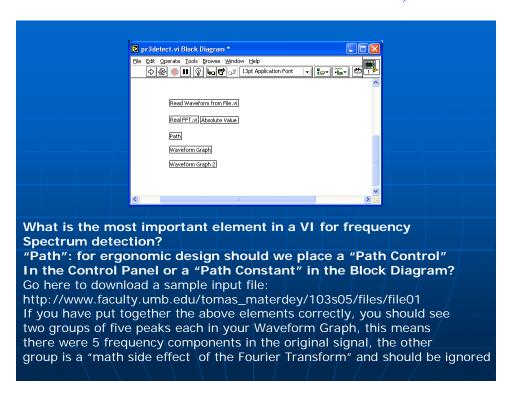

Engin 103	Topics:
April 28, 2009	<u>LabVIEW topics: Shift register;</u>
	spectrum detection
back to e-syllabus	Project 3 Topic Assignment
•	Logbook questions

Shift register –To obtain a prediction Y' using a polynomial model


This algorithm ALSO implements Y'=d+c*X+b*X**2+a*X**3, where d is the index-0 element of the array, ..., a is the index-N-1 of the array. Each iteration of the For Loop calculates a term of the sum, and the Shift Register adds the different terms together. The Index Array is not needed here: when an Array is wired into a For Loop, the Index Array utility is activated automatically. The Array of coefficients can then fed directly into the Formula Node to calculate the corresponding term. Recallthe iteration index i of a For Loop goes between 0 and N-1.

Spectrum detection

Frequency Spectrum Detection: Here are the original labels of the Items we need to make a Spectrum Detection VI, not in any particular Order – elements on a same line are related,

back

back

back

Project 3

Project	Description	Team
A	Predict the max. temp. for the next day	6
	using previous days' temperatures, using	
	polynomial and other models	
В	Predict the oil price for next week using	10
	previous weeks' prices, using polynomial	
	and other models	
С	Detect the frequency spectrum of a given	4
	signal using Fourier Transforms	
D	Say the decimal number for a four-digit	5
	binary number	

Е	Make a 8 keys piano	2
F	Solve the quadratic equation with	8
	distinction of cases for the discriminant	
G	A VI that can calculate the areas and	3
	volumes of 5 different 3D geometrical	
	shapes	
Н	A VI that produces interesting sounds from	9
	the combination of 2 or more sine waves	
	with different frequencies	
I	A VI that produces a chirp sound, that is a	7
	sound whose frequency is changing with	
	time	
J	Make a "sound recording utility" that can	1
	record voice from a microphone, display it	
	and its FFT, then save it into a file. When a	
	'playback button' is pressed it will play the	
	recorded sound.	

	Front Panel	Block Diagram
	(suggested)	(suggested)
Project A Predict Max Temp for next day: polynomial and other models	Numeric Arrays XY Graph Boolean Switches	Case Structure Curve fitting/Data Modeling sub-VI's Bundle for graphing Build Array
Project B Predict gas prices: polynomial and other models	Similar to Project A	Similar to Project A
Project C: Predict the Spectrum of a given Signal using FFT.vi	-Path to File containing given signal in wav format -Waveform Graph for the Spectrum	FFT.vi Absolute Value
Project D: Say the decimal number for a four- digit binary number	-Numeric Control to enter the binary number -Guide for entering correct data	-Case Structure -Play correct wav file according to the binary input
Project E: 8 keys piano	-Push buttons	-Related to Project D
Project F: Solve quadratic equation Project G:	-Ways to enter the equation -Ways to output the two solutions; and text to classify the discriminant -Boolean switches	-Case Structure -Arithmetic operations -String constants -Case structure
Calculate 4 different geometrical shapes	-Graphics to explain the geometries, dimensions, etcNumeric controls for sizes	-Sub-VI
Project H: Sound from two or more sinusoids and their sum Project I:	-Ways to enter frequencies or periods -Waveform graphs Related to H	-For Loop -Eval Single-Var. Array -Bundle; Build Array -Sound utilities

Chirp sound

back

LOGBOOK: example of a logbook page

- -Use a quadrille notebook; number all pages; date all entries
- -Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.
- -In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:

No logbook questions for this meeting

back