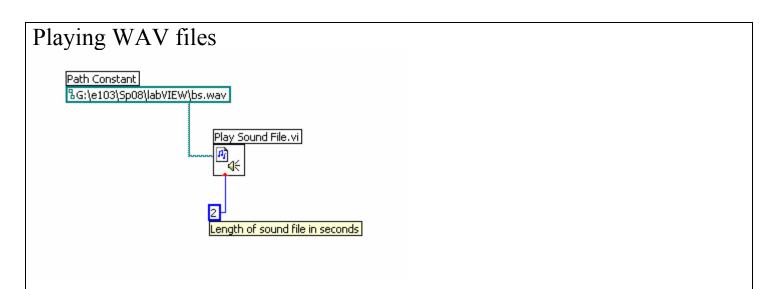

Engin 103	Topics:
May 1, 2008	Sound with LabVIEW
	Project 3 Topic Assignment
back to e-syllabus	Logbook questions


Sound

Modifications:

- a) Use amplitude of 128 for the cos(t) signal
- b) Use frequencies instead of periods at the Numeric Controls
- c) Replace $2\pi/T$ by $2\pi f$ in the Block Diagram (for both f_1 and f_2)
- d) Add 127 to the sum of the two signals
- e) Use "To Unsigned Byte Integer" to convert to an 8-bit binary signal
- f) Use Sound Output Configure to assigned Task ID for Sound Output Write
- g) Connect binary signal into Sound Output Write
- h) Adjust Numeric Constants N and delta: for frequencies of about 1000 Hz, a period has 0.001s, so delta has to be sufficiently small to allow at least 10 points per period, i.e., delta should be 0.0001 or smaller. Use N to control the length of the signal.

back

back

back

Project 3

Project	Description	Team
A	Predict the max. temp. for the next day	8
	using previous days' temperatures, using	(4/22 @8:51)
	polynomial and other models	
В	Predict the oil price for next week using	6
	previous weeks' prices, using polynomial	(4/22 @9:56)
	and other models	
С	Detect the frequency spectrum of a given	
	signal using Fourier Transforms	
D	Say the decimal number for a four-digit	4
	binary number	(4/22 @8:43)
E	Make a 8 keys piano	3
		4/22 @8:53
F	Solve the quadratic equation with	1
	distinction of cases for the discriminant	(4/17 @9:47)
G	A VI that can calculate the areas of 4	5 (3D)
	different geometrical shapes	(4/17
		@10:30)
		7 (2D)
Н	A VI that produces interesting sounds from	10
	the combination of 2 or more sine waves	(4/24)
	with different frequencies	
I	A VI that produces a chirp sound, that is a	2

		sound whose frequency is changing with time	(4/30)
h	nolz		

LOGBOOK: example of a logbook page

- -Use a quadrille notebook; number all pages; date all entries
- -Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.
- -In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:
- 49) Insert a snapshot of the Front Panel of your team's VI for Project 3, describe each element shown and explain why they are there
- 50) Insert a snapshot of the Block Diagram of your team's VI for Project 3, describe each operation shown and explain why they are there

4			
h	0	$^{\circ}$	۱,
-11	7	4.5	ĸ
$\boldsymbol{\omega}$	ч	Ο.	1,