Engin 103	Topics:
April 3, 2008	Project 2 Progress Reports
	Project 2 and LabVIEW Survey
back to e-syllabus	Estimation
	Logbook questions

Project 2 Progress Report: due April 1, 2008

Project 2 leaders: please copy this document and fill in your team response below. Then save as a web page: name "p2pr.html" and upload to your *files* folder. This Progress Report **is required** as part of <u>Project 2</u> on LabVIEW Virtual Instruments.

Team #	Part I: VI#1	Part II: VI#2	Assign a grade on
	1) Describe the problem you will	1) Describe the problem you will solve in a few	communication in your
	solve in a few words	words	team in this project:
	2) What equation you will	2) What equation you will implement in this VI?	4 -members always communicate
	implement in this VI?	3) Describe the inputs and outputs, with units	how they are doing on their part 3 – members sometimes
	3) Describe the inputs and outputs.	4) List the LabVIEW elements you will use	communicate how they are doing
	with units	5) Describe what operations will be grouped into a	on their part 2- some member does not reply
	4) List the LabVIEW elements you	subVI and how many times the subVI will be	emails or phone calls
	will use	called into the main Block Diagram	1 – members show no interest in participating
1	1) The VI we design will be able to determine	1) The VI we design will be able to determine the maximum height	3
	the maximum height reached by a projectile	reached and horizontal distance traveled by a projectile released at	
	hurled directly upward.	a given velocity and angle.	
	2) $Vy^2 = Voy^2 - 2g\Delta y$,	2) Vox=Vo[cos(θ o)], Voy=Vo[sin(θ o)], Vy^2=Voy^2-2g\Delta y,	
	3) The input will be the initial velocity in	Vy=Voy-gt, and Δx =Vox(t)	
	meters per second and the release angle in	3) The inputs will be the initial velocity in meters per second and	
	degrees. The output will be the maximum	the release angle in degrees. The outputs will be the maximum	
	height reached in meters.	height reached in meters and the horizontal distance traveled in	
	4) The numeric control and the numeric	meters.	
	indicator will be needed.	4) The numeric control, numeric indicator, and string control will	
		all be needed.	
		5) The equations for Vox and Voy will be used for subVIs.	
2	1) We decided that we would use GDP	1) Free Fall	4

r	1	0 1			
		 formula. GDP=C+I+GS+X-M The input is the consumption plus investment plus Government spending plus Export minus Import, Which all equals to the gross domestic product in number of dollars. We used indicator and Numeric indicator and we used four plus signs and a negative, to compute the data. 	 2) Y=V0gt-1/2gt2 3) The inputs and Outputs are the height, speed, gravity, acceleration, distance, weight, Time 4) Same as part one plus sub VI's 5) We are not there yet. 		
	<u>3</u>				
	<u>4</u>	 We planned to design a model that could measure the radius-speed of wheels on an automobile which has traveled on a straight line, starting at 0m/sec, an accelerate Our first VI will be based on following formulas: F = ma; a = F/m; S = (1/2)at² t = (2S/a)^{1/2} V_t = at Radius-speed = V_t/2 Mass; horse power; radius of the wheel; distance has traveled Numeric control; Connect Wire; Operate Value; Numeric indicator; function numeric 	 Second VI could solve a problem like, two same auto automobile with different masses, how it would affect their radiu-speed when they have traveled after the same distance in acceleration. Our first VI will be based on following formulas: F = ma; a = F/m; S = (1/2)at² t = (2S/a)^{1/2} Vt = at Radius-speed = Vt/2 Mass of two cars (m1 and m2); horse power(same); radius of the wheel(same); distance have traveled()same Numeric control; Connect Wire; Operate Value; Numeric indicator; function numeric The sub VI will be our first VI. It will be called twice in the operation. 	4	
•	<u>5</u>	1)Total current of the circuit a. 2)I=V/R1+R2+(R3*R4/R3+R4) 3)10 VDC-input output-total current in amps 4)indicators, controls ,numeric functions	 Total current and the voltage drop of each resistor in the circuit. I=V/(R1=R2)+(R3*R4/R3+R4)+(R5+R6) 10 VDC-input output-Voltage drop across resistors indicators, controls, numeric functions 	4	
	<u>6</u>	 We are going to design an AC series parallel circuit involving a transformer. 	 We are going to add power into are existing circuit. Ohms law parallel resistance to be placed into series portion of circuit. 	4	

<u>7</u>	2) 3) 4) Our tear The equ The inpo output is Joules.	We are going to use Ohms law, and the primary to secondary winding ratio equation for the transformer. For the inputs we are going to have a variable source voltage measured in volt's, variable primary and secondary windings on the transformer, and 4 resistors measured in ohms. For the outputs we are going to have multiple voltage and current indicators throughout the circuit measured in volts and amps. We are going to use the LabView numeric inputs, outputs, and mathematic function. m is working on Potential Energy. that is the height of the object and the s the potential Energy itself measure in	3) 4) 2)	The parallel resistance will be the input and the output we be the combined value for the series circuit in ohms. We are going to use the LabView numeric inputs, outputs, and mathematic function. Addition division and multiplication will be grouped into the sub vi and it will be used twice.	-
	The Eler numeric	ments we use are the numeric controls, indicators and the multiplication			
8	1. 2. 3. 4.	We want to find out how much horsepower a vehicle needs to pull a certain weight or cargo size. Horsepower = weight x (velocity/234)^3 the input is the weight or the cargo we are going to use, mostly likely its going to be the max weight the vehicle can pull (Toyota Tundra), the output is how much horsepower it needs in order to pull the weight Box diagrams of the engine and how it operates, use multiplication, division, and unit conversion.	 the se being pr the end the in much it the end the end the opactually 	cond problem we want to find out is how much heat is oduced during the revving process quation we would use is somewhat very similar to the basic ng a temperature of a object put would be the engine heat, the output would be how is producing ements we would use is the add, multiply, division, berations will be grouped together when the vehicle is revved up to pulling.	
<u>10</u>	1) The p finding	broblem we'll be solving is for VI#1 is the velocity of a person falling in a	1) For V 2) Vy(t)	VI#2 we will figure out terminal velocity with air resistance. = -gt + Vy0 and Y(t) = -0.5gt ² + Vy0t + Y0.	

vacuum.	3) The inputs are initial velocity, velocity with respect to time,	
2) $Vy(t) = -gt + Vy0$	initial altitude, altitude with respect to time, time elapsed, and	
3) The inputs are gravity times time plus initial	acceleration due to gravity.	
velocity. The output is the velocity with respect	4) Numeric controls and indicators, meters and gauges.	
to time.	5) Drag force	
4) Numeric controls and indicators, meters and		
gauges.		

back

Project 2 and LabVIEW Survey

back

Estimation

HW 3 Mass of air through your lung each day:

-Start with some fact: air density (in SI units: kg/m³)

-Estimate volume of thorax cavity (how? - approximate by a rectangular chamber whose volume is length*width*depth) -Estimate how many times you breathe in per minute, then per a day Number of books checked out at Healey Library a week:

-Fact: number of students, zooming in on which students would check out books from the library

...

....

<u>back</u>

back

LOGBOOK: example of a logbook page

-Use a quadrille notebook; number all pages; date all entries

-Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.

-In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:

33) Specify the inputs and outputs, with clear details, for your team Virtual Instrument to be presented as Part I of Project 2. List what LabVIEW elements will be used in the Block Diagram, use correct terminology.

34) Specify the inputs and outputs, with clear details, for your team Virtual Instrument to be presented as Part II of Project 2. List what LabVIEW elements will be used in the Block Diagram, how many times a subVI will be called in, and what elements will be included in the sub-VI, use correct terminology.

back