Engin 103	Topics:		
February 19 2008	Intro to Project 1		
1 contaily 19, 2000	Engineering Design Cycle		
back to e-syllabus	Systems		
<u>buck to e syndous</u>	CW2		
	Data Modeling		
	CW3		
	Logbook questions		
Introduction to Project 1			
Introduction to Project 1			
Design and build a simple system, a system produces a measurable output Y for each			
measurable input X. Model the system by relating a sufficient number of (X, Y) pairs using			
Excel to obtain the best fit. Test system predictability by comparing actual output for a new			
input with the model prediction. Read complete project specifications in the course e-syllabus.			
1) Should we bring the system into class or do we need to make a video?			
The system needs to be brought in for the presentations			
2) Can the money limit exceed twenty c	lollars a little?		
2) What kind of design we are supposed	to look at? Anything specific?		
5) what kind of design we are supposed	to look at? Anything specific?		
- 1 ms is the main difference b	etween a project and a nomework, there is not a		
unique answer to a project. However	the project specifies certain things that need to		
be satisfied.			
Are there any previous models from	the previous class that we can take a look at?		
- A trebuchet was shown in c.	ass		
4) What are we going to be measuring?			
-This is a good question, you will be doing two types of measurements in this			
project: a) Raw measurements of the	e inputs X's and outputs Y's for the system you		
built. (These raw measurements will	be used to obtain a model or equation describing		
the system, you will create an Excel spreadsheet to do this); b) Once you have the			
equation/model in hand, you will us	equation/model in hand, you will use it to measure the predictability of your system		
by comparing a new measurement (c	lone during the second day of presentation) with		
the prediction from your equation.			
5) What type of materials are we limited	1 to?		
-No, just the \$20 limit			
6) What kind of systems could we build	!?		
-See answer to 3)			
7) Is there any size constraint to the sys	tem?		
-No, but it should not cause a	ny damage to the lab, or pose a danger to the		
class			
8) Can we use items we obtain for free	or already own?		
-Yes			
9) How do we get a model/equation for our system?			
-Work through CW3-5			
10) Where can we find a device capable of measuring the frequency			
-Measure lengths, weights, times, not frequency			
11) How to build a pendulum? Should the ball be metal or plastic			

-See answer to 3)

12) Do we need a PowerPoint presentation?

-No, but if one is made, it can be uploaded as the team web page for Project 1

back

Engineering Design Cycle:

The cycle is shown within the dotted box below. The cycle is repeated until the system satisfies the Project Specifications, before it is developed into the Final Product and the Documentation is produced.

Systems

A system is a physical object that produces a measurable output (Y) for every measurable input (X).

Examples of a system could be a catapult (X=initial height of a weight; Y=range for a clay ball), a pendulum (X=period; Y=length needed to produce that period), or a car on an inclined ramp (X=ramp angle; Y=distance traveled in 2s). When random factors affecting the system are controlled (task of the engineering design team), it can be described with an equation or model, that is, using this model it is possible to predict the output given an input. back

CW2

1)Why is it we have engineering design cycles? Draw a flow chart of the important steps of an engineering design cycle.

2)What is an in-out system? Identify the input and output variables for at least two systems that use gravity. Can you determine the output exactly, yes or no, explain why.

By alphabetical order of the last names, the first two students in each team will submit file cw2_XX_a.html and folder cw2_XX_a_files, the next two students will submit file cw2_XX_b.html and folder cw2_XX_a_files, to the *files* folder in the server.

<u>back</u>

Data Modeling

Project 1 requires the use of data modeling with Excel (\bigcirc Microsoft), this is learned by doing CW3-CW5, a polynomial or exponential curve-fitting or data modeling. What is data modeling? When an input X is applied to a system, an output Y is produced. A mathematical model of the system can be obtained by relating Y to X: e.g. Y'=f(X). We have used a Y' to indicate that it is not be possible in general to obtain an equation that relates all measured Y values to all measured X values but approximate Y' values to all measured X values. To simplify the introduction, we discuss just simple polynomial models, e.g.

 $Y'=aX^{2}+bX+c$ Y'=bX+c $Y'=dX^{3}+aX^{2}+bX+c$ Y'=exp(-b1*X)/(b2+b3*X)

How to obtain a model? Perform CW3 by following 7 steps shown in class and repeated

below. The process consists of using Solver (get it under Tools/Add-ins if needed) to minimize a "standard deviation" parameter s by allowing the polynomial coefficients to vary. After using Solver, the final values for a, b, c determine our quadratic model that describes the pendulum. In this CW3, to save time, we will be using only 4 pairs of data, however this is not sufficient to obtain a good model in practice: For your Project 1, please use at least 10 pairs of data. back

CW3

Open Excel and type your first and last name in cell A1, today's date in cell D1

Quadratic curve fitting with Excel:

Use Excel Solver (under Tools) to produce coefficients a,b,c for your quadratic model ($y'=a^{*}x^{2}+b^{*}x+c$) by minimizing the 'standard deviation' s for the following set of

$$\sum_{i=1}^{n} (y_i' - y_i)^2$$

data ($s \equiv \frac{i=1}{n}$, this is not a conventional standard deviation, and so it is

not given by the 'stdev' function in Excel, but it is what we need to model our data; n is the number of data; y' indicates values predicted by our model; y indicates measured values given as data). Use '=' to start the formula for y' in cell D3; click on the corresponding cells to enter the coefficients and variables into the formula (if a is in cell C3, then click on C3, if the first x is in A3, then click on A3, etc.); remember to add a '\$' before and after the letter of the cell containing the coefficients (since we don't want these to change for the second, third, and fourth x's); produce similar results for cells D4-D6 by 'copy D2 and paste' into those; produce the squared difference formula between y' and y using another '=' in E3; etc. Produce the average of E3-E6 by writing in E7 '=average(E3..E6)' and hit enter. Click on E7 and pull out 'Solver' under 'Tools'; select 'minimum' and in the 'by changing' box click and drag on the cells containing your guesses for the coefficients. Note that after running 'Solver', the 'standard deviation' or 'how far is our model from the data' is reduced to be a small number (0.1 or less, the smaller the better model you've built for those data). Watch the movies clip 'curve-fitting with Excel' as you follow these instructions.

Periods x (s)	Lengths y (m)	
4.5	5	
6.35	10	
7.75	15	
9.2	20	

By alphabetical order of the last names, the first two students in each team will submit file cw3_XX_a.html and folder cw3_XX_a_files, the next two students will submit file cw3_XX_b.html and folder cw3_XX_a_files, to the *files* folder in the server. These files need to be uploaded to the server on the due date to receive credit.

Follow these 7 steps to perform CW3:

LOGBOOK: example of a logbook page

-Use a quadrille notebook; number all pages; date all entries

-Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.

-In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:

11) Sketch the Engineering Design Cycle in your logbook, explain specific actions to be taken by you and your team for Project 1 as related to the different steps in the cycle. Be as specific and as detailed as possible.

12) Explain in your own words, what are the steps that will need to be done to obtain the equation describing the system you are going to build for Project 1, and to check its predictability. Be as detailed as possible. back