Engin 103 Spring '07 Meeting #20: April 12, 2007 -Project 2 presentations (Day 2)

Team	Project 2	Design	Data Modeling
			Two ball momentum transfer;
4			X=ball#1 position; Y=ball#2
1	Alsubale,Monammad A.		speed
	Barzaga, Sasha S		
	Batalion, Rafael		
	Bettencourt, Jeanne M		
2	Correa, Marcio A		
	Coppola,Matthew John		
	Lu,Ken D	Car slide, X=ball Weight; Y=speed	
	Kemena,Reid		
3	Cristiano, Ashley J		
		Car launcher; X = spring compression;	X=1.5cm; Y'=92.5cm;
	Daly James C		137cm
	Filis Jacob Lawrence		
	Hasib Shaikh		
Δ	Head Christonher M		
т	Huang liabua		
	Kalogerakis Dimitri		
		Trebuchet: X=ball weight: Y=range	
5		Buovancy: X=weight: Y=time to bottom	
5	Marini Kovin S		
	Abmod Tanim		
	Payno Dotor A		
6	McCarthy Matthow 1		
0	McCalling, Matthew J		
	Moi Chongzhi	Single nulley: X=mass: Y=force required	
	McCoffroy Moghan T		
7	Makhaal Mina F		
1			
		Solar car: X-light source distance:	X-1 5lb· Y'-3 15s·
		Y=distance traveled ->By battery:	Measured: Y=2.71s; 3.16s; 2.8s
	Ngo,Duong T	X=weigh load; Y=time to go 60 in	
	Nguyen,Sang Thanh		
8	Nova, Daniel E		
	Ortiz,Moses		
	Prevoir,Matthew J		
		Seesaw catapult; X=arm hole number;	X=hole#7; Y'=9.86in;
		Y=height reached	Measured: Y=7.5in; 11.5in;
	Ragab, Adam Moustafa		19.5IN
9	Durande		
	Russo, Steven Anthony		

	Sota,Sokol		
	Taha,Wisam Ahmed		X=Spring length; Y=frequency of oscillation
10	Tan,Yun		
	Verano,Bethy		
	Woodford, Allison R		
		Pendulum; X=length; Y=period	X=38cm; Y'=1.38s Measured (av. Over 3 periods)
	Zhang, JiaQuan		Y=1.38s; 1.40s; 1.41s

Suggested items to write in the Engin 103 logbook:

1) Explain in your own words what mathematical models did your team consider, which was the best model, how did you decide this was the best model, what are the numeric values for the parameters in the model, what was the parameter s for all model considered.

2) Would the best model identified in the previous question still work if a major change to the system or to the environment it operates in is applied? Explain why? Explain in your own words what is the difference between engineering data modeling and scientific law making?