Meeting #17:

Data modeling or curve-fitting (cont.) Preparation for final 'curve-fitting' step using Solver:

	A	В	С	D	E	F 🛁			
1	Tomas Ma	aterdey		2/19/2004					
2	x (Periods	y (lengths)	a,b,c guesses	; guesses y'=a*x^2+b*x+c					
3	4.5	5	0.23	4.6575	0.11731				
4	6.35	10	0	9.274175	0.52682				
5	7.75	15	0	13.814375	1.40571				
6	9.2	20		19.4672	0.28388				
7					0.58343				
8	Typed in	Typed in	Typed in	Formula	Formula				
9	This is the preparation for doing the quadratic curve-fitting, which is done								
10	by minimiz	ing the 'sta	andard deviatio	n' 0.58343 chai	nging the c	oefficients			
11	a,b,c (con	tained in co	ells c3:c5) usin	g Solver.					

How to minimize the parameter s using Solver?

Select cell containing the 'standard deviation', then select Tools/Solver (use add-ins if it is not there). Three steps:

(a) Make sure Target cell is that containing the 'standard deviation'

(b) Choose 'Set target cell (the 'standard deviation' cell) to minimum'

(c) Choose 'By changing cells" those containing the coefficients of your model (a,b,c in

 $y'=a^{x^2}+b^{x+c}$ in this example).

Then hit Solve.

	А	В	С	D	E	F 🚽	O G
1	Tomas Materdey			2/24/2004			
2	x (Periods	y (lengths)	a,b,c guesses	y'=a*x^2+b*x+c	(y-y')^2		
3	4.5	5	0.133672108	4.948402258	0.00266		
4	6.35	10	1.387171999	10.19780384	0.03913		
5	7.75	15	-4.00073192	14.77853205	0.04905		
6	9.2	20		20.07525769	0.00566		
7					0.02413	New 'standard	deviation'
8	Typed in	Typed in	Changed by Solver	Formula	Formula	smaller is bette	r
9	Results are shown	n in blue after minin	nizing the 'standard deviat	on' by changing the coefficie	ints a,b,c of the que	adratic model with	Solver
10	Final values for a,I	b,c which specify o	ur quadratic models are st	nown in cells C3, C4, C5, rea	spectively.		
11	Final value for 'sta	ridard deviation' is	shown in cell E7; smaller r	neans better model			
12							

(i) What is this curve-fitting process for, what is the application?

Well, now that we know how to do a curve-fitting, it is time to keep our focus on its purpose. It is an important tool in the analysis and testing of a device. Predictability is an important characteristic of a good design. If it is possible to model the behavior of a device with a function (i.e., to relate the output variable to the input variable via a function) and to check the device behavior against the function, then the device is predictable. For example, in Project 2 ("Roulette of Fortune"), if after taking data for the odd sectors (rotation produced X and force needed Y), doing a curve-fitting, predicting needed forces for rotations into the even sectors using the obtained function, you can check that the predictions are good, then your "Roulette of Fortune" is predictable.

(ii) How can we know what is the best model?

The "standard deviation" can represent how far our data are from their average: $s = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{2}$

This would indicate how well our judges agree on certain grade (for example, the peer $\sum_{i=1}^{n} (y'_i - y_i)^2$ evaluations in Project 0), or it can also represent how far our model is from the data: $s = \frac{i=1}{n}$

The smaller the deviation, the closer is our model to the data, or the better is our model. So you may ask, can we find a better model? This is a good question, this is what you should "ask when trying to find the best model for your "Roulette of Fortune"

-A quadratic model: a quadratic function relating two variables, e.g. 'x' and 'y' $f(x)=y=a^{*}x^{2}+b^{*}x+c$

-A cubic model:

I: $f(x) = y = d^{*}x^{3} + a^{*}x^{2} + b^{*}x + c$

	А	В	С	D	E	F	Ē
1							
2	x (Periods)	y (lengths)	a,b,c, d guesses	y'=d*x^3+a*x^2+b*x+c	(y-y')^2		
3	4.5	5	1.497724051	4.998711912	1.7E-06		
4	6.35	10	-7.652800717	9.998057939	3.8E-06		
5	7.75	15	15.13332749	14.99956898	1.9E-07		
6	9.2	20	-0.066128114	20.00175582	3.1E-06		
7					2.2E-06	standard deviati	on
8	Typed in	Typed in	Changed by Solver	Formula	Formula	smaller is better	
9	Results are shown	n in blue after minim	izing the 'standard deviation' b	y changing the coefficients a,b,c	; d of the cubic i	model with Solver	
10	Final values for a,l	b,c, d which specify	our cubic models are shown	in cells C3, C4, C5, O6, respecti	vely.		
11	Final value for 'sta	ndard deviation' is a	shown in cell E7; smaller mear	ns better model			
12							

-A linear model: $f(x) = y = b^*x+c$ (it is a quadratic model with a=0)

	А	В	С	D	E	F			
1									
2	x (Periods)	y (lengths)	a,b,c, d guesses	y'=d*x^3+a*x^2+b*x+c	(y-y')^2				
3	4.5	5	0	4.631166342	0.13604				
4	6.35	10	3.211769401	10.57293973	0.32826				
5	7.75	15	-9.821795963	15.0694169	0.00482				
6	9.2	20	0	19.72648253	0.07481				
7					0.13598	standard deviat	ion'		
8	Typed in Typed in		Changed by Solver	Formula	Formula	larger is worse			
9	Results are shown in blue after minimizing the 'standard deviation' by changing the coefficients b,c in a linear model with Solver								
10	Final values for b,	c which specify our	linear model are shown in cel	is C4, C5, respectively. Note that	coeficients a ar	nd diare left as zero	es.		
11	Final value for 'sta	ndard deviation' is:	shown in cell E7; larger means	s worse model					

What changes should we make to produce a cubic model?

To produce a cubic model make the following changes, in your Excel file, as shown in green font

$Y'=dX^3 + aX^2 + bx + C$

CUBIC model using modified steps outlined In previous slides

	A	В	С	D	E	F	G	H	F
1	Tomas Materdey								-
2	X (Periods)	Y (lengths)	a,b,c,d guesses	$Y = d\lambda^2 + a\lambda^2 + b\lambda + c$	(Y-Y) ²	s paramete	r		
3	4.5	5	1.449273268	4.998225484	3.15E-06	2.85E-05			1
4	8.35	10	-7.329719785	10.00708409	5.02E-05				
5	7.75	15	14.44774473	14.99256703	5.52E-05				
6	9.2	20	-0.063797684	20.00232116	5.39E-06				
7									
8									
9	2	5.075016797		CUBIC Medel					
10	2.2	4.857528121							
11	2.4	4.322292129							
12	2.6	4.066252533	281						
13	2.8	3.886345043							
14	3	3.77960737							
15	3.2	3.742677227	20						
16	3.4	3.772792323				/			
17	3.6	3.88679037				/			
18	3.8	4.02180908							
19	4	4.234186163	\$15		- 1			 Series 	d.
20	4.2	4.501459331	8					Teries	2
21	4.4	4.820386294	8					36183	-
22	4.8	5.187844784	510		/				
23	4.8	5.600832453			/				
24	5	6.056267071		/					
25	5.2	6.551086329							
26	6.4	7.082227938	, <u> </u>	\sim					
27	5.6	7.64662961							
28	5.8	8.241229057							
29	6	8.862963988	0						
30	8.2 5 mb cl	9 508272115	7	<u> </u>			45		1
14 4	P PI \Shi	sect (sneet2 (sneet3 /		4				

$Y'=dX^3 + aX^2 + bx + C$

How to get a QUADRATIC model using the equation for a CUBIC model? By setting d=0 (in \$C\$6)and let Solver change a,b,c (in \$C\$3:\$C\$5)

	A	В	C	D	E	F	G	H	
1	Tomas Materdey								-
2	X (Periods)	Y (lengths)	a,b,c,d guesses	$Y^{0}=dX^{0} + aX^{2} +bX+c$	$(\gamma \cdot \gamma)^2$	s paramete	9 7		
3	4.5	5	0.133672475	4.948398038	0.002663	0.024125			
4	8.35	10	1.38718965	10.19780246	0.039128				
5	7.75	15	-4.000732563	14.7785345	0.849047				1
6	9.2	20	0	20.0752656	0.005665				
7									
8									
9	2	-0.691703861		QUADRATIC Model					
10	2.2	-0.301984772							
11	2.4	0.098427816							
12	2.8	0.509534201	~						
13	2.8	0.931334384							
14	3	1.363628366				1			
15	3.2	1.807016145	20			1			
16	3.4	2.260897723				/			
17	3.6	2.725473098				/			
18	3.8	3.200742271	16						
19	4	3.686705243						 Series 	a -
20	4.2	4.183362012	ž					Sarias	2
21	4.4	4.69071258	210		/			26183	1
22	4.8	5.208756945	8						
23	4.8	5.737495109	^						
24	5	8.27692707	6						
25	5.2	6.82705283							
26	5.4	7.387872387							
27	5.6	7.959385743	0	1	· · ·				
28	5.8	8.541592897		2 4 1	8 8	10	12		
29	6	9.134493848							
30	8.2 N C	0 738088608	Duration (E.
14 4	P P \She	set1 (Sheet2 (sheets /		4				

How to get a LINEAR model using the equation for a CUBIC model? Setting d=a=0 (in \$C\$6 and \$C\$3) and let Solver change b,c (in \$C\$4:\$C\$5)

Accuracy & Significant figures

What is a Scientific notation? $3\ 105\ 000\ m = 3.105\ x\ 10^6\ m$ $3\ 000\ s = 3\ x\ 10^3\ s$ $v = \frac{3.105 \times 10^6\ m}{3 \times 10^3\ s} = \frac{3.105}{3} \times 10^{6-3} = 1.035 \times 10^3\ m/s$

What is Accuracy? 3.1416 is more accurate than 1.14

Related to number of decimal digits

Addition & subtraction: keep same accuracy as least accurate term

3.1416 - 1.14 = 2.0016 = 2.00

What are Significant figures? 6 370 000 three 6 370 001 seven

Multiplication and division: keep smallest number of s.f. except for constants, counting from the left

Earth's circumference = $2\pi R_E = 2 \ge 3.1416 \ge 6.37 \ge 10^6 = 40.02398 \ge 10^6$ = 4.002398 \x 10⁷ = 4.00 \x 10⁷ m

What is Estimation? How to do it?

An important engineering tool.

-Start with some simple factual data, such as cost of one kW-h; litter of paint, brick sizes, etc.

-Then using a simple algebraic equations, geometrical models, etc.

describing the specific situation you are interested in.

-Produce numerical estimates that are not usually available anywhere else.

A search example for cost of 1 kW-h is ("kilo-Watt x hour" is an unit of energy) -open http://www.google.com/ -type 'nstar' in the search box -click on the link to the nstar website -click on 'standard offer' -click on the link to 'prices' -enter the required info: Boston -it will show \$0.0495

LabVIEW:

How to convert a VI (Virtual Instrument) into a Sub-VI or subroutine or How to assign connectors?

