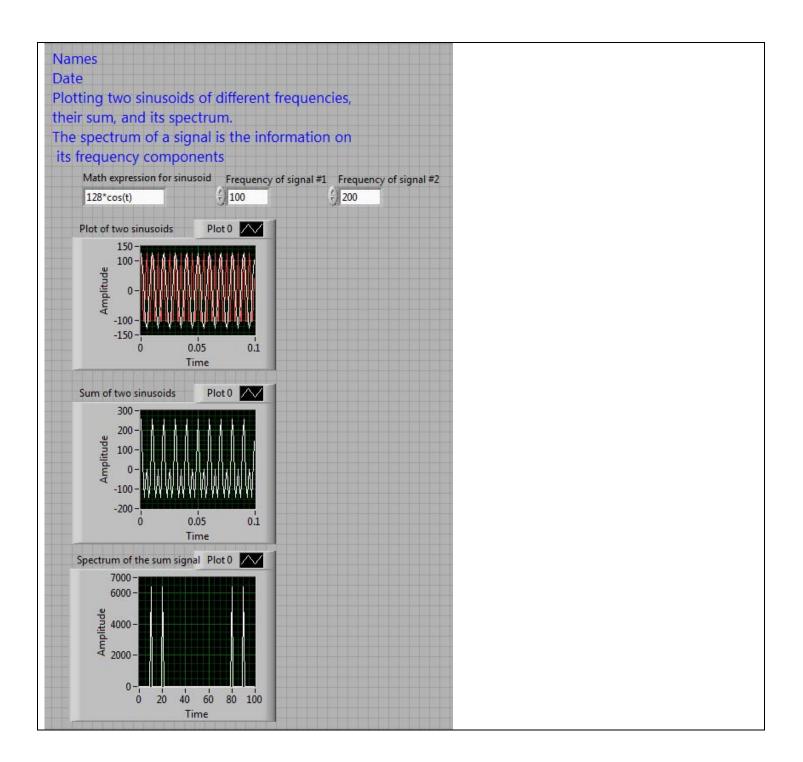
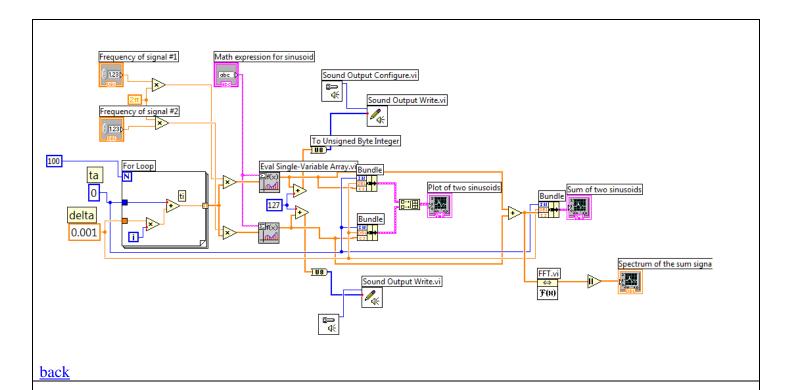
Engin 103	Topics:
November 30, 2010	<u>CW11 (Cont.)</u>
	<u>CW12</u>
back to e-syllabus	Project 3 Topic Assignment
	Logbook questions

Section 1


Team	Team leader	Assignment
1		Е
2		?
3		Α
4		1
5		G
6		D
7		В
8		,
9		


Section 2

Team	Team leader	Assignment
1		В
2		F
3		С
4		J
5		Α
6		D
7		1
8		G
9		Е
10		Н

back

CW 11 (Cont.)

Engineering 103 –UMass Boston CW 12

(In-Class-Work 12)

Digital and Analog representations and conversions

Find in Chapter 4 of DCE (Horenstein) the answers to the following questions (15 min max.)

- 1.- State the relation between Assembly Code; Programming Language; and Compiler
- 2.- What is a digital signal? Do an A/D conversion for 2009 with the minimum number of bits, and a D/A conversion for 0101 1010 1101 0010
- 3.- Do a A/D conversion for 0.5 with 8 bits of information, being 1 the highest number, using no "binary dot" in the binary representation of eight bits; and a second version using a 'binary dot' between two groups of four bits, with the second groups using **negative** decreasing powers of 2 from left two right.

By alphabetical order of the last names, the first two students in each team will submit Word file cw12_XX_a.doc, the next two students will submit Word file cw12_XX_b.doc, to the *files* folder in the server. These files need to be uploaded to the server today to receive credit.

What is a digital signal? Computers work with digital signals; the electronics does 5V (on) and 0V (off). A digital signal is composed of 0's and 1's, like binary numbers.

Analog	Digital
0	0000

1	0001
2	0010
3	0011
8	1000
15	1111
16	0001 0000
255	1111 1111

Analog to Digital conversion (A/D):

We want to write 2003 (an analog number) in digital (or binary) format:

 $127 = 1*10^2 + 2*10^1 + 7*10^0$ (using powers of 10; since we use decimal system)

$$127 = 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0$$

In binary system, numbers are just 0 or 1, starting from the left, let's insert either 1 or 0 in front of the powers of 2:

$$127 = 0* 27 + 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20$$

$$127 -> 0111 1111$$

Now convert 2009 into digital format:

Digital to Analog conversion (D/A):

$$1001 = 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 = 9$$

1001 -> 9

Now convert 0101 1010 1101 0010 into analog format:

More on CW11:

2)

A/D conversion:

2^{15}	2^{14}	2^{13}	2^{12}	211	2^{10}	2^{9}	2^8	2^{7}	2^{6}	2^5	2^4	2^3	2^2	2^1	2^0
327	163	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
68	84														

What is the highest binary number using 8 bits of information? Answer: 255

2^7	2^{6}	2^5	2^4	2^3	2^2	2^1	2^{0}
128	64	32	16	8	4	2	1

D/A conversion: 0101 1010 1101 0010 -> ?

3) Represent 0.5 in binary/digital:

a) First alternative:

Decimal system	Binary or Digital system		
1	1111 1111 (255)		
0.5	1000 0000 (128)		

b) Second alternative: using a "binary dot"

 $2.5 = 2 \cdot 10^{0} + 5 \cdot 10^{-1}$ (to the right of the dot: negative powers of 10)

We can use this in binary or digital format as well: to the right of the "binary dot" use negative powers of 2:

				2	•	5			
Decima	0*103	0*102	0*10 ¹	2*100		5*10 ⁻¹	0*10-2	0*10-3	0*10-4
1									
Binary	0*23	0*22	1*2 ¹	0*20	•	1*2 ⁻¹	0*2-2	0*2-3	0*2-4

 $2.5 \rightarrow 0010.1000$

back

LOGBOOK: example of a logbook page

- -Use a quadrille notebook; number all pages; date all entries
- -Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.
- -In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:
- 45) How many peaks do you see in the spectrum (as produced by the FFT.vi and Abs) for a signal that is composed of two sinusoids of different frequencies? What happens to the spectrum if you leave the frequency of sinusoid #1 fixed while increasing the frequency of sinusoid #2. What would you see in the spectrum of a signal that is composed of 5 sinusoids of different frequencies?
- 46) In our LabVIEW exercise we used a sinusoid of amplitude 128; then we added 127 to the Y series before converting it to a digital signal using U8 (To Unsigned Byte Integer). Is there any connection between 128; 127; and the 8 in "U8"? Explain. Fill out the table below

# binary digits	Largest decimal
	number
4	15
8	

	12	
	16	
	32	
	64	
back		