Engin 103		Topics:				
October 14,	2010	Project 1 -Part I P	resentations			
		Logbook question	<u>15</u>			
back to e-syl	labus					
Project 1	Part I Presentations: Design	n for System Pre	dictability			
Project 1 lea to your ftp <i>fi</i>	ders: please copy this page and fill ir <i>les</i> folder.	your team response	below. Then save as a web page	e: name	e "p1p1.html" and upload	
Section 1 (9	:30 AM)					
Team #	Picture of system *If you took a picture of the system you can insert it here, otherwise leave it blank, we will take care of it.	 a) System name b) What are the input X and output Y along with their units 	 c) How did your design make sure the system can produce at least 10 pairs of distinctive values for X and Y d) How did your design reduce to a minimum any uncertainty in the system so to increase its predictability 	e) f)	What mathematical models may wo system using the Spreadsheet? Which model you think will best de system, why?	rk for this scribe the
<u>[</u> section 1						

<u>2</u> section 1				
<u>3</u> section 1		a) 21 st -Century Slingshot	c) We decided a simple slingshot was an easy way to produce an unlimited amount X X data	 We determined that a quadratic and also a cubic model work best for our system. Both models have almost the same S parameter, so both are equally well-suited to use for predictions.
		b) X = distance slingshot is pulled back	d) We used sanded wood and smooth metal projectiles to	f) Although both models are virtually the same, we decided to go with the quadratic one best solely on simplicity. The less coefficients in the model, the
			ensure a reduction in friction for accuracy. The more accurate the data, the	less confusing it would be, and the easier it would be to predict Y' values
	12/14/2009 1:53	Y = distance	better the model. And with	
		traveled	predictability.	
4 section 1		Cork bumper	We gave the bumper and	The liner and quadratic models
		V. height of humpon	the track a certain range of	
		A. neight of builiper	height and distance	The quadratic model because the data
	Park	Y: distance of cork	We used the same types of	points should give a graph with a normal curve
			wood for the whole system	
			so it will have the same	
	Unite 2009 1:49		coefficient for friction, and	
			we used rubber bands to	
			keep the bumper in the	
			same position	

5 section 1	The name of the system is The Ball Chute Input X is the distance in cm from the base of the system. The initial base piece has a series of 9 extensions to add values of X. Output Y is the distance from the mouth of the system that the ball travels before making contact with the floor.	 c) Initially, our conception for predictability was to examine ways to avoid a system with any complex mechanism. This was in order to minimize variability. We decided that we wanted to find a way to rely on gravity alone. However, we eventually discovered that Gravity alone can create its own difficulties. d) Because our system was too steep, the length of the system created too much momentum for the input to make a controlled ejection from the system. Our solution was to reduce the lengths of the extensions. The range needed to be less than 100 cm. in total. Our range is 17.5 cm to 95.5 cm. The sea set of extensions to the system establishes 10 inputs. In addition, the system requires further modification. At present we will include instructions to indicate that the input must be loaded into the system in a manner that will allow it to roll the entire length of the system, otherwise predictability will not be maintained. We are in the process of designing another prototype, but we are not certain it will be ready for final presentation on October 18. 	 e) It seems as though excel can use any of the equations to account for changes in velocity caused by rolling friction, the curve of the system at ejection, and the arc of the balls flight reflecting momentum versus gravity. f) A quadratic equation is most likely because the two main variables will be the momentum created by gravity while the ball is rolling (this is to account for friction) and the velocity created by the curve at the base of the system during the ejection of the input.
<u>6</u> section 1	 a) The name of the system is "Input Outpuck" b) Input (X) is centimeters the hammer is pulled back 	c) The system design has a domain for (X) of 0-12 cm, with different outputs (Y) for every half centimeter starting from 3 cms. Thus, we can test at least ten distinctive values of X to	 e) Using the spreadsheet, it is possible that any one of the three models we've discussed in class can model this system. Linear, Quadratic, or Cubic. f) Judging from the classworks we have done, it seemed that the quadratic model

				1
	Output (Y) is inches	give at least ten distinctive	best represented the systems. How	ever,
	the puck travels from	Y values	with some crude data, it appears as	though
	1051		the cubic equation may best repres	ent
		d) To reduce the	"Input Outpuck."	
		uncertainty, first we added		
		housing to keep the hammer		
		from unwanted horizontal		
		movement. Next, we added		
		wheels to prevent unwanted		
		vertical movement. From		
		there, we added a layer to		
		the top of the hammer and		
		an additional wheel to		
		further minimize vertical		
		movement. We also		
		switched from bungee cord		
		to elastic bands to get more		
		consistent results, therefore		
		increasing predictability.		
2 section 1				
8 section 1				
9 section 1				
10 section 1				

Section 2 (2	:00 PM)			
Team #	Picture of system *If you took a picture of the system you can insert it here, otherwise leave it blank, we will take care of it.	 a) System name b) What are the input X and output Y along with their units 	 c) How did your design make sure the system can produce at least 10 pairs of distinctive values for X and Y d) How did your design reduce to a minimum any uncertainty in the system so to increase its predictability 	 e) What mathematical models may work for this system using the Spreadsheet? f) Which model you think will best describe the system, why?
1 section 2		(g) Mouse-a-pult(h) Input is how far back the system is pulled. 90 degrees or 150 degrees. And the output is how far away the quarter lands in feet.	 (i) We recorded 10 attempts by pulling back the system to a 90 degree angle and another 10 attempts at 150 degrees. (j) Actually our design did not reduce any uncertainties. There is a huge area of human error 	 (k) Linear (l) I think linear would because the more you pull back the farther it should go. And it does go farther you pull back according to our data.
2 section 2				
<u>3</u> section 2		 g) Mousetrap Car h) X = distance the trap was pulled back from start in degrees. Y = distance car traveled 	 i) We just had to make sure we had enough room to where the car wouldn't hit an obstruction. j) We put rubber over the wheels to make the car 	 k) We believe all the models will work. l) The quadratic because there is not a straight correlation and there is not enough

		in inches.	have more grip.	discrepancies in the data for the need of the cubic model.	
4 section 2	CITIZES alle				
5 section 2		 a) "Team 5 Launcher" b) X and Y values are measured in inches 	 c) We made the angled piece of wood longer to fit more X values. We started with 10- X values on a shorter piece of wood, but made it longer to get more readings d) We used a tube opposed to an open track design. The open track had more human error which lead to unpredictability 	 e) So far the linear and quadratic formulas looked good in excel on the curve fitting. f) I think Quadratic formula would work best for our system. I did not see a linear correlation between the value of our X input and our Y output. 	

<u>6</u> section	2	JJES Har Input X = hammer i Output Y travels	mmer = How high the is lifted Y = How far the o	bject	i) X is the height of the block raised back and Y is the distance the car travels.j) we attached a string to the block so we can determine the raise of the block.	k) quadratic equationsl) Pendulum because it swings back and forth.	
? section	2	Length pulled down (X) in cm 0 2.9 5.8 8.7 11.6 14.5 17.4 20.3 23.2 26.1	Distance traveled (Y) in cm 0 48.00 81.20 108.20 108.20 144.10 183.00 207.20 250.30 320.10 320.10		-How the design can produce 10 XY values? It can produce distinct values because the string was measured accurately. When string is pulled down to any length, the tension is increased accordingly on the mousetrap and the rubber band. Because the mousetrap and rubber band are products with consistent tension, the distance that the paper ball travels will be consistent depending on the length the string is pulled back. -How the design, reduced uncertainty of system/increased predictability? Constant interval along the string reduces uncertainty in the system. The double-sided tape, adhered to the bottom of the catapult, ensures that it will stay in place upon pulling the string. The plastic pipe at the top of the arm is cut down to a height that will have minimal interference with the ball when launched. And as we said before, the mousetrap and the rubber band are both products with consistent tension.	- What Mathematical Models might work for the catapult? This is similar to the pendulum, which we had performed in class, so therefore we believe it is Quadratic.	

$\underline{8}$ section 2		g) Series Circuit	i) We can add an infinite amount of X (bulbs) and	k) The linear, quadratic, and cubic	
		h) Input X = the # of bulb(s)	still be able to produce Y but it will be very minute	equations may work for this system	
	12/7/2009 6:17	in integer.	but it will be very initiate.	uns system.	
		Output $Y =$ the amount of	j) Our system do not	l) The cubic equation	
		voltage (v).	so there are no human	system. It contains the	
			errors. The measuring	most coefficients to	
e continu 2			instrument is also digital.	gain higher precision.	
<u>Y</u> section 2					
10 section 2					

Submitted		On time	Late
Uploaded electronic cor	у	Yes	No
Project 1 web page	•	Yes	No
Team participation table	•	Yes	No
	Progress Report:		
Report submitted (80)	p1pr.html (5)		
	p1p1.html (5)		
	p1p2.html (5)		
	Introduction (10)		
	Design/Building (25)		
	Analysis: Spreadsheets (20)		
	Conclusions (10)		
Good writing practices	Grammar and		
(20)	presentation (5)		
	Logical arguments and structures (5)		
	Accurate, completeness; non- plagiarism (10)		
Deduction			
Project report total (100)		
Project presentation tota	l (200)	Performance and D	esign (180):
J I (/		Web pages Parts I a	and II (20):
Project 1 total (300)			

Section 1

Project 1 -part I P&D/ Teams	1	2	3	4	5	6	7	8	9	10
14-Oct-10	Pendulum	Ball on Ramp	21st Century Slingshot	Cork Bumper	Ball Chute	Input Outpuck	Catapult	Air Canon		
Project completed (35)	35	35	35	35	35	35	35	35		
Design for predictability (15)	13	12	15	15	12	15	13	12		
Performance& readiness (25)	20	19	23	25	21	25	21	21		
Presentation (15)	15	15	15	15	15	15	15	15		
Total part I P&D (90)	83	81	88	90	83	90	84	83	0	0

Section 2

Project 1 -part I P&D/ Teams	1	2	3	4	5	6	7	8	9	10
14-Oct-10	Mouse-a- pult	Car	Mousestr ap Car	Catapult	Tall Launcher	JJES Hammer	Catapult	Series Circuit	Catapult	Circuit
Project completed (35)	35	35	35	35	35	35	35	35	35	35
Design for predictability (15)	11	13	13	13	14	14	14	15	14	15
Performance& readiness (25)	20	24	23	23	25	24	25	25	24	24
Presentation (15)	15	15	15	15	15	15	15	15	15	15
Total part I P&D (90)	81	87	86	86	89	88	89	90	88	89

	Project 1 -part II P&D/ Teams	1	2	3	4	5	6	7	8	10	
	Project completed (35)										
	Spreadsheet and data modeling (15)										
	System predictability (25)										
	Presentation (15)										
	Total part I P&D (90)										
		1									
<u>back</u>											
<u>back</u>											
back											
back											
-Use a quadr -Write your should write LabVIEW) a -In addition 25) Sketch th these variabl 26) Explain y model will be	ille notebook; number all pages; date a notes for all activities, thoughts, prol down progress, outcomes, and conclu nd homework. you should answer in the logbook all qu the system built by your team, describe es, and with what instruments. with a sketch the different design elem the best to describe the system using the	ll entries plems an isions on eestions li the input ents your he X and	d solu proje sted in t and o r team Y var	tions, ects an n these output used iables	and 1 d tear notes varia to inc menti	earnir nwork in blu bles of rease j oned i	ng con s; con ne, as s n the s predic n the j	clusio clusion hown sketch tabilit previo	ns rela ns froi below . Wha y. Exp us que	ated to n class : t units lain w stion.	o Engin 103. You s work (including will you measure that mathematical
<u>back</u>											