Engin 103	Topics:
September 21, 2010	Team Presentations: Project 0 Part II
	<u>Logbook questions</u>
back to e-syllabus	

Section 1 (9:30 AM)

Team Presentations on Project 0 Part I - Engineering Fields (Cont.)

Grading criteria for the presentations were stated in the Project 0 Specifications

- 1) How well did you convince the audience about the importance of the field
- 2) Details about the field: how would a day at work look like
- 3) How to prepare for this career
- 4) Other information you think of interest to the audience
- 5) How clearly the information was spoken or shown.

Project grade will also include the team report, individual report, and the team web page

Team	Field	1)	2)	3)	4)	5)	Total	Good strategies and information
One	AAE	7	7	7	5	8	68	It is very important to have a smooth introduction to the presentation
Two	BME	9	4	7	10	8	76	Talked about high impact devices: prosthetic arms and artificial hearts
Three	ChE	8	4	8	8	8	72	Showed a video, talked about field history, good schools
Four	CiE	9	9	7	8	9	84	Used local information: Boston's 1 st subway system. Well designed slides with few words and relevant pictures. Under time limit.
Five	СЕ	9	4	8	9	9	78	Talked about the computer and differences between CS & CE. Did not read the slides. Nice connections between topics.
Six	EE	7	9	7	10	9	84	Addressed all five items listed in grading criteria
Seven	GGE	8	7	7	9	9	80	Tried to interact with the audience with simple questions. Talked about typical tasks and tools of the trade. Under time limit.
Eight	IME	8	7	9	6	9	78	Talked about the Society of Manufacturing Engineering. Showed list of courses. Used relevant pictures as background to slides.

Nine	MSE				
Ten	ME				

Section 1 (9:30 AM)

Team Presentations on Project 0 Part II - Specific Projects

Part II presentations will be graded based on:

- 1) How relevant is the project described to the assigned engineering field,
- 2) Details that were presented
- 3) How many questions you got from the audience following the presentation. Project grade will also include the team report, individual report, and the team web page

Team	Field	Project/Good strategies	1)	2)	3)	Total PII	Total Project 0 Presentation
One	AAE	NASA Apollo Missions Astronauts: Armstrong, Collins	9	8	7	82	150
Two	BME	Artificial Heart Included details, showed a diagram	9	10	10	96	172
Three	ChE	Fast Hydropyrolysis Showed a process diagram. Animated slides	9	8	10	88	160
Four	CiE	Central Artery Tunnel Achievements, problems, and future improvements	9	8	8	84	168
Five	CE	GPS Guidance System for Mooring Masters Discussed phases I, II, III Computer-human interface	9	9	10	92	170
Six	EE	Solar Panels Talked about the Photovoltaic cells	9	7	5	74	158
Seven	GE	Petroleum Oil Started with a question Staffing/Timeline/Charts/Well costs. Great accuracy in answers	9	9	10	92	172
Eight	IME	Ford Assembly Line Ford's statement History/Objectives	9	8	6	80	158
Nine	MSE						
Ten	ME						

Section 2 (2:00 PM)

Team Presentations on Project 0 Part I - Engineering Fields (Cont.)

Grading criteria for the presentations were stated in the Project 0 Specifications

- 1) How well did you convince the audience about the importance of the field
- 2) Details about the field: how would a day at work look like
- 3) How to prepare for this career
- 4) Other information you think of interest to the audience
- 5) How clearly the information was spoken or shown.

Project grade will also include the team report, individual report, and the team web page

Team	Field	1)	2)	3)	4)	5)	Total	Good strategies and information
One	AAE	7	7	9	9	10	84	Engineer interview. Tips to get ahead in the field. Salary chart. Under time limit.
Two	BME	8	4	9	9	9	78	Started showing an x-ray and defining the field. Talked about projected field growth and reasons.
Three	ChE	7	4	8	8	8	70	Started defining the field. Talked about elective courses and clean energy.
Four	CiE	9	7	9	8	10	86	Field history included the aqueducts. Natural topic introduction. Engineer interview. Well designed slides.
Five	CE	10	4	7	8	9	76	Started defining the field. History included ARPAnet. Local reference to Charlie card. Smooth transition between topics. Under time limit.
Six	EE	10	8	8	9	9	88	Mentioned the interaction with customers as part of job. And research experience to prepare for the job.
Seven	GGE	7	10	9	7	9	84	Introduced talking about Earth, science and engineering. Under time limit.
Eight	IME	8	10	8	8	9	86	Started defining the field, improving processes. Talked about internships, and types of jobs. A typical Monday and Tuesday at work.

Nine	MSE	8	5	8	10	9	80	Started defining the field.
								Showed career example, job
								description.
Ten	ME	8	8	9	9	9	86	Career options. Courses,
								research, motivation and
								experience to prepare for the job.
								Interaction with customers and
								personal experiences. Under time
								limit.

Section 2 (2:00 PM)

Team Presentations on Project 0 Part II - Specific Projects

Part II presentations will be graded based on:

- 1) How relevant is the project described to the assigned engineering field,
- 2) Details that were presented
- 3) How many questions you got from the audience following the presentation. Project grade will also include the team report, individual report, and the team web page

Team	Field	Project/Good strategies	1)	2)	3)	Total P II	Total Project 0 Presentation
One	AAE	Space Shuttle. Mentioned role of AE writing avionics software	10	8	6	84	168
Two	BME	Custom Prosthetic Leg. Describe process, materials, and costs.	8	8	5	74	152
Three	ChE	Inexpensive Water Purification.	10	6	5	74	144
Four	CiE	Central Artery Tunnel Project. Talked about management and technical issues	10	9	4	84	170
Five	CE	Symmetric Remote Data Facility Tried to interact with the audience	10	7	3	74	150
Six	EE	Hoover Dam History and facts.	9	7	5	74	162
Seven	GE	FPM Geophysical UXO Services Data collection, GIS, action.	10	9	4	84	
Eight	IME	Timeline. Fred J. Miller Uniform Manufacturer	10	9	6	88	168 174

		Problem, objective, solution, results.					
Nine	MSE	The Madison Consulting	10	9	2	80	
		Group					
		Analysis & evaluation.					
		Testing methods, causes of					
		failures, timeline costs					160
Ten	ME	Mechanical Watch	8	7	4	68	
		Maintenance. Tools. History					154

back

LOGBOOK: example of a logbook page

- -Use a quadrille notebook; number all pages; date all entries
- -Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.
- -In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:
- 7) Describe a least one specific engineering projects that were presented today that stood out for you, write a critique on their relevancy to the intended engineering field, referring to specific details presented by that team.
- 8) Suppose your team is being asked a question after a presentation, consider this dilemma: a) the need to provide a quick answer and b) the importance of providing correct and accurate information, for which you may need to defer the answer till after the presentation. Explain what option, a) or b) you would be more inclined to and why.

back