

Engin 103	Topics:
December 2, 2008	LabVIEW topics: Shift register;
	spectrum detection
back to e-syllabus	Project 3 Topic Assignment
	Logbook questions

Spectrum detection

Frequency Spectrum Detection: Here are the original labels of the Items we need to make a Spectrum Detection VI, not in any particular Order – elements on a same line are related,

What is the most important element in a VI for frequency Spectrum detection?

"Path": for ergonomic design should we place a "Path Control" In the Control Panel or a "Path Constant" in the Block Diagram? Go here to download a sample input file:

http://www.faculty.umb.edu/tomas_materdey/103s05/files/file01 If you have put together the above elements correctly, you should see two groups of five peaks each in your Waveform Graph, this means there were 5 frequency components in the original signal, the other group is a "math side effect of the Fourier Transform" and should be ignored

back

back

back

Project 3

Project	Description	Team
A	Predict the max. temp. for the next day	5
	using previous days' temperatures, using	
	polynomial and other models	
В	Predict the oil price for next week using	6
	previous weeks' prices, using polynomial	
	and other models	
C	Detect the frequency spectrum of a given	7
	signal using Fourier Transforms	
D	Say the decimal number for a four-digit	3
	binary number	
Е	Make a 8 keys piano	2
F	Solve the quadratic equation with	10
	distinction of cases for the discriminant	
G	A VI that can calculate the areas and	1
	volumes of 5 different 3D geometrical	
	shapes	

Н	A VI that produces interesting sounds from	8
	the combination of 2 or more sine waves	
	with different frequencies	
I	A VI that produces a chirp sound, that is a	4
sound whose frequency is changing with		
	time	

	Front Panel	Block Diagram
	(suggested)	(suggested)
Project A	Numeric Arrays	Case Structure
Predict Max Temp	XY Graph	Curve fitting/Data Modeling sub-VI's
for next day:	Boolean Switches	Bundle for graphing
polynomial and other		Build Array
models		
Project B	Similar to Project A	Similar to Project A
Predict gas prices:		
polynomial and other		
models		
Project C:	-Path to File containing given signal in wav	FFT.vi
Predict the Spectrum	format	Absolute Value
of a given Signal	-Waveform Graph for the Spectrum	
using FFT.vi		
Project D:	-Numeric Control to enter the binary number	-Case Structure
Say the decimal	-Guide for entering correct data	-Play correct wav file according to the binary
number for a four-		input
digit binary number		
Project E:	-Push buttons	-Related to Project D
8 keys piano		
Project F:	-Ways to enter the equation	-Case Structure
Solve quadratic	-Ways to output the two solutions; and text to	-Arithmetic operations
equation	classify the discriminant	-String constants
Project G:	-Boolean switches	-Case structure
Calculate 4 different	-Graphics to explain the geometries, dimensions,	-Sub-VI
geometrical shapes	etc.	
	-Numeric controls for sizes	
Project H:	-Ways to enter frequencies or periods	-For Loop
Sound from two or	-Waveform graphs	-Eval Single-Var. Array
more sinusoids and		-Bundle; Build Array
their sum		-Sound utilities
Project I:	Related to H	
Chirp sound		

back

LOGBOOK: example of a logbook page

- -Use a quadrille notebook; number all pages; date all entries
- -Write your notes for all activities, thoughts, problems and solutions, and learning conclusions related to Engin 103. You should write down progress, outcomes, and conclusions on projects and teamwork; conclusions from class work (including LabVIEW) and homework.
- -In addition you should answer in the logbook all questions listed in these notes in blue, as shown below:

No logbook questions for this meeting

back