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Emerging technologies are allowing researchers to study hundreds of thousands

of genetic variants simultaneously as risk factors for common complex diseases.

Both theoretical considerations and empirical evidence suggest that specific

genetic variants causally associated with common diseases will have small

effects (risk ratios mostly <2.0). However, the combination of even a few small

effects (e.g. effects of fewer than 20 common genetic variants) could account

for a sizeable population attributable fraction of common diseases and shed

important light on disease pathogenesis and environmental determinants.

Nevertheless, the inauguration of genome-wide association studies only

magnifies the challenge of differentiating between the expected, true weak

associations from the numerous spurious effects caused by misclassification,

confounding and significance-chasing biases. Standards are urgently needed for

presenting and interpreting cumulative evidence on gene–disease associations,

especially for consistent but weak associations. Criteria for synthesis of the

evidence should include sound methods for study conduct and analysis,

biological plausibility, experimental evidence and adequate replication in

large-scale, collaborative studies. Efforts by the Human Genome Epidemiology

Network (HuGENet) are currently ongoing to streamline and operationalize

these criteria for data on genetic associations with common diseases.
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Completion of the Human Genome Project1 launched a wave

of intense investigations of human genetic variation in relation

to common complex human diseases.2 Because most common

diseases, such as cancer, diabetes and heart disease, are caused

by many genes and environmental factors and their interac-

tions, progress in unravelling genetic risk factors has been slow

and tedious. However, common patterns of genetic variation

revealed by the International Haplotype Map (HapMap) project

are now the basis for lower cost and more efficient genomics

technologies.3,4 Comprehensive analyses of common variation

in the human genome in association with specific diseases in

case-control or cohort studies are commonly called genome-

wide association (GWA) studies. Such studies typically measure

sets of special DNA ‘tagging’ single nucleotide polymorphisms

(SNPs) identified in the HapMap project, enriched with non-

synonymous and ‘quasirandom’ SNPs, as well as SNPs in
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evolutionary conserved regions of the genome. Available analytical

platforms allow testing for several hundred thousand SNPs (e.g.

from 100K to 675K). Although the tested SNPs represent less

than one-tenth of all known SNPs, they are in strong linkage

disequilibrium with 80–90% of all known SNPs, and therefore

achieve high coverage of common variants of the human

genome.

It is more debatable whether rare genetic variants are

properly covered.5 As the cost of high-throughput genotyping

decreases exponentially, studies performing genome-wide

analysis of thousands of individuals are becoming increasingly

feasible. These studies will expand the search for genetic risk

factors for complex human diseases on an unprecedented

scale.6,7

Certainly, there is increasing excitement and expectations

that GWA approaches will produce disease susceptibility

findings such as we have seen recently with age-related

macular degeneration,8 diabetes type II9 and prostate

cancer.10 In this commentary, we examine the implications

of GWA studies for the synthesis and interpretation of

associations between single genetic variants and various

complex diseases. In particular, we focus on consistently

replicated but weak associations (i.e. risk ratios (RR) typically

<1.5). Because we expect many gene–disease associations to

have small effect sizes and fewer with larger effect sizes,11,12

even if they are biologically meaningful, weak true effects are

difficult to distinguish from spurious effects caused by

methodological biases. Thus, standards for the synthesis and

interpretation of consistent but weak associations are essential

tools for the imminent, large-scale epidemiological ‘fishing

expedition’ in the human genome.

Most human genome epidemiology
studies still report just one or a few
gene–disease associations
Although large GWA studies are now gearing up for various

diseases,13–15 most published gene–disease associations are

based on case-control studies assessing just one or a few

candidate genes with a postulated role in pathogenesis. For

example, as of November 21, 2006, the online CDC database16

of published epidemiological studies of human genes contained

more than 25 000 publications; of these, 84% reported analyses

of one or a few (not more than five) specific genetic variants.17

As we discuss subsequently, many methodological issues

remain in the analysis and reporting of single gene–disease

associations. Even in studies using GWA methods, typically

only a few associations survive the process of replication.

Effects of individual genetic variants
are expected to be small, even if they
are biologically meaningful
The aetiology and pathogenesis of common chronic diseases

such as cancer, diabetes and heart disease reflect the joint

effects of numerous genetic and environmental risk factors and

their interactions. For any given disease, ‘major’ gene effects

(which manifest as Mendelian or single-gene disorders)

account for only a small fraction of cases. For example, familial

hypercholesterolaemia,18 �-1-antitrypsin deficiency,19 heredi-

tary non-polyposis colorectal cancer20 and BRCA mutations21

account for <5% of the cases of heart disease, emphysema,

colon cancer and breast cancer, respectively. Such Mendelian

forms of common diseases have been associated with specific

clinical or pathological subtypes, such as early age at onset of

heart disease, colon cancer and breast cancer and panacinar

histology in emphysema (although ascertainment bias may

contribute to their recognition). A complex interplay of genetic

and environmental factors likely accounts for the largest

attributable fraction of these and other common diseases.

Besides Mendelian disorders, larger genetic effects may be

observed in some population subgroups defined by genetic

background, environmental exposure or disease subtype.

Nevertheless, strong genetic effects in subgroup analyses are

usually swamped by the large number of spurious findings that

can result from data dredging. Schmidt et al.22 have recently

proposed an ordered subset analysis (OSA) method to allow for

the incorporation of covariates into linkage analysis of disease

phenotypes in order to reduce genetic heterogeneity. When

multiple genetic and environmental risk factors interact in the

pathogenesis of common disease, the effect of any individual

factor depends on the relative prevalence of other risk factors,

genetic or environmental, that are part of the same sufficient

cause.23 In a simple scenario, all risk factors may be considered

to act independently in a multiplicative fashion. Yang et al.24

have recently shown that when the predisposing genetic

variants are very common in the population (each with

prevalence �25%), a modest number (�20) could explain

50% of the burden of a disease in the population, even if

the individual genotype associations are relatively small

[e.g. relative risk (RR)¼ 1.2–1.5]. Nevertheless, at this time, it

is not possible to assess how likely this scenario is to occur for

the majority of common diseases and whether or not it will be

consistent with observed patterns of familial aggregation and

heritability estimates from these studies. In more complex

scenarios, interactions beyond the multiplicative model may

be more important and marginal effects may well be tiny.

A very strong association that is present in only a small

subgroup of the population, defined by the presence of other

genetic and environmental factors, can be severely diluted

towards the null if these other factors were not specifically

measured in the study.25,26 As the combined prevalence of these

interacting risk factors becomes less frequent in the population,

the ‘average’ or marginal effect—obtained from crude

analysis—for each genetic variant approaches the null. For

example, even a gene–disease association with a RR of 100 will

have an observed RR of only 1.1, if the combination of factors

required to complete a sufficient cause occurs in just 1/1000

people.25

We recently analysed results of 50 meta-analyses (based on

a total of 752 studies) that reported statistically significant

summary gene–disease associations. In these meta-analyses, the

median odds ratio (OR) was 1.43, with an inter-quartile range

(IQR) of 1.28–1.65.27 The true ‘average’ effects could be even

smaller if bias exaggerated some of the results. One of the

most consistently replicated but weak associations in genetic
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epidemiology, is that of bladder cancer with the NAT2

genotypes associated with the slow acetylator phenotype.

Garcia-Closas et al.28 reported on a meta-analysis of 31 studies

of NAT2 and bladder cancer, including a total of 5091 cases and

6501 controls. The summary RR for NAT2 slow acetylators

compared with rapid/intermediate acetylators was 1.4 (1.2–1.6;

P< 0�0001). The consistency of this association across numer-

ous studies suggests that it reflects more than mere bias;

however, its small size suggests that other unmeasured,

underlying interactions among genes and environmental

exposures also have a role.

Although interaction effects abound in the literature, most

are derived from small studies that are underpowered even

for detecting main effects, suggesting that they may be the

result of post hoc analysis with little chance of replication.29

Among NAT2 slow acetylators, the consistent finding of higher

bladder cancer risk in cigarette smokers than in never-smokers

bolsters the case for true interaction. Case-only meta-analyses

provided support for an interaction between NAT2 and smoking

(P for interaction 0.009).28

But wait! How will we find such
needles in the haystack?
It will be exceedingly difficult from individual studies to

distinguish small effects that are valid and biologically

meaningful from those arising spuriously from the methodolog-

ical problems that are known to plague the field of genetic

association studies. Many of these problems have been

described and quantified for individual studies,30,31 and for

meta-analyses;31 they include frank biases as well as the

inherent complexity of the task at hand.32–43 Biases include

significance-chasing (including publication bias, selective

analysis and reporting biases), confounding by population

stratification, faulty selection of subjects for comparisons,

differences in storage and genetic analysis of samples

collected from cases and controls, genotyping errors, deviations

from Hardy–Weinberg equilibrium, linkage disequilibrium

issues and misclassification of exposures and outcomes.

Other inherent problems include presence of undetected

gene–gene and gene–environment interactions, limited sample

size and statistical power and type I errors (false positive

associations).

All of these issues have been reviewed previously and will not

be discussed further, except to point out that type I errors are

particularly relevant to the conduct of GWA studies. A large

search among hundreds of thousands of genetic variants can be

expected by chance alone to find thousands of false positive

signals (RRs significantly different from 1.0). Many approaches

to this problem have been proposed, including Bonferroni

adjustment for multiple comparisons, Bayesian inference based

on prior probabilities, and more exploratory methods such as

data visualization, multi-dimensionality reduction and neural

network analyses.44–46 While these methods may facilitate the

detection of true associations, they are likely to greatly increase

the number of false positive associations as well. Perhaps a

good summary of the prevailing notion in the genetic

association field is the recent editorial by Duncan Thomas.

He states: ‘Clearly, the next few years should be an exciting

time as GWA studies get under way . . . The interpretation of the

mass of data that will result can be expected to keep

investigators and pundits entertained long into the future’.6

Perhaps the process of careful replication will help ‘average’

out the biases, but a prolonged cycle of initial positive, reported

findings and subsequent refutation could consume a great deal

of energy and resources. Therefore, we believe that more

systematic attempts at epidemiological data integration and

interpretation in the era of GWA studies need to be developed.

Synthesis and interpretation of the
evidence on consistent but
weak associations
Recognizing methodological challenges in the field of genetic

associations, the Human Genome Epidemiology Network

(HuGENet) was founded in 1998 as an open, global collabora-

tion of individuals and organizations committed to creating the

knowledge base on genetic variation and human diseases.

Recently, the collaboration has undertaken a number of steps to

move this rather difficult field forward.47,48 A ‘network of

networks’ of investigators has been created to share best

practices, tools and methods for analysis of associations

between genetic variation and common diseases.49 A ‘road

map’ was published in January 2006 to define near-term plans

for HuGENet and the networks. These include developing

consensus guidelines for reporting results of genetic association

studies; augmenting published associations with unpublished

data by promoting publication of ’negative’ studies and

collaboration on comprehensive analyses within investigator

networks; expanding systematic HuGE reviews with meta-

analyses of individual-level data and prospective meta-analyses;

and developing field synopses that will offer regularly updated

overviews online and in selected journals.50,51 Detailed guidance

for conducting systematic reviews of gene–disease associations

with quantitative synthesis of the results was published online

in March 2006.52 As shown in Table 1, 366 meta-analyses of

gene–disease associations have been published (of which 49 are

formal HuGE reviews) and their yearly numbers have more

than tripled between 2001 and 2005.

Beyond the mechanics of meta-analysis and systematic

synthesis of gene–disease associations, what evidence do we

Table 1 Reported gene-disease associations in the published literaturea

by type of publication and year, 2001–05

Publication
year

Gene–disease
association

Gene–gene
gene–environment

joint effects

Meta-analysis
or

HuGE review

2001 2142 435 33

2002 2796 568 36

2003 3020 600 61

2004 3761 663 93

2005 4611 924 143

a HuGE published literature database16,17 searched online April 10, 2006 at

http://apps.nccd.cdc.gov/genomics/GDPQueryTool/frmQueryAdvPage.asp
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need to conclude that such associations are ‘causal’?

As discussed by Weed,53 meta-analysis may allow us to

‘summarize evidence from biological, clinical and social levels

of knowledge . . . [but] combining evidence across levels is

beyond its current capacity. Meta-analysis has a real but

limited role in causal inference, adding to an understanding of

some causal criteria.’ Hill’s54 nine criteria for causal inference

have been used to interpret observed associations between

environmental exposures and disease outcomes in various

fields, such as nutritional epidemiology,55 but only in a limited

way in the field of genetic association.55 Although none of the

nine criteria (including strength of association) are absolute,

the question of causal interpretation of genetic associations is of

timely interest.

By creating the opportunity for millions of comparisons, GWA

might be expected to generate an outpouring of false positive

results. However, by its very nature, GWA may also supply a

definitive solution to the problem of selective reporting, which

is not limited to genetic epidemiology. Typically, epidemiologi-

cal studies target only a few risk factors at a time and only

selected findings are published. In theory, GWA studies could

collect information simultaneously on a very large number of

genetic variants and make the entire database transparent and

available online.7

One important near-term activity for HuGENet is developing

a systematic approach to assessing cumulative evidence

and inferring causality for genetic associations. In a recent

commentary, one of us proposed a schema (Table 2)

for qualitative scoring on five ‘axes,’ including effect size,

replication, protection from bias, biological plausibility and

relevance to medicine or public health.57 This schema has

much in common with the criteria, guidelines or viewpoints

discussed earlier but will need to be further modified based

on accumulated experience from ongoing GWA efforts

(see Table 2 for comments). For example, in this schema,

‘weak’ associations (RRs <2) are viewed as least credible,

yet we can expect most true associations to fall below this

criterion. Indeed, many may have relative risks <1.2, in the

range where very large sample sizes are needed (tens of

thousands of cases). Under this scenario, the analytical ability

of epidemiological methods will break down, even with limited

bias. For example, a recent GWA-based discovery of a genetic

variant that increases the risk of obesity 1.22-fold has not been

replicated consistently.15 How credible can this association be

and how large a sample size do we need to validate such an

association, even if it is true?

Replication of evidence, while an absolute necessity, could

become more problematic as researchers debate how much

replication is enough, especially in the case of small effect sizes.

Perhaps in genetic epidemiology, replication may be a con-

tinuous process without end. In research on medical interven-

tions, too much replication is unacceptable because it exposes

people to documented risks from harmful interventions or

withholds benefits from effective interventions. In genetic

epidemiology, the downside of excess replication lies in the

opportunity costs—research funds and investigator efforts that

could be better applied to other endeavours. Even accumulated

evidence from a large number of studies may have modest

credibility, and better and larger studies may still be needed.

The cost of replicating associations with individual genetic

variants emerging as candidates from a GWA study will be

considerably less costly than the GWA study itself. Certainly, an

open model for sharing of individual level data in GWA

studies—as we are beginning to see from the NIH-sponsored

Genetic Association Information Network (GAIN) initiative58

and the Wellcome Trust-sponsored Wellcome Trust Case-

Control Consortium (WTCCC) consortium59—may help the

validation/replication process by enhancing transparency and

minimizing selective reporting biases.

‘Protection from bias’ is difficult to assess. Most known biases

in epidemiology cause spurious associations that can easily

mimic a true small effect size. Biases introduced by genotyping

Table 2 Grading the credibility of the evidence for individual gene–disease associations: some proposed grading criteria and their limitations
in interpreting recurring weak associations

Axis Proposed gradinga Comments

Effect size Small effect size (RR<2) has lowest grade while
large effect size considered best (RR45)

Most biologically causal factors are expected
to have RR < 2. Many may be beyond the limit
of analytical ability

Amount of evidence/replication Single or few scattered studies have lowest grade
while large-scale inclusive analyses are best

The more information the better the inference,
although it may be difficult to set hard rules
for the amount of replication for weak
associations. There is a risk for endless
replication

Protection from bias Clear presence of bias gets poor grade while clear
strong protection gets high grade

Most studies will be in between. Absolute protection
from bias is hard to achieve. More empirical
evidence and consensus is needed on which biases
are more serious than others.

Biological plausibility No functional data scores lowest while convincing
biological data scores highest

Need consensus and empirical evidence for the
importance of specific items of biological
plausibility

Relevance Graded according to clinical or public health
application

Individual weak associations will have little relevance to
use for genetic testing because of their poor predictive
ability especially for rare conditions

a Grading proposed by Ioannidis.57
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errors and population stratification can at least be measured.

Probably much more important are common epidemiological

biases related to participant selection, outcome ascertainment

and measurement of exposures and interactions. It may be

possible to reach consensus on the relative importance and

control of biases in the design, conduct and presentation of

single studies and the assembly and presentation of large sets

of evidence; however, additional, empirical studies are needed

to elucidate how such biases operate alone and in combination.

Biological plausibility also remains an unsettled topic as

researchers begin to integrate results of genetic association

studies with other lines of evidence, e.g. from gene expression

studies, online bioinformatics databases and experimental

studies in animal models.60–62

The bottom line in grading evidence is its relevance to clinical

and public health practice. Even ‘true’ genetic associations may

not explain clinically meaningful or preventable outcomes. The

strongest genetic associations may not be with clinical end-

points but with intermediate phenotypes or other biological

markers far upstream from the outcome of interest. For

example, a genetic variant might have an imperceptible

association with myocardial infarction, a somewhat stronger

association with serum pro-thrombotic profile, and a strong

relationship to a gene expression profile, reflecting complex

biological processes that may or may not lead to simple

interventions.

Weak risk factors, including genetic variants, have little

validity as predictive or diagnostic tests and are thus clearly

inadequate tools for screening populations and testing indi-

vidual patients.63,64 Information about individual genetic

variants with RRs of �2.0 will probably not find direct

application in medicine or public health;65 however, they may

offer clues to disease pathogenesis, natural history and

environmental risk factors through ‘Mendelian randomiza-

tion’.66–68 Combining several genetic variants in a single test

could improve positive predictive value but only at the cost of

reduced sensitivity.69 More sophisticated approaches are needed

to integrate information on multiple genetic variants with other

biomarkers, as well as physiological and clinical data, for use in

population medicine. A useful framework to address this

challenge is the emergence of collaborative population-based

biobanks with adequate consent procedures, storage and

sharing of biological samples for studying the joint role of

genetic and environmental factors on the occurrence of

common diseases.70

Conclusions
In evaluating associations between genetic variants and

common complex diseases, we should fully expect biologically

meaningful associations with small effects. The usual criteria

for grading the evidence and for causal inference need to be

adapted and modified. As part of the HuGENet ‘road map’, an

ongoing effort has been made to streamline and operationalize

criteria for genetic associations with various common diseases.

Because of the lack of clinical or public health utility of these

weak associations for genetic testing, many may dismiss such

findings as hype, focusing on the obvious methodological issues

that plague genetic association studies. We do not think this

should be discouraging. Weak associations will be the norm

rather than the exception and in the current era of genome-

wide association studies, we have the opportunity to develop a

validated and continuously updated ‘knowledge base’ on the

relationship between genetic factors and human diseases.

Studying bias and false positive findings will be very

informative and useful. The next few years will provide a

crucial window of opportunity to develop methods and

standards for measuring, validating and interpreting genetic

associations. The simple answer to ‘are we there yet?’ may be

‘no’ for years to come. Ultimately, the promise of the Human

Genome Project rests on our ability to accurately characterize

the relationship between genetic variation and human disease

and use this information for the benefit of population health.

Conflict of interest: None declared.
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The article by Khoury et al.1 presents a useful overview of some

of the complex issues facing those trying to identify genetic

variants underlying common complex disease. They focus on

the common disease—common variant model where effect sizes

associated with individual genetic variants are small.

Undoubtedly this will be the case for most, but not all,

variants. An L-shaped or exponential distribution of mutation

effect sizes has wide support 2–4 with many variants with small

effects, a smaller number with intermediate effects and

relatively few with large effects. It could be argued that the

genetic variants related to human disease that have been

identified to date primarily reflect the study designs used to

identify them. Linkage studies conducted among families with

multiple cases of disease were successful in identifying highly

penetrant variants with large effects. Association studies

conducted in general population samples using common genetic

markers typically find low penetrance variants with (very)

small effects, as noted by Khoury. This is not unexpected given

that these common genetic variants are ancient and will have

been subject to some selective pressure over time.3

We can predict that re-sequencing studies in the near future

which study rarer variants (say 0.05–5%) will identify many

variants of intermediate effect associated with common com-

plex disease. This paradigm shift has already begun with the

seminal work of Cohen, who compared non-synonymous

sequence variations in individuals at the extremes of the

population distribution of LDL-cholesterol levels, and deter-

mined that a significant fraction of genetic variance is due to

multiple alleles with intermediate effects that are present at low

frequencies (0.05–5%) in the population, particularly persons of

African ancestry.5 Until many such studies are reported it will

be premature to decide on the relative importance of the

common variant—common disease model and the alternative

rare variant—common disease model which states that disease

susceptibility to common diseases is the result of multiple low

frequency/rare variants with larger phenotypic effects. As Cohen

notes, although individually rare, these variants may be
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