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Causal Knowledge as a Prerequisite for Confounding Evaluation:
An Application to Birth Defects Epidemiology
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Common strategies to decide whether a variable is a confounder that should be adjusted for in the analysis
rely mostly on statistical criteria. The authors present findings from the Slone Epidemiology Unit Birth Defects
Study, 1992–1997, a case-control study on folic acid supplementation and risk of neural tube defects. When
statistical strategies for confounding evaluation are used, the adjusted odds ratio is 0.80 (95% confidence
interval: 0.62, 1.21). However, the consideration of a priori causal knowledge suggests that the crude odds ratio
of 0.65 (95% confidence interval: 0.46, 0.94) should be used because the adjusted odds ratio is invalid. Causal
diagrams are used to encode qualitative a priori subject matter knowledge. Am J Epidemiol 2002;155:176–84.
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In epidemiologic studies, statistical analyses are typically
organized around three different sets of variables: the expo-
sure, the outcome, and the confounder(s). The exposure and
outcome are usually determined by the causal question
under investigation. The confounders, on the other hand, are
not so clearly defined; they must first be identified and then
appropriately adjusted for in the analysis.

A number of authors have emphasized that confounder
identification must be grounded on an understanding of the
causal network linking the variables under study (i.e., a pri-
ori subject-matter or expert knowledge) (1–8). Yet, some
widely used approaches to confounder identification are
centered on statistical associations. One common approach,
which we will call strategy 1, has been the application of
automatic variable selection procedures, such as stepwise
selection (9). The implicit assumption underlying this
approach is that, although not all variables selected will be
confounders, all important confounders will be selected. A
second common approach, strategy 2, compares adjusted
and unadjusted effect estimates. If the relative change after
adjustment for certain variable(s) is greater than 10 percent,
for example, then the variable(s) is selected (10). Implicit in

this approach is that any variable substantially associated
with an estimate change is worth adjusting for. Most epi-
demiology textbooks recommend a third approach, strategy
3, that consists of checking whether some necessary criteria
for confounding are met. Generally, it is stated that a con-
founder is a variable associated with the exposure in the
population, associated with the outcome conditional on the
exposure (e.g., among the unexposed), and not in the causal
pathway between the exposure and the outcome. A further
refinement is to replace the second condition by the condi-
tion that the potential confounder is a causal risk factor or a
marker for a causal risk factor (11). Strategies 1 and 2 rest
only on statistical associations that can easily be identified
from the data. Strategy 3 combines statistical associations
from the data with some background knowledge about the
causal network that links exposure, outcome, and potential
confounders.

All three strategies may lead to bias from the omission of
important confounders or inappropriate adjustment for non-
confounders (3–5, 7, 8, 12). Here, we will describe a real
example from research on birth defects in which all three
strategies prefer the adjusted effect estimate over the crude
effect estimate. However, we will use our a priori subject-
matter knowledge to argue that the crude estimate should
probably be preferred. We will utilize causal diagrams (4, 5,
13, 14) to represent our qualitative a priori assumptions
about the underlying biologic mechanisms. First, we briefly
review confounding and causal diagrams.

CONFOUNDING, CONFOUNDERS, AND CAUSAL 
DIAGRAMS

Intuitively, two variables E and D will be statistically
associated if one is a cause of the other (e.g., smoking and
lung cancer), if they share a common cause (e.g., yellow fin-
gers and lung cancer share smoking as a common cause), or
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FIGURE 3. The association between the birth defect of interest (D)
and maternal weight gain (C) may be due to shared genetic charac-
teristics, such as an enzymatic polymorphism U

2
, which may affect

the risk of this birth defect and, independently, maternal weight gain.
E, multivitamin use.

FIGURE 4. This could be a combination of figures 2 and 3.

both. If E precedes D, the overall association between E and
D will have two components: a spurious one that is due to
the sharing of common causes and another due to the causal
effect of E on D. The goal of etiologic research from obser-
vational data is to estimate the latter. The former component
produces confounding (4, 5).

One way to eliminate a spurious association is to adjust,
stratify, or condition on the common cause; for example, we
would find no association between yellow fingers and lung
cancer among nonsmokers. Confounders are variables that
when stratified on or adjusted for will eliminate (or dimin-
ish) the spurious component of the association between
exposure and disease.

The presence of common causes, and therefore of con-
founding, can be represented by causal diagrams known as
directed acyclic graphs (DAGs) (12–14). Briefly, these dia-
grams link variables by arrows that represent direct causal
effects (protective or causative) of one variable on another.
Figures 1–8 are selected examples of causal diagrams that
link the variables E, D, and C. We use U to depict unmea-
sured variables. Because causes precede their effects, these
graphs are acyclic: One can never start from one variable
and, following the direction of the arrows, end up at the
same variable. In figure 1, E causes D, and both D and E are
causes of C; in figure 2, E does not cause C but both share
an unmeasured common cause U1.

In figures 1–4, exposure and disease do not share com-
mon causes; that is, no variable connects both E and D by
following only forward-pointing arrows. Their crude associ-
ation lacks a spurious component and thus is wholly due to
the causal effect of E on D. There is no confounding, and no
adjustment for confounding is necessary. The odds ratio
(OR)ED measures the causal effect of E on D (on the odds
ratio scale). On the other hand, in figures 5–8, exposure and

outcome share a common cause. Hence, the association has
a spurious component, there is confounding, and the crude
ORED is a biased estimator of the causal effect of E on D.
Does adjustment for C in each of figures 1–8 reduce con-
founding or does it introduce bias? A major strength of using
DAGs is that a set of simple graphical rules can be applied
to answer this question (Appendix). However, the judgment
as to which variables on a DAG cause which others must in
general be based on subject matter considerations.

Let us first concentrate on figures 5–8. Figure 5 depicts C
as a common cause of E and D, whereas in figures 6–8 U is
the common cause. We say that C is a confounder in figure
5 and that U is a confounder in figures 6–8. To eliminate the
spurious component of the association between exposure
and outcome, we can condition on the confounder and cal-
culate the ; that is, we adjust for the common cause.
Thus, in figure 5 the adjusted for C is a valid esti-
mator of the causal effect on the odds ratio scale within lev-
els of C. Furthermore, if (as we shall assume for simplicity)
the stratified odds ratio is constant over levels of C
and the disease is rare (at each joint level of E and C), then

ORED 0C

ORED 0C

ORED 0C

FIGURE 1. Low folate intake (E) may increase the risk of preterm
delivery and infant low birth weight (C) (Am J Clin Nutr
2000;71(suppl):1295s–303s), and many birth defects (D) result in
preterm deliveries and low birth weight infants (Am J Dis Child
1991;145:1313–18).

FIGURE 2. The association between multivitamin use (E) and preg-
nancy outcomes may be due to shared sociodemographic character-
istics. For example, teen pregnancy age (U

1
) can result in lower

micronutrient intake (J Epidemiol Community Health 2000;54:17–23)
and in poor prenatal weight gain and low birth weight infants (C) (J
Sch Health 1998;68:271–5). Some malformations (D) involve incom-
plete or small fetuses, which may have an impact on birth weight and
maternal weight gain.

FIGURE 5. Multivitamin use (E) may reduce the risk of certain birth
defects (D), and maternal age (C) may affect multivitamin use (J
Epidemiol Community Health 2000;54:17–23).
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FIGURE 6. Maternal obesity (C) may cause certain defects (D)
(JAMA 1996;275:1089–92). Advanced maternal age (U) may
increase the risk of obesity and increases the chances of pericon-
ceptional multivitamin use (E) (J Epidemiol Community Health
2000;54:17–23).

FIGURE 7. History of birth defects in the family or in previous preg-
nancies (C) may lead to more careful pregnancy planning and coun-
seling, which will increase the chances of periconceptional multivit-
amin use (E) (Can Fam Physician 1999;45:2053–7). If a genetic fac-
tor (U) was a cause of previous malformations in the family, it may
also affect the risk of that malformation (D) in the current pregnancy
(N Engl J Med 1994;331:1–4).

FIGURE 8. A certain enzymatic polymorphism (U) decreases plas-
ma folate levels early in pregnancy (E) (Am J Hum Genet
1998;62:1044–51) and increases the risk of neural tube defects (D)
(Am J Epidemiol 2000;151:862–77), perhaps through mechanisms
other than folate levels. C represents enzymatic function measured
after delivery. C may occur after E or D but still be a marker for a fac-
tor’s occurrence before E and D.

the stratified odds ratio closely approximates the stratified
risk ratio. Then , unlike the crude ORED, also quanti-
fies the causal effect of E on D in the whole population. But
what about figures 6–8? Here the common cause is unmea-
sured, and therefore we cannot adjust for it. In figure 6, the
causal pathway from U to D is mediated through C.
Intuitively, if we condition on a specific value of C, then U
cannot affect D because U only affects D by changing the
value of C. In other words, within levels of C, U is no longer
a cause of D, and therefore the spurious association (con-
founding) disappears. Therefore, adjusted for C is a
valid estimator of the causal effect of the exposure E on the
outcome D. (This would still be true even if C occurred tem-
porally after E.) Similar reasoning can be used to deduce

ORED 0C

ORED 0C

that C should be adjusted for in figure 7. In both cases, we
say that C is a confounder, although it is not a causal con-
founder in the sense that C itself is not a common cause of
exposure and disease. Once we adjust for the confounder C,
U ceases to be a confounder because it no longer induces a
spurious association between exposure and disease.

The situation is different in figure 8, where C is not in the
causal pathway between the unmeasured confounder U and
either E or D. As a result, adjusting for C will not remove
the spurious association between E and D due to its common
cause U. However, if C is strongly associated with U, adjust-
ing for C will remove a large part of the confounding. In the
limit, if C were perfectly correlated with U, then all con-
founding would be removed when adjusting for either C or
U. We say that C is a surrogate confounder in figure 8.
Often, when a confounder cannot be adequately measured,
it is better to adjust for a surrogate confounder than to use
the crude odds ratio (1). For example, if C were a misclassi-
fied version of U, the stronger the association between them
(i.e., the smaller the measurement error), the better is con-
founding taken into account.

Let us now turn our attention to figures 1–4. Even though
C is not a confounder, is the adjusted a valid estima-
tor of the causal effect? No. Adjustment for C is not only
unnecessary but harmful. To explain why, let us focus on
figure 1. Suppose E represents being on a diet and D
represents a recent diagnosis of a non-diet-related cancer.
Let C � 1 if the person had recent weight loss greater than
5 kg, and C � 0 otherwise. Assume that dieting does not
cause cancer and therefore erase the arrow from E to D. We
have seen that two variables may be associated when one is
the cause of the other or when they have common causes.
Neither case is true in this example, so dieting and cancer
are statistically independent (OR � risk ratio (RR) � 1). In
other words, knowing that someone was dieting does not
change the probability that she develops cancer. Now let us
condition on the common effect C (common effects are
known as colliders in causal graph theory) and check if E
and D remain independent within levels of C. Among those
who lost weight (C � 1), does the probability of someone’s
having cancer change if we know that she was not dieting?
Yes, it does. Given that a person lost weight, it is more likely
that she had cancer if she was not dieting. Thus, within those
who lost weight, dieting and cancer are inversely associated.
See tables 1 and 2 for a numerical example.

In general, conditioning on a common effect or collider C
creates a spurious association between E and D (15). The

ORED 0C

TABLE 1. Hypothetical study on dieting (E = 1) and non-diet-
related cancer (D = 1), unconditional association

D = 1 D = 0

100 100

200200

E = 1

E = 0

RR
ED

* = 1

* RR, risk ratio.



Causal Knowledge and Confounding Evaluation 179

Am J Epidemiol Vol. 155, No. 2, 2002

FIGURE 9. Antiepileptic drugs (E) may lower plasma folate levels
(C) and may cause birth defects (D) through mechanisms not relat-
ed to folate. Alcohol intake (U) may also decrease folate levels but
may be associated with birth defects through other paths.

practical implication is that the adjusted odds ratio, unlike
the crude odds ratio, will indicate a spurious noncausal asso-
ciation between E and D. A similar argument can be used in
figure 2, where C is not a common effect of E and D but of
U

1
and D. Conditioning on C will induce a spurious associ-

ation between U1 and D; since U1 is associated with E
(because U1 is a cause of E), conditioning on C will thus
induce a spurious association between D and E. Similar
arguments apply to figures 3 and 4 (in the latter, there would
be bias even if C occurred before E).

Thus, C is a confounder and one needs to adjust for it in
figures 5–8, but it is a nonconfounder and one should not
adjust for it in figures 1–4. This definition of confounding
and confounders is not based on the statistical associations
found in our data but rather on qualitative background
knowledge about the causal structure of the problem under
study, which we encoded in causal diagrams. This approach
contrasts with the causally blind strategies 1 and 2, which
use only statistical associations to decide whether C should
be adjusted for, and with strategy 3, which uses statistical
conditions supplemented with partial but insufficient a pri-
ori causal information.

In fact, the conditions implied by strategies 1–3 hold true
for all figures 1–8. However, in figure 9, C would be
excluded as a confounder by the causal restriction of strat-
egy 3 (that C is not in the causal pathway). The additional
causal restriction that C must be a causal risk factor or a
marker for a causal risk factor (8) further restricts the set of
possible causal structures in which C may be a confounder
to those in figures 3–8. Another widely recognized restric-
tion is that the potential confounder cannot be affected by

either exposure or outcome (1, 6, 16, 17), which excludes
figures 1–3. As more causal restrictions are applied, fewer
causal diagrams are consistent with C’s being a confounder.
Whether C is or is not truly a confounder depends on the
causal structure of the problem under study. No generally
applicable statistical approaches will substitute for using a
priori causal knowledge to characterize such structure.

AN EXAMPLE FROM BIRTH DEFECTS EPIDEMIOLOGY

Supplementation with 0.4 mg of folic acid per day
around the time of conception has been shown to decrease
the risk of neural tube defects in randomized experiments
(18) and observational studies (19, 20). We examined this
relation using data from the Slone Epidemiology Unit Birth
Defects Study. Since 1976, mothers of malformed children
born in the greater metropolitan areas of Boston,
Massachusetts, Philadelphia, Pennsylvania, and Toronto,
Canada, have been interviewed about pregnancy events and
exposures (19). For this analysis we included mothers of
infants with neural tube defects as cases (D � 1) and moth-
ers of infants with birth defects thought to be unrelated to
folic acid as controls (D � 0). The exposure of interest was
categorized as the presence (E � 1) or the absence (E � 0)
of daily supplementation with folic acid during the first and
second months after the last menstrual period. This period
encompasses neural tube development. Because informa-
tion on the folic acid-containing multivitamin was not col-
lected before 1992, and because folate fortification of
cereal grains began in 1998 (21), we restricted the analysis
to infants born between 1992 and 1997. A third dichoto-
mous variable C was also measured; for pedagogic reasons,
its identity will be withheld until later. However, based on
subject matter knowledge, C is known not to be in the
causal pathway from exposure to disease. We use preva-
lence odds ratios and their 95 percent confidence intervals
as estimators of causal effect. For simplicity, we assume
that all variables are perfectly measured.

We found that 18 percent of cases and 25 percent of con-
trols used folic acid daily during the exposure period (table
3). The crude (unadjusted) ORED was 0.65 (95 percent con-
fidence interval (CI): 0.45, 0.94), which approximates the
crude risk ratio. ORED can be obtained directly from table 3
or as exp(β1) from the logistic model logit Pr(D � ) �
β0 � β1E. Table 4 displays the data by levels of C. To esti-
mate the adjusted odds ratio, we stratify (i.e., condition) on
all levels of the third variable C, compute the stratum-
specific odds ratio, and then calculate a pooled summary

1 0E

TABLE 2. Hypothetical study on dieting (E = 1) and non-diet-
related cancer (D = 1) stratified by their common effect, recent
weight loss (C = 1 if yes)

D = 1 D = 0

55 25

1070

E = 1

E = 0

RR
ED C = 1

* = 0.79; RR
ED C = 0

= 0.92

D = 1 D = 0

45 75

190130

C = 1 C = 0

TABLE 3. Periconceptional folic acid supplementation 
(E = 1) and neural tube defects (D = 1), Slone Epidemiology
Unit Birth Defects Study, 1992–1997

D = 1 D = 0

43 239

704194

E = 1

E = 0

* RR, risk ratio.
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measure across strata (e.g., using the Mantel-Haenszel
method). We did not detect heterogeneity of the odds ratio
between the two strata defined by C (p � 0.43 from the
Breslow-Day test for homogeneity), so for our purposes we
assume that the no interaction logistic model logit Pr(D �

, C) � β0 � β1E � β2C is correct. The adjusted
by C (exp(β1)) was 0.80 (95 percent CI: 0.53, 1.20).

Which analysis is more appropriate, the crude or the
adjusted? We first consider the three common strategies
described above:

1. Automatic variable selection. We force exposure E as
a covariate in the logistic model with D as the out-
come. We consider an automatic forward selection
procedure, available in most standard statistical soft-
ware packages in which the variable C is added if the
p value associated with its parameter estimate is less
than 0.10. As the p value in our data set is less than
0.001, variable C is selected.

2. Relative change in estimate greater than 10 percent.
The adjusted was 0.80, a 23 percent relative
change with respect to the crude ORED � 0.65, so the
adjusted estimate will be selected.

3. Standard rules for confounding. First, we check that C
is associated with E in the population; in our data

is 0.50 (95 percent CI: 0.23, 1.07). Second,
we check that C is associated with D within the unex-
posed; in our data is 15.22 (95 percent CI:
10.09, 22.95). Third, we need to exclude the possibil-
ity that C may be in the causal pathway between E and
D. The data by themselves are never sufficient to rule
out the possibility; however, in our case it was known
that C was not plausibly on the causal pathway.
Because all three conditions are met, the adjusted esti-
mate will be selected. 

All three strategies require adjustment for C.
We have not as yet unveiled the variable encoded by C in

table 4 in order to emphasize that no additional information
about C beyond that contained in the data is required by
stategies 1 and 2, and only limited external background
information is required by strategy 3. However, we have
seen in the previous section that knowledge of the causal
structure is crucial if we are to decide whether C is a con-
founder and needs to be adjusted for. In fact, the adjusted

is biased in four of our diagrams.ORED 0C

ORCD 0E�0

ORCE 0D�0

ORED 0C

ORED 0C1 0E

In our example, the variable C stands for the event that
pregnancy ends either in stillbirth or therapeutic abortion.
Should we regard C as a confounder? To answer this ques-
tion, we would need the true, but possibly unknown, under-
lying causal structure. Most investigators would agree that
figures 1–4 are more likely to represent the true causal struc-
ture than figures 5–8. In fact, figures 5–7 are rapidly elimi-
nated because they assume that C occurs before the exposure
E or the outcome D.

Yet it is not uncommon to find epidemiologic analyses that
adjust for stillbirth/induced abortion, either by stratification or
by restricting the analysis to livebirths. This practice is often
the unintended consequence of the difficulty of identifying
stillbirths and/or ascertaining their maternal exposures.
Similarly, analyses of the effects of prenatal exposures fre-
quently adjust for variables, such as maternal weight gain dur-
ing pregnancy, gestational age, or birth weight, that are likely
to be affected by either the exposure or the outcome. The
decision to adjust is usually based on statistical criteria only.
(Here we assume that the goal is to estimate the total effect.
The section “Adjusting for Variables Affected by Exposure
and Causal Diagrams” below discusses direct effects.) How
much bias is introduced by this decision depends on the
strength of the statistical associations between the potential
confounder and exposure and outcome (22, 23). In our study,
the apparent bias was moderate despite the fact that the asso-
ciation between the potential confounder and the outcome
was very strong.

For expositional purposes, we have assumed throughout
that there were no other confounders of the causal effect of
E on D other than possibly the covariate C. This is not a real-
istic assumption, but it was useful to simplify the problem.
In a more realistic analysis in which we adjusted for region,
maternal age, whether the pregnancy was planned, and
maternal education, the odds ratio was 0.72 (95 percent CI:
0.49, 1.05).

In general, crude and adjusted odds ratios can differ not
because of confounding but because of the noncollapsibility
property of the odds ratio; that is, the crude odds ratio does
not necessarily equal a common stratified odds ratio even if
the exposure and stratifying factor are unassociated in the
population (24, 25). This is an additional reason to avoid the
change-in-estimate method for the odds ratio. We did not
consider this issue because we assumed that, in our study,
the disease was rare so the odds ratio was approximately
equal to the risk ratio, which is a collapsible measure.

SELECTION BIAS, RECALL BIAS, AND CAUSAL 
DIAGRAMS

Causal diagrams are useful to represent biases other than
confounding, such as selection and recall bias (5). In
research into birth defects, investigators sometimes restrict
the analysis to liveborn infants, which has long been recog-
nized as a potential source of bias (26, 27). We now use
causal diagrams to show how this bias is introduced. First,
note that restricting to livebirths is equivalent to condition-
ing on a particular value of the variable C’s encoding still-
birth/abortion. If the true causal structure is represented by

TABLE 4. Periconceptional folic acid supplementation 
(E = 1) and neural tube defects (D = 1), stratified by the 
covariate C, Slone Epidemiology Unit Birth Defects Study,
1992–1997

D = 1 D = 0

19 8

46100

E = 1

E = 0

D = 1 D = 0

24 231

65894

C = 1 C = 0
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FIGURE 10. Case-control studies of birth defects (D) often rely on
maternal recall (E′) of antenatal exposure (E).

FIGURE 11. When mothers of malformed infants (D) recall the
information more completely (or less completely) than mothers of
controls, D will influence E′ (maternal recall). Study designs that
use malformed controls try to avoid the arrow between D and E′. E,
antenatal exposure.

any of figures 1–4, then C is an effect of either exposure E
or outcome D, or else it shares a common cause with them.
Conditioning on the collider C would produce a biased odds
ratio, as described above, for example, with selection of
liveborn infants. In fact, studies of birth defects are poten-
tially subject to some degree of selection bias, because spon-
taneous abortions in which the presence or absence of neural
tube defects is indeterminate are not included. (This may not
be a problem if the goal is to estimate the public health bur-
den due to the exposure, rather than its causal effect among
all conceptuses, which we have taken to be the causal con-
trast of interest.) A similar selection bias may occur when C
stands for participation in the study, and the analysis is
restricted to those who agreed to participate. This latter is a
particularly difficult bias to control.

Selection bias induces noncomparability or, equivalently,
lack of exchangeability of the exposed and the unexposed,
even if they were comparable before the selection. Many
authors use noncomparability as a synonym for confounding
(7). We are being careful to separate confounding due to
unmeasured common causes from noncomparability
induced by selection.

We have so far made the simplifying assumption that
exposure is perfectly measured before the outcome occurs.
However, case-control studies often ascertain the exposure
E′ after the outcome is known, as represented in figures 10
and 11. In figure 10, E′ is determined by the actual exposure
E but not by the outcome D, so misclassification is nondif-
ferential. Any association between E′ and D (ORE′D) is
therefore due solely to the causal effect of E on D. In figure
11, E′ is determined by the actual exposure E and the out-
come D, representing, for example, a setting in which there
is recall bias because mothers of infants with birth defects
have more complete recall of the exposure than mothers of
healthy infants. In figure 11, ORE′D can differ from one even
under the causal null hypothesis, because part of the associ-
ation between E′ and D is spurious as a result of the causal
effect of D on E′. Our study used mothers of infants with
other birth defects in an attempt to eliminate the arrow
between D and E′. Another example of the situation depicted
in figure 11 occurs when studying the effect of an exposure

through a biomarker. For example, women with disease-
associated weight loss could have altered blood levels of a
pesticide residue due to mobilization of residues stored in fat.

ADJUSTING FOR VARIABLES AFFECTED BY 
EXPOSURE AND CAUSAL DIAGRAMS

An inspection of the causal diagram in figure 9 reveals
the two main reasons why adjustment for a variable on the
causal pathway is discouraged in the epidemiologic litera-
ture (1–3). First, when one is interested in the overall effect
of E on D, one does not want to adjust for C if part of the
effect of E on D is mediated through C, because the adjusted

will not reflect an overall effect. Second, adjusting
for (conditioning on) the common effect (collider) C would
create a spurious association between its causes, E and the
unmeasured factor U, and therefore between E and D. This
will produce a non-null noncausal association between E
and D even if the effect of E on D were entirely through C
(i.e., no direct effect) or C had no causal effect on D what-
soever (28).

The second argument makes clear that, even to estimate
the direct effect of E (not mediated through C) on D, 1) it is
not valid to adjust for C when there is an unmeasured com-
mon cause of C and D, and 2) C’s being on a causal pathway
from E to D is not a necessary condition for this spurious
association to appear. The source of the problem is that C is
a marker for an unmeasured causal risk factor U for the out-
come, and C is either causally affected by exposure (figure
9) or shares common causes with the exposure (similar to
figure 4).

CONCLUSION

We have argued that knowledge of the causal structure is
a prerequisite to accurately label a variable as a confounder.
Taken literally, this statement may impose such an unrealis-
tically high standard on the epidemiologist that many stud-
ies simply could not be done at all. Instead, we wish to
emphasize that causal inference from observational data
requires prior causal assumptions or beliefs, which must be
derived from subject-matter knowledge, not from statistical
associations detected in the data.

Our goal was to highlight potential inconsistencies
between beliefs and actions in data analysis. In general,
investigators should not adjust for a variable C unless they
believe it may be a confounder. At the very least, researchers
should generally avoid stratifying on variables affected by
either the exposure or the outcome. Of course, thoughtful
and knowledgeable epidemiologists could believe that two
or more causal structures, possibly leading to different con-
clusions regarding confounding, are equally plausible. In
that case they should perform multiple analyses and explic-
itly state the assumptions about causal structure required for
the validity of each. One can never be certain that the set of
causal structures under consideration includes the true one;
this uncertainty and the attendant model uncertainty are
unavoidable with observational data.

Causal diagrams are a useful way to summarize, clarify,
and communicate one’s qualitative beliefs about the causal

ORED 0C
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structure. The use of causal diagrams in epidemiology has
been proposed by Greenland et al. (4). The main advantage
of this graphical method is that, while being a natural and
simple way to approach causal inference from observational
data, it is also rigorous, being mathematically identical to
Robins’ “g-computation theory” (29–31).

We have used causal diagrams to describe three possible
sources of statistical association between two variables:
cause and effect, sharing of common causes, and calculation
of the association within levels of a common effect. There is
confounding when the association between exposure and
disease includes a noncausal component attributable to their
having an uncontrolled common cause. There is selection
bias when the association between exposure and disease
includes a noncausal component attributable to restricting
the analysis to certain level(s) of a common effect of expo-
sure and disease or, more generally, to conditioning on a
common effect of variables correlated with exposure and
disease. In either case, the exposed and the unexposed in the
study are not comparable, or exchangeable, which is the
ultimate source of the bias. Statistical criteria are insuffi-
cient to characterize either confounding or selection bias.
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APPENDIX

We have used causal DAGs to encode our qualitative a
priori assumptions about the underlying biologic mecha-
nisms. These diagrams consist of nodes (variables) and
directed edges (arrows). The absence of an arrow between
two variables indicates that the investigator believes there is
no direct effect of one variable on the other (i.e., a causal
effect not mediated through other variables in the DAG).
The presence of an arrow indicates that the investigator is
unable to assume the absence of a direct effect of one vari-
able on the other. Further, conditioning on its direct causes,
each variable is statistically independent of all the variables
it does not cause. DAGs are acyclic because the arrows
never point from a given variable to any other variable in its
past. If, for example, one is interested in representing the
causal interplay between nutritional status and infection in
children, the DAG could contain an arrow from a variable
that represents nutritional status at time t to another one that
represents infection at time t � 1 and a second arrow from
infection at time t � 1 to nutritional status at time t � 2. We
say that a DAG is causal if the common causes of any pair
of variables in the graph are also in the DAG.

Our neural tube defects example may be partially repre-
sented by the DAG in figure 1. Subject-matter knowledge
suggests that neural tube defects (D) are a direct cause of
stillbirths/therapeutic abortions (C), and that folic acid sup-
plementation (E) may prevent stillbirths/abortions (C)
through its effects on birth defects other than neural tube
defects. (In our study, stillborn infants and fetuses therapeu-
tically aborted because of a malformation are identified
through review of admissions and discharges at major refer-
ral hospitals and clinics and through regular contact with
newborn nurseries in community hospitals. Medical records
and autopsies, if available, are then reviewed to ascertain
birth defects.)

To draw a more realistic DAG according to our causal
assumptions, we added the following variables: pregnancy
planning (because women who are trying to conceive a
pregnancy often take prenatal vitamins in preparation, and
they may take better care of themselves in general, which in
turn may affect the outcome), maternal education (for simi-
lar reasons to pregnancy planning), region (because both

exposure and outcome may display geographic variations
mediated through socioeconomic, behavioral, dietary, eth-
nic, cultural, and other factors), and maternal age (a risk fac-
tor for some birth defects, maternal age may also affect
behavior regarding folic acid supplementation). In our
hypothesized DAG, these preexposure variables would be
the origin of arrows pointing to E and D. Note that the inclu-
sion of these variables in the DAG does not imply that we
are certain about the existence of their causal connections
with E and D (e.g., maternal age may not affect the risk of
neural tube defects relative to that of other birth defects), but
that we are not willing to assume a priori that those connec-
tions are absent.

The arguments we used to support the statistical state-
ments derived from causal DAGs were heuristic and relied
on our causal intuitions. These arguments, however, have
been formalized and mathematically proven (12–14). Here
we present a brief overview of a graphical method called “d-
separation” (“d-“ stands for directional) (12, 13) that allows
us to determine whether two given variables are (marginally
or conditionally on other variables) independent.

The method of d-separation consists of a set of graphical
rules to decide whether two variables are d-separated, which
implies that they are independent, or are d-connected, which
generally implies that they are not independent. If two vari-
ables are d-separated without conditioning on any other
variables in the DAG, then they are marginally independent.
If two variables are d-separated after conditioning on a set
of third variables, then they are conditionally independent
(i.e., independent within every joint stratum of the third
variables). To explain the method we first need to define the
terms “path” and “blocked path.” A path is any arrow-based
route between two variables in the graph. We define each
path to be either blocked or open according to the following
graphical rules.

Rule 1. If there are no variables being conditioned on, a
path is blocked if and only if two arrowheads on the path col-
lide at some variable on the path. For example, in appen-
dix figure 1, the path L → A → D is open, whereas the path
A → D ← L is blocked because two arrowheads on the path
collide in D. We call D a collider on the path A → D ← L.

Rule 2. Any path that contains a noncollider that has been
conditioned on is blocked. For example, in appendix figure
2, the path between L and D is blocked after conditioning on
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APPENDIX FIGURE 3. The path between L and A is open after
conditioning on D.

APPENDIX FIGURE 4. The path between L and A is open after
conditioning on S.

APPENDIX FIGURE 5. A and D may be unassociated under non-
faithfulness.

A. We use a square box around a variable to indicate that we
are conditioning on it.

Rule 3. A collider that has been conditioned on does not
block a path. For example, in appendix figure 3, the path
between L and A is open after conditioning on D.

Rule 4. A collider that has a descendant that has been
conditioned on does not block a path. For example, in
appendix figure 4, the path between L and A is open after
conditioning on S, a descendant of the collider D.

Rules 1–4 can be summarized as follows. A path is
blocked if and only if it contains a noncollider that has been
conditioned, or it contains a collider that has not been con-
ditioned on and has no descendants that have been condi-
tioned on.

Two variables are d-separated if all paths between them
are blocked (otherwise they are d-connected). Thus, A and L
are not marginally independent (d-connected) in appendix
figure 1 because there is one open path between them (L →
A), despite the other path (A → D ← L)’s being blocked by
the collider D. In appendix figure 3, however, A and L are
marginally independent (d-separated) because the only path
between them is blocked by the collider D. In appendix fig-
ure 2, we conclude that D is conditionally independent of L,
given A. From appendix figure 3 we infer that L is not con-
ditionally independent of A, given D. Appendix figure 4

includes the variable S, representing the symptoms caused
by the disease. If conditioning on D opens the path and
therefore creates an association between L and A, then 
conditioning on an effect of the disease (S) also creates an
association between L and A. In general, the farther the
descendant of the collider is in the chain of causation, the
weaker this association will be.

Some conclusions that follow from the method of d-
separation are that causes (ancestors) are not independent of
their effects (descendants) and vice versa, and that generally
two variables are associated if they share a common cause.
Another important conclusion is that sharing a common
effect does not imply that two causes are associated.
Intuitively, whether two variables (the common causes) are
correlated cannot be influenced by an event in the future
(their effect) (4), but two causes of a given effect generally
become associated once we stratify on the common effect.

Finally, we explain why two variables that are not d-
separated may actually be statistically independent. The rea-
son is that it is logically possible that causal effects in oppo-
site directions may exactly cancel out. For example, in
appendix figure 5, if the arrow L → D is causative for half
the population and preventive for the other half, and if the
magnitude of the causative and protective effects is exactly
the same, then L and D will be marginally independent
despite the fact that they are not d-separated. Because exact
cancellation of causal effects is probably a very rare event in
epidenidologic applications, d-separation and independence
may be treated in practice as equivalent concepts with little
risk. In the probably rare occasions in which two variables
are simultaneously d-connected and statistically indepen-
dent, we say that the joint distribution of the variables in the
DAG is not faithful to the DAG (14).


