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Genome-wide association studies establish that human
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General intelligence is an important human quantitative trait that accounts for much of the
variation in diverse cognitive abilities. Individual differences in intelligence are strongly
associated with many important life outcomes, including educational and occupational
attainments, income, health and lifespan. Data from twin and family studies are consistent with
a high heritability of intelligence, but this inference has been controversial. We conducted a
genome-wide analysis of 3511 unrelated adults with data on 549 692 single nucleotide
polymorphisms (SNPs) and detailed phenotypes on cognitive traits. We estimate that 40% of
the variation in crystallized-type intelligence and 51% of the variation in fluid-type intelligence
between individuals is accounted for by linkage disequilibrium between genotyped common
SNP markers and unknown causal variants. These estimates provide lower bounds for the
narrow-sense heritability of the traits. We partitioned genetic variation on individual
chromosomes and found that, on average, longer chromosomes explain more variation.
Finally, using just SNP data we predicted B1% of the variance of crystallized and fluid
cognitive phenotypes in an independent sample (P = 0.009 and 0.028, respectively). Our results
unequivocally confirm that a substantial proportion of individual differences in human
intelligence is due to genetic variation, and are consistent with many genes of small effects
underlying the additive genetic influences on intelligence.
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Introduction

People differ in their cognitive abilities, and the
origins and impacts of these differences are sought
after and much debated. The quantitative trait of
general intelligence reflects the fact that diverse
cognitive abilities show universally positive covaria-
tion; that is, no matter the cognitive task being
undertaken, much of the human variation in any
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cognitive task will be caused by people’s differences
in general intelligence.1 The latent trait of general
intelligence ranks people very similarly, irrespective
of the group of cognitive tests used to extract it.2

Human intelligence is highly stable through the
lifecourse and the resemblance between relatives
suggests that it is highly heritable throughout adult-
hood.3 Intelligence is strongly associated with many
important outcomes in life. People with higher
intelligence tend to have more education, more
professional occupations, higher incomes and longer
lives.4,5 The foundations of intelligence differences in
brain structure and function are becoming increas-
ingly clear.6–8 Especially in later adulthood, an
important distinction is made between general fluid
and crystallized intelligences, with the former show-
ing earlier and more rapid age-related decline.9,10

Intelligence is highly familial, yet the extent and
nature of the genetic contribution to intelligence
differences has been controversial.11 Twin and adop-
tion studies suggest that additive genetic effects
contribute over half of the population variance in
intelligence in adulthood.3,6 However, no single genes
or gene variants have been identified that are robustly
associated with intelligence-related phenotypes.3

Moreover, it has been suggested that the apparent
high heritability for intelligence is the result of a
correlation (confounding) between genetic and envir-
onmental factors and that breaking up this correlation
would result in the trait being much less heritable.12,13

We present here the results of a GWAS (genome-
wide association study) that examines cognitive
ability phenotype–genotype associations in the five
cohorts, which constitute the CAGES (Cognitive
Aging Genetics in England and Scotland) project:
the Lothian Birth Cohorts of 1921 and 1936 (LBC1921,
LBC1936), the Aberdeen Birth Cohort 1936
(ABC1936) and the Manchester and Newcastle Long-
itudinal Studies of Cognitive Aging (Supplementary
Table 1). All five cohorts comprise non-clinical
samples of relatively healthy people from middle to
older adulthood with detailed, though not identical,
cognitive phenotypes.

Materials and methods

Participants: discovery cohorts
The five cohorts within the CAGES project are the
Lothian Birth Cohorts of 192114,15 and 193616

(LBC1921, LBC1936), the Aberdeen Birth Cohort
1936 (ABC1936)14,15 and the Manchester and New-
castle Longitudinal Studies of Cognitive Aging co-
horts17 (Supplementary Table 1). Together these
cohorts comprise 3511 healthy individuals, with
detailed cognitive abilities measured in middle to
older adulthood.

Lothian Birth Cohort 1921. The LBC1921 is a
longitudinal study of cognitive aging. All
participants were born in 1921 and completed the
Moray House Test (MHT) No. 12 assessment of

general intelligence in the Scottish Mental Survey
1932 at a mean age of 11 years.14,18 Their recruitment
and re-testing in old age has been described
previously.14,15 Relatively healthy surviving
participants of the Scottish Mental Survey 1932
were identified within Edinburgh and its
surrounding area, the Lothians. A total of 550
individuals (234 men and 316 women) were
recruited and tested at a mean age of 79.1 years
(s.d. = 0.6).15 The LBC1921 participants were tested
individually and completed a battery of cognitive
tests: The MHT No. 12,18 Raven’s Standard
Progressive Matrices,19 Verbal Fluency20 and Logical
Memory.21 Participants also completed the NART
(National Adult Reading Test).22 Following informed
consent, venesected whole blood was collected for
DNA extraction. Ethical approval for all the projects
was obtained from the Lothian Research Ethics
Committee.

Lothian Birth Cohort 1936. The Lothian Birth Cohort
1936 (LBC1936) is a longitudinal study of cognitive
aging. All participants were born in 1936 and
had completed the MHT in the Scottish Mental
Survey 1947 at a mean age of 11 years.14,23 Their
recruitment and re-testing in old age has been
described previously.16 Relatively healthy surviving
participants of the Scottish Mental Survey 1947 were
identified within Edinburgh and its surrounding area,
the Lothians. A total of 1091 participants (548 men
and 543 women) were recruited and tested
individually at a mean age of 69.5 years (s.d. = 0.8).
The LBC1936 participants completed a large battery
of cognitive tests.16 For the purposes of the present
study, only those tests relevant to the phenotypes
analyzed here are described. These are the MHT, and
a battery of cognitive tests consisting of six tests from
the WAIS-IIIUK (Wechsler Adult Intelligence Scale-III
UK)24: Digit Symbol Coding, Block Design, Matrix
Reasoning, Digit Span Backwards, Symbol Search and
Letter-number Sequencing. Participants also
completed the NART.22 Following informed consent,
venesected whole blood was collected for DNA
extraction. Ethical approval for all the projects was
obtained from Scotland’s Multicenter Research
Ethics Committee and the Lothian Research Ethics
Committee.

Aberdeen Birth Cohort 1936. The Aberdeen Birth
Cohort 1936 (ABC1936) is a longitudinal study of
cognitive aging. All participants were born in 1936
and had completed a version of the MHT test of
general intelligence in the Scottish Mental Survey
1947 at a mean age of 11 years.14,23 Their recruitment
and re-testing in old age has been described
previously.14,15 A total of 498 relatively healthy
participants (243 men and 255 women) was traced
and tested at a mean age of 64.6 years (s.d. = 0.9). The
cognitive tests carried out were the NART,22 Raven’s
Standard Progressive Matrices,19 the Rey Auditory
Verbal Learning Test,20 Digit Symbol and Block
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Design subtests of the WAIS-Revised25 and the Uses of
Common Objects Test.22 Following informed consent,
venesected whole blood was collected for DNA
extraction. Ethical approval for all the projects was
obtained from the Grampian Research Ethics
Committee.

Manchester and Newcastle longitudinal studies
of cognitive aging cohorts. The University of
Manchester Age and Cognitive Performance
Research Center program began in 1983 and this
study has documented longitudinal trajectories in
cognitive function in a large sample of older adults in
the North of England, UK.17 Recruitment took place in
Newcastle and Greater Manchester between 1983 and
1992. At the outset of the study, 6063 volunteers were
available (1825 men and 4238 women), with a median
age of 65 years (range 44–93 years). Over the period
1983–2003, two alternating batteries of cognitive tasks
applied biennially were designed to measure fluid
and crystallized aspects of intelligence. These
included the Alice Heim 4 parts 1 and 2 tests of
general intelligence; Mill Hill Vocabulary A and B
vocabulary tests; the Cattell and Cattell Culture
Fair intelligence tests; and the WAIS Vocabulary
test. Detailed task descriptions were provided pre-
viously.17 Following informed consent, venesected
whole blood was collected for DNA extraction.
Ethical approval for all the projects was obtained
from the University of Manchester.

Participants: replication cohort
The Norwegian Cognitive NeuroGenetics (NCNG)
cohort consists of 670 participants, ranging from 18
to 79 years of age (mean = 47.6 years; s.d. = 18.3)
(Supplementary Table 1). The participants completed
a battery of psychometric tests, assessing general
cognition, memory, attention and speed of processing
faculties. Informed consent was approved by the
relevant regional ethical committee for medical
research (project ID: S-03116). Permission to obtain
and store blood samples for genotyping together with
cognitive and magnetic resonance imaging data in a
bio-bank and to establish a registry with relevant
information for a time period of 10 years was granted
by the Norwegian Department of Health.

Cognitive phenotypes
For each of the cohorts, we constructed cognitive
phenotypes of fluid-type and crystallized-type intelli-
gence. Crystallized-type intelligence is typically as-
sessed using tests of acquired knowledge, and most
often through tests of vocabulary. Fluid-type intelli-
gence tends to involve unfamiliar, sometimes abstract,
materials, to involve on-the-spot thinking, to be
completed under time pressure and to rely relatively
little on prior knowledge. Here, to represent crystal-
lized intelligence (gc), we used the National Adult
Reading Test in the Lothian Birth Cohorts of 1921 and
1936, and the Aberdeen Birth Cohort 1936; the Mill
Hill Vocabulary Test in the Manchester and Newcastle

samples; and the WAIS Vocabulary subtest in the
NCNG sample. For fluid-type intelligence, principal
component analyses were used in the following
cohorts to derive a general intelligence factor (gf):
the Lothian Birth Cohorts 1921 and 1936, the
Aberdeen Birth Cohort 1936 and the NCNG sample.
In each case, the scores on a number of fluid-type
cognitive tests were subjected to principal component
analyses. The tests used to form the gf factor in the
LBC1921 were the MHT, Raven’s Matrices, Logical
Memory and Verbal Fluency. For the LBC1936, the six
tests from the WAIS-IIIUK were used. The ABC1936 gf

factor included Raven’s Progressive Matrices, Digit
Symbol, Uses of Common Objects and AVLT. For the
NCNG sample, a hierarchy of principal component
analyses was used (see Supplementary Information
for further details). In all cases, a single component
was indicated and was extracted. Thus, the indivi-
duals’ scores on the first unrotated principal compo-
nent were used as the indicator of general fluid-type
intelligence (gf). For gf in the Manchester and New-
castle samples, empirical Bayes’s estimates for each
individual were obtained from a random effects
model fitted by maximum likelihood to the standar-
dized age-regressed residuals obtained for each sex
from the Alice Heim 4 test and the Cattell Culture Fair
test scores. All of the phenotypes were corrected for
age and sex (with the exception of Manchester and
Newcastle gf, which was derived separately for males
and females) and the standardized residuals were
used for all subsequent analyses.

Genotyping and quality control
Discovery cohort. A total of 3782 CAGES participants
had DNA extracted and were genotyped for 599 011
common single nucleotide polymorphisms (SNPs) using
the Illumina610-Quadv1 chip (Illumina, Inc., San Diego,
CA, USA; Supplementary Table 1). We applied strin-
gent quality control analyses of the genotype data
and retained 549 692 of the 599 011 SNPs on the
Illumina 610 chip in 3511 individuals (2115 females)
(Supplementary Figure 1). Individuals were excluded
from this study based on unresolved gender
discrepancy, relatedness, call rate (p0.95) and
evidence of non-Caucasian descent. SNPs were
included in the analyses if they met the following
conditions: call rate X0.98, minor allele frequency
X0.01 and Hardy–Weinberg equilibrium test with
PX0.001. Differences in allele frequencies between
the discovery and replication samples were
investigated, and no sizeable deviations were
observed (Supplementary Figure 1). We tested for
population stratification within each cohort and
excluded any outliers. The first four components
from a multidimensional scaling analysis of the SNP
data, based on the remaining individuals, were
included as covariates in subsequent analyses
(Supplementary Figure 2). A total of 3400 and 3482
samples with both phenotypic and SNP data were
available for gf and gc, respectively.
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Replication cohort. NCNG DNA samples were newly
extracted from blood using the Qiagen Gentra Autopure
LS system (Qiagen, Valencia, CA, USA). They were
genotyped on the Illumina Human610-Quad Beadchip
(Illumina, Inc., San Diego, CA, USA). A strict quality
control protocol was applied, which resulted in a final
data set of 554 225 SNPs genotyped in a homogenous
Norwegian sample of 670 individuals (see Supple-
mentary Information for further details).

Statistical analysis
Genotype–phenotype analyses were performed with-
in each cohort.26 Meta-analysis was implemented
using an inverse variance weighted model (http://
www.sph.umich.edu/csg/abecasis/Metal). Gene-
based tests for association were carried out using
results from the meta-analyses.27

Statistical analyses to estimate the proportion of
variation explained by all SNPs were performed as
in Yang et al.28 This method captures the variance in
the trait that is due to linkage disequilibrium
(LD) between genotyped SNPs and unknown causal
variants.28,29 The interpretation of the estimate of
variance accounted for is different from that esti-
mated from traditional family or twin studies,
because these latter designs capture the variation
due to all causal variants in the genome and, possibly,
variation due to environmental factors, for example
when the effect of shared environment is larger in
monozygotic twin pairs than in dizygotic pairs.29 We
first estimated pairwise genetic relationships between
3511 individuals from CAGES from 549 692 autoso-
mal SNPs. We excluded one individual from any pair
that had an estimated coefficient of relatedness of
> 0.025 and retained 3291 individuals for analysis:
1800 from Scotland and 1491 from Northern England.
The reason for excluding close relatives is that (i)
their phenotypic covariance will have a large impact
on the estimate of variance explained; (ii) the
phenotypic covariance of close relatives captures the
effects of all causal variants in the genome and not
just those in close LD with the genotyped SNPs; and
(iii) phenotypic covariance of close relatives can
include effects due to shared environment.29 We
fitted a linear mixed model y = mþ gþ e, where y is
the phenotype, m is the mean term, g is the aggregate
additive genetic effect of all the SNPs and e is the
residual effect. We have previously demonstrated that
this model is mathematically equivalent to the model

of fitting all the SNPs;28 that is, y = mþ
P

xibiþ e,
where xi is the number of copies of the reference allele
for an SNP i with its additive effect of bi. The
covariance structure fitted in the data was the
relationship estimated from all SNPs; that is,
covðyj; ykÞ ¼ Ajks2

g þ s2
e , where Ajk is SNP-derived

genetic relationship between individuals j and k,
s2

g is the additive genetic variance and s2
e is the

residual variance. We used restricted maximum like-
lihood to estimate additive genetic variance. To
maintain consistency with the single SNP analyses,
four principal components were fitted as covariates in
the model. Genome partitioning of genetic variation
was done similarly by fitting chromosomal relation-
ships estimated from all SNPs on a particular
chromosome. The cross-validation prediction ana-
lyses were done by including the genotypes of all
individuals but setting the phenotype of individuals
in the validation cohort to unknown, and then
performing a regression of the phenotype on the best
linear unbiased predictor.28 For the Norwegian sam-
ple, SNP effects were estimated from the entire
CAGES sample by exploiting the mathematical
equivalence of a model based upon genome-wide
genetic effects and individual SNP effects.30

Results

Analyses of individual SNPs and genes did not result
in any replicable genome-wide significant association
(Figures 1a and c; Supplementary Figures 3–6;
Supplementary Tables 3 and 4). A gene-based test
for association27 showed one genome-wide significant
association (P = 9.2� 10�7), with formin-binding pro-
tein 1-like (FNBP1L) on gf (Supplementary Figure 7).
This single genome-wide association result for
FNBP1L did not replicate in the independent NCNG
sample (P = 0.211, gene-based test).

We observed that the test statistic for association
from the meta-analysis, but not the individual cohort
analyses, was inflated for both gf and gc (Figures 1b
and d; Supplementary Figures 4 and 6). Inflated test
statistics are indicative of either population strati-
fication or polygenic variation. There was no strong
evidence of population stratification within each of
the five discovery cohorts (Supplementary Figure 2).
Moreover, four multidimensional scaling components
were fitted in each individual cohort analysis to
account for the effects of possible subtle population

Figure 1 Meta-analytic genome-wide association results for all five samples in the Cognitive Aging Genetics in England and
Scotland study. Manhattan plot showing meta-analysis results for general intelligence factor (gf). The �log10 P-values (y axis)
of 549 692 single nucleotide polymorphisms (SNPs) in 3400 individuals are presented based on their chromosomal position
(x axis). The horizontal line is the genome-wide significance threshold 5� 10�8 (a). Manhattan plot showing meta-analysis
results for crystallized intelligence (gc). The �log10 P-values (y axis) of 549 692 SNPs in 3482 individuals are presented based
on their chromosomal position (x axis). The horizontal line is the genome-wide significance threshold 5� 10�8 (b). Quantile–
quantile plots of the meta-analysis P-values for gf. The circles represent the observed data, the diagonal line is the expectation
under the null hypothesis of no association, and the curved lines are the boundaries of the 95% confidence interval. A clear
deviation from the expected values is evident (c). Quantile–quantile plots of the meta-analysis P-values for gc. The circles
represent the observed data, the diagonal line is the expectation under the null hypothesis of no association, and the curved
lines are the boundaries of the 95% confidence interval. A clear deviation from the expected values is evident (d).
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stratification. Therefore, we reasoned that the infla-
tion of the test statistic across the genome was
indicative of polygenic variation.

We quantified the proportion of phenotypic varia-
tion accounted for by all genotyped SNPs, using an

analysis method we recently developed28 (see Sup-
plementary Information for further details and Sup-
plementary Figure 8). This model is mathematically
equivalent to fitting all SNPs in the model, provided
that the SNP effects are treated as random.28 There-
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fore, our estimate of additive genetic variance is that
explained from considering all SNPs simultaneously.
Because there are many more ungenotyped genetic
variants in the genome than there are genotyped
SNPs, this is likely to be due to LD between
genotyped SNPs and unknown causal variants.
Further details on and explanation of this method
can be found in a recent detailed commentary on the
method provided by Visscher et al.29 We estimated
that a proportion of 0.40 (s.e. = 0.11, P = 5.7�10�5,
likelihood-ratio test) and 0.51 (s.e. = 0.11,
P = 1.2�10�7, likelihood-ratio test) of the phenotypic
variance can be explained by all SNPs for gc and gf,
respectively (Table 1). Analyzing the English and
Scottish samples separately or fitting 20 principal
components as covariates in the model of analysis did
not change the results markedly, nor did the inclusion
of pairs of individuals whose estimated relatedness
was > 0.025 (Supplementary Table 2). We subse-
quently partitioned additive genetic variation to
individual chromosomes using the software package
GCTA,31 fitting all chromosomes simultaneously, and
found that, on average, longer chromosomes explain
more variation (Figure 2).

To further corroborate evidence of polygenic varia-
tion, we tested whether phenotypes for intelligence
could be predicted solely from SNP data.32,33 We
performed cross-validation analyses in which four of
the five CAGES cohorts were used to estimate SNP
effects while the remaining cohort was used to
estimate the correlation between the phenotype
and the predictor created from all autosomal SNPs
(Table 2; see Supplementary Information for further
detail). For gf, four of the five prediction analyses
showed significant (P < 0.05) results. The correlations
for the five analyses fell consistently in a narrow band
of values between 0.067 and 0.148 (mean R = 0.11).
For gc, three of the five prediction analyses showed
significant results, and the correlations for the
five analyses ranged between 0.049 and 0.133

Table 1 Estimates of variance explained by all SNPs

gc gf

N 3254 3181
h2 (s.e.) 0.40 (0.11) 0.51 (0.11)
P-value 5.7� 10�5 1.2� 10�7

Abbreviations: CAGES, Cognitive Aging Genetics in England
and Scotland; gc, crystallized intelligence; gf, general fluid
intelligence factor; SNP, single nucleotide polymorphism.
Estimates of the proportion of phenotypic variance ex-
plained by all SNPs for the traits gf and gc from the
combined CAGES samples. h2 = proportion of phenotypic
variance accounted for by fitting all SNPs.

Figure 2 Estimate of the proportion of variance explained
by each chromosome for general fluid intelligence factor (gf)
and crystallized intelligence (gc) in the combined dataset
against chromosome length. The numbers in the circles and
squares are the chromosome numbers.

Table 2 Results of prediction analyses

Validation cohort R gf P gf R gc P gc

Lothian Birth Cohort 1921 0.098 0.014 0.133 1.3� 10�3

Lothian Birth Cohort 1936 0.094 1.5� 10�3 0.082 4.9� 10�3

Aberdeen Birth Cohort 1936 0.067 0.11 0.049 0.16
Newcastle 0.137 7.5� 10�5 0.057 0.06
Manchester 0.148 1.3� 10�5 0.086 7.5� 10�3

Mean 0.11 0.081

NCNG 0.076 0.028 0.092 0.009

Abbreviations: CAGES, Cognitive Aging Genetics in England and Scotland; gc, crystallized intelligence; gf, general fluid
intelligence factor; NCNG, Norwegian Cognitive NeuroGenetics cohort.
For the CAGES samples each cohort, in turn, was used as the validation cohort and the predictor was generated from a joint
analysis of the four remaining cohorts. A joint analysis of the five UK cohorts was used to create the predictor for the NCNG
cohort. R is the correlation coefficient between the observed phenotype and the predicted value for each individual based on
genetic information. P indicates the statistical significance (one-sided t-test, since the alternative hypothesis is that the
predictor is positively correlated with outcome) of the correlation coefficient R.
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(mean R = 0.081). Non-significance of some of the
associations in Table 2 should not be taken to mean
that there are different results in different cohorts.
The standard errors of the estimates of correlation in
Table 2 vary from B0.03 (LBC1936) to B0.05
(LBC1921), and none is significantly different from
the other, either by trait or by validation cohort.

We next used the entire set of five CAGES samples
to estimate SNP effects and predicted cognitive
phenotypes in the independent NCNG sample. For
gf and gc, the correlations between phenotype and
predictor were, respectively, 0.076 (P = 0.028, one-
sided t-test) and 0.092 (P = 0.009, one-sided t-test).
Individuals with a higher predicted score had, on
average, a higher phenotype. Thus, SNP effects
estimated in the discovery cohort are significantly
predictive of cognitive phenotype outcomes in a fully
independent cohort.

Discussion

Here, we report the results from a GWAS of
intelligence in middle to older adulthood. Despite
the fact that no specific genetic variants have been
robustly associated with human intelligence, apart
perhaps for APOE at older ages,34,35 our results show
for the first time that a substantial proportion (B40–
50%) of variation in human intelligence is associated
with common SNPs (minor allele frequency > 0.01)
that are in LD with causal variants. These results are
consistent with a highly polygenic model because we
detect variation across the entire genome. If the
narrow-sense heritability for intelligence is B0.6 in
the age groups studied in the CAGES samples,3,36 then
not all additive variation is accounted for by our
analyses. One reason for this difference could be that
causal variants for intelligence have, on average, a
lower minor allele frequency than the SNPs on the
chip used. Such a frequency difference causes
imperfect LD between the genotyped SNPs and
unobserved causal variants. Traditional pedigree
analysis is not affected by such imperfect LD because
it is based on the correct expected identity-by-descent
coefficients at loci (including loci with causal
variants) of relatives. It is also possible that causal
variants are present in regions of the genome not
well covered by the commercial SNP arrays. Never-
theless, our results suggest that common SNPs that
are in LD with unknown causal variants account for
more than half of all additive genetic variation
for human intelligence. The method we have used
here does not attempt to test the effects of single
SNPs; rather, it tests their accumulated effects. It
estimates the joint effect of genotyped SNPs and that
effect reflects their LD with unknown causal variants.
These variants are not necessarily common SNPs
or, indeed, even SNPs; however, causal variants are
in sufficient LD with the genotyped SNPs to be
captured.29

One genome-wide significant association, FNBP1L,
was reported with fluid intelligence from a gene-

based test for association.27 FNBP1L (previously
known as Toca-1) binds to both CDC42 and WASL,
promoting CDC42-induced actin polymerization by
activating the N-WASP–WIP complex,37 and is thus
implicated in a pathway that links cell surface signals
to the actin cytoskeleton, a system that allows the
movement of cells and cellular processes. FNBP1L is
strongly expressed in neurons, including hippocam-
pal neurons, in developing brains and regulates
neuronal morphology. The genome-wide significance
threshold for the gene-based test is different to that for
the SNP-based test because fewer hypotheses were
tested (B17 800). This result did not replicate in the
NCNG sample; however, the sample size of the
validation cohort was much smaller than the dis-
covery set and it will be necessary to attempt
replication of this finding in larger samples before
pursuing it further.

Only 1% (approximately) of the variance was
explained in the prediction analysis due to the
individual SNP effects being very small and therefore
estimated with much error, which detracts to a great
extent from the accuracy (8–11%) of the prediction
equation.29 Our finding that 40–50% of phenotypic
variation is explained by all SNPs is fully consistent
with the low precision of a predictor based upon a
discovery sample of B3500 individuals; estimation of
the SNPs’ effects is different from prediction accu-
racy.29,38 The difference lies in the precision with
which individual SNP effects are estimated. Although
we can obtain an unbiased estimate of a SNP effect
(using, for example, a least squares estimator), a
prediction of a phenotype using the estimated SNP
effect suffers from the sampling variance with which
the effect is estimated. In the case of intelligence, the
individual effect sizes are very small so that they are
estimated with much error. One explanation of this
apparent paradox is to consider the extreme case of a
single variant when it is known that this variant is
associated with the trait but the effect size is not
known and needs to be estimated. Estimating its effect
size will be unbiased across repeated samples from
the same population and the standard error of
estimation informs about the precision (standard
error) of the estimate of effect size. This is the
scenario analogous to our estimate of the variance
explained by all SNPs. Now consider that, for each
(unbiased) estimate of effect size, we make a predic-
tion of phenotypes in an independent sample based
upon the estimated effect size of the variant in the
discovery sample. The correlation between predicted
value and actual phenotype will depend on how well
the variant has been estimated—the worse the
estimate of the effect size of the variant in the
discovery sample, the worse will be the variance
explained by the predictor in the validation sample.
This is the scenario analogous to our prediction
analysis.

There are other possible reasons for being unable to
predict phenotypes with greater precision. First,
different cognitive phenotypes were used in each
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cohort. However, this should not be over-emphasized
as it has been shown clearly that the general factors
derived from different mental test batteries tend to
rank people almost identically.2 In the case of
crystallized intelligence—where single tests were
used—different vocabulary tests are very highly
correlated. Second, there may be genetic differences
between the UK and Norwegian populations, which
could result in dissimilar patterns of LD39 (Supple-
mentary Figure 1). However, this is unlikely to be
important because LD is very similar across European
populations.39

The reason why this and other GWAS analyses of
complex diseases and traits are unable to detect
strong individual signals—and why there has been
much concern about the ‘missing heritability’40—is
probably because the individual effects of common
SNPs are too small to pass the stringent genome-wide
significance level. This suggests that human intelli-
gence and perhaps other complex traits are highly
polygenic, and that very large sample sizes are
required to detect such small individual effects, if
the same experimental design is used, which relies
on LD between common SNPs and causal variants.
These findings are consistent with the recently
reported results for other complex traits, including
schizophrenia33 and human height.28 If genetic
variation that is not captured through LD with
common SNPs is due to rare variants with large
effect sizes, then other experimental designs such as
those employing exome or whole genome resequen-
cing may facilitate the identification of genes and/or
gene variants that are associated with human
intelligence.

Can the results reported here be explained by
population stratification or a correlation between
environmental and genetic similarity? A number of
reasons suggest strongly that these explanations are
unlikely. The results were consistent when we
estimated genetic variance within sub-populations
and when we adjusted for up to 20 principal
components (Supplementary Table 2). The observa-
tion that individual cohorts do not show an inflation
of the test statistic, but the combined sample does,
would require undetected spurious phenotype–geno-
type associations due to stratification in all cohorts to
be in the same direction, which seems very unlikely.
We recently showed that when investigating a trait
under polygenic inheritance, increasing the sample
size would indeed be expected to increase the
inflation factor.41 A correlation between environmen-
tal and genetic similarity might occur if similarity due
to environmental factors between relatives segregates
with the degree of separation. For example, cousins
five times removed might be more similar than
cousins six times removed because they have a more
similar environment. This argument applies to single
SNP associations with any complex trait, and there is
no evidence that the robustly associated variants from
GWAS are spurious in this respect. Moreover, we
estimated the actual amount of genome sharing

between very distant relatives, which is different
from the expected amount of sharing if we knew the
entire pedigree of all individuals. In fact, the more
distantly related a pair of individuals is from the
pedigree, the larger the amount of variation in actual
genome-wide sharing around this expectation (see
Supplementary Information for further detail).28,42

Finally, we partitioned genetic variation to individual
chromosomes by fitting the relationship matrices
from all autosomes simultaneously in the model.
For very distant relatives, as we have in our study,
this method is robust to stratification.29

What do our results imply about the heritability of
intelligence? If our estimated relationships had been
based on all causal variants instead of being derived
from SNPs that may be in LD with such variants, then
we would have had an unbiased estimate of the full
narrow-sense heritability. Therefore, our estimates
provide a lower bound for the narrow-sense herit-
ability, due to imperfect LD between the genotyped
SNPs and unknown causal variants. Our estimates are
based upon realized relationships between very
distant relatives and not on pedigree relationships
between close relatives. This breaks up a possible
correlation (confounding) between genetic and envir-
onmental factors, since the variation in realized
relationships given pedigree relations is large for
distant relatives. Our estimates of the phenotypic
variance explained by all SNPs are B0.4–0.5, and we
therefore conclude that the narrow-sense heritability
for human intelligence is large and consistent with
the inference from twin and family studies.

The estimates of the total proportion of variance
explained for gf and gc are not significantly different
from each other. Nor are the prediction accuracies
for gf and gc in the Norwegian replication
sample. However, a larger sample size is required to
differentiate between any genetic architecture of these
two traits.

In summary, we report the first study to show that a
large proportion of the heritability estimate of
intelligence in middle to older adulthood can be
traced to biological variation using SNP data. It is the
first to show biologically and unequivocally that
human intelligence is highly polygenic and that
purely genetic (SNP) information can be used to
predict intelligence. Our findings imply that very
large sample sizes will be needed to detect individual
loci with genome-wide significance and that the
majority of additive genetic variation for human
intelligence is not explained by rare variants that are
not in LD with common SNPs.
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