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Abstract 

This article resolves common confusions about intraclass correlations in a way that starts from 

Weldon's (2000) introduction of the usual linear correlation and regression in terms of 

standardized variables and minimum squared distances, but also makes use of principal 

component analysis and refers to analysis of variance.  The intraclass correlation for a set of 

classes in which the order of the values is arbitrary (and independent from one class to the next) 

is a non-negative quantity.  Negative estimates are possible and can be interpreted as indicating 

that the true intraclass correlation is low, that is, two members chosen randomly from any class 

vary almost as much as any two randomly chosen members of the whole population.  

 

1. Introduction 

 

Intraclass correlation (hereon: ICC) refers to a number of quantities, but the simplest form is the 

usual linear (Pearson product-moment) correlation among a set of pairs of values when the order 

in each pair is arbitrary.  That would be the case if we wanted to know the correlation of heights 

in same sex couples or the agreement of two independent ratings of an exam done by a set of 

students (where the two raters differed from one student to the next).  This form of ICC—which 

is the subject of this article—can be calculated after a "double-entry" of the set of pairs, where 

each is included twice in the calculation of the linear correlation: once in one order; once in the 

other.  The double-entry method can be generalized to classes of size k, where each of the k(k-

1)/2 possible pairs for each class is entered in both orders.  Indeed, this was the original method 
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used to calculate the ICC, but Harris (1913; as described in Haggard 1958) showed that it is 

equivalent to finding the ratio of the variance of the means of the classes to the variance of the 

entire set of values, which is easier to calculate. 

 

It is easy to be confused by published discussions of ICC.  As a ratio of variances, the ICC 

should be in the interval [0,1].  Yet, without comment, negative estimates are included in Field's 

(2005) encyclopedia entry.  Of course, estimates of variances can sometimes be negative.  (If that 

were not the case and the true variance were 0, estimates could not average out to 0, i.e., they 

would be biased.)  Is this fact sufficient to account for the ICC value of -.94 derived from the 

double-entered data from Kenny (2008) that is presented in Table 1 and Figure 1?  Or do we find 

negative values because, "[l]ike the interclass [Pearson] correlation, the intraclass correlation for 

paired data will be confined to the interval [-1, +1]" (Wikipedia n.d.)?  In their recent text on 

analysis of paired (dyadic) data, Kenny et al. (2006, 33) take this second position and go on to 

explain how to intepret the negative values: 

Intraclass correlations for dyads are interpreted in the same fashion as Pearson 

correlations. Thus, if a dyad member has a high score on a measure and the intraclass 

correlation is positive, then the other dyad member also has a relatively high score; if the 

intraclass correlation is negative, then the other dyad member also has a relatively low 

score. 

For classes of size greater than 2, it is also said that the most negative ICC is -1/(k-1) (Wikipedia 

n.d.).  Yet, if the ICC is to be interpreted in the same fashion as the usual linear correlation, what 

restricts the negative ICC values to a smaller range when the class sizes are bigger than 2? 

  

Table 1 and Figure 1.  Double-entered data 

that have a negative ICC 

 

5 7 

8 4 

Original 
unordered 

pairs of 
values 5 6 

7 5 Double 
entries of 

4 8 

pairs in the 
reverse order 6 5 
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This article resolves the confusions in a way that starts from Weldon's (2000) introduction of the 

usual linear correlation and regression in terms of standardized variables and minimum squared 

distances. 

 

2.  From linear correlation to double-entry intraclass correlation 

 

Following Weldon (2000), consider pairs of values of two standardized variables, x and y, each 

with mean of 0 and variance of 1.  The linear correlation between x and y is the same as their 

covariance; if we call this ρ, the variance/covariance matrix is 

   | 1 ρ | 

   | ρ 1 |  

The eigenvalues of this matrix are 1 + ρ and 1- ρ, with corresponding eigenvectors or "principal 

components"   | 1 | and | 1 | 

   | 1 |  |-1 | 

If the (x, y) pairs are viewed as points in two dimensions, the eigenvalue/vector result is 

equivalent to saying that the variance of the projections of the points onto the line y = x is 1 + ρ 

and the variance of the projections onto the line y = -x is 1 – ρ.  Because these lines are 

orthogonal, the result is also equivalent to saying that the expected squared perpendicular 

distance from the line y = x is 1 – ρ and from the line y = -x is 1 + ρ.   The larger the positive 

correlation, the tighter the packing of the points to the line y = x, or the larger the negative 

correlation, the tighter the packing of the points to the line y = -x (Figure 2).
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Figure 2.  Scatter plots of sets of two variables with correlation 0.5 and -0.8.  The solid lines are 

y = x and y =-x, respectively; the dashed lines are y = .5x and -.8x, that is, the linear regression 

lines. 

 

Linear correlation for the standardized variables is directly interchangeable with linear 

regression—the line of slope ρ is the regression line for y on x (Weldon 2000) and the line of 

slope 1/ ρ is the regression line for x on y.  (This can be shown by showing that the expected 

vertical distance from those lines is the minimum.  For the regression of y on x the expected 

vertical distance to a line with slope t, is, where E denotes expected value:  

E [(y – tx)2] = E [y2] -2t E [xy] + t2 E [x2] = Var (y) – 2t ρ + t2 Var (x) = 1 -2t ρ + t2 

This last expression has a minimum value when t = ρ.)  The interchangeability of linear 

correlation and regression means that, even though regression analysis is conventionally 

conceived as derivation of the best predictor of one variable by the other, such analysis can 

generate no more insight about the data than is contained in the tightness of packing of the 

points. 

 

Now consider the ICC and start with the simplest case of classes of two, that is, a set of 

unordered pairs of values.  If the full set of values is standardized so that it has a mean of 0 and 

variance of 1, and the data are double-entered so that for every pair (c, d) there is also a pair (d, 

c), then the linear correlation of the double-entered set—call this ρΙ—has the properties 

described above.  The more tightly packed the double-entered points are around the line y = x (in 
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this case symmetrically packed), the higher the ICC.  (Also, the better the regression lines y = ρΙx 

and y = x/ ρΙ predict the second value from the first and vice versa.)  One difference from the 

usual linear correlation, however, is that the points are never more tightly packed around the line 

y = -x, than around y = x, that is, the ICC values is a non-negative quantity. 

 

To appreciate the non-negativity of the ICC, consider a variable generated by model 1: 

zij = ai + wij,  

where ai, the mean of the ith class, and wij are distributed with means of 0 and variances 

of σa
2 and σw

2 respectively and independently. 

Setting σw
2 to 1- σa

2 (so that the variance of the zij values is 1), the ICC calculated as the ratio of 

variance among the means of the classes to the variance of the zij values is simply σa
 2, which is 

non-negative.  This result can be seen graphically in terms of the double-entry correlation.  Take 

the simplest case: classes of size 2, with ai values of ±σa and wij values of ±σw.  There are four 

possible pairs of values from each class: (ai + σw, ai + σw), (ai + σw, ai - σw), (ai - σw, ai + σw), (ai 

- σw, ai - σw), where ai is either σa or -σa.  Double-entered, the midpoints of the pairs of points 

are, respectively, (ai + σw, ai + σw), (ai , ai ), (ai , ai), (ai - σw, ai - σw).  The variance of all the 

midpoints along the line y = x is 2σa
2+ σw

2.   The variance of the distance of the double-entered 

points from their midpoints is σw
2.  No matter how small σa

2 is, the variance along the line y = x 

is greater than the variance perpendicular to it. In other words, 1 + ρΙ is greater than 1- ρΙ, so the 

double-entered points are never more closely packed around the line y = -x than they are around 

the line y = x, and the correlation of the double-entered points, i.e., the ICC, is non-negative.  

The preceding features are illustrated in Figure 3 (which consists of two snapshots from a 

spreadsheet downloadable from http://www.faculty.umb.edu/pjt/ICC.xls).  
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Figure 3. Double-entry pairs (blue dots) compared to projections of the class means onto y = x 

and the within-class deviations perpendicular to that (red squares). σa
 2 = .90 and .10 

 

This illustration can be readily generalized to classes with more than two members, to data from 

more than two classes, to classes with unequal variances, and, with loss of some visual clarity, to 

distributions other than the binomial having the same mean of 0 and variance, namely, σa
 2 or 

σw
2. 

 

3. Interpretation and Estimation 

 

The preceding theory seems clear.  The ICC as the linear correlation of the double-entered points 

or as the variance of the class means, σa
2, divided by the total variance (in this case 1) has values 

that lie in the range [0, 1].  If there is full agreement in every class, then σw
2 = 0 and the ICC =1.  

If there is no agreement, that is, if two members of any class vary as much as any two randomly 

chosen members of the whole population, then σw
2 = 1 and the ICC =0.  (Indeed, this parallels 

the usual linear correlation.  Full agreement between x and y in a linear correlation occurs either 

when y = x or when y = -x, i.e., when ρ = 1 or -1.  Agreement declines as the correlation moves 

towards 0 from either the positive or the negative direction.)   

 

The negative ICC value for the data in Table 1 still needs to be explained.  Has the theory 

overlooked a category for ICC of worse-than-random agreement?  As the earlier quote from 
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Kenny et al. (2006) suggests, negative values would mean that the process, whatever it is, that 

brings pairs together makes them less similar than any two randomly chosen members of the 

whole population.  For height of same sex couples we could imagine a world in which this were 

the case, but how would less-similar-than-random happen for independent ratings of exams?  

Moreover, how would a process of unlikes coupling play out for classes of three or more?  After 

all, if A seeks to be distant from both B and C, then there must be limits to how distant B can be 

from C.  Before looking for a hole in the theory, then, let us consider the possibility that the ICC 

of -.94 is simply an extreme case of a negative estimate of a non-negative quantity. 

 

Suppose that the data in Table 1 were generated by a variant of model 1 in which the variance of 

wij can vary from one class to the next and the variable, zij, is not standardized.  If we assume 

that the wij values are binomial, i.e., ±σwi , the actual ai and σwi values can be calculated (Table 

2).  Using these values in the variant of model 1, we could generate sets of three pairs of values 

that include pairs such as (5, 5) and (7, 7) for the first class, (8, 8) and (4, 4) for the second class, 

and so on.  The set of pairs (5, 5), (8, 8), (6, 6) is no less likely to be observed than the data in 

Table 1, and for this set the intraclass correlation is +1.  Estimated ICC values of -.94 and +1 are 

both possible for the same underlying model.  Indeed, for class sizes of 2 and a low ICC—in this 

case .03 is the true value—widely disparate estimates are possible.  The negative value does not 

call for a special category and explanation.  

 

Table 2. Data from Table 1 analyzed using the variant of Model 1 described in the text 

Class Pairs of values, zij ai σwi 
1 5 7 6 1 
2 8 4 6 2 
3 5 6 5.5 .5 

σz
2 = 65/36; σa

2 = 2/36; average σwi
2 = 63/36; ICC = 2/65 = .03 

 

If we do not assume that the wij values are binomial, the true values cannot be determined 

directly from the data.  In that case, a one-way Analysis of Variance (ANOVA) can be used to 

generate estimates of the variances σa
2 and σw

2 (where σw
2 is assumed in the ANOVA to be equal 

from one class to the next).  From these estimates the ICC can be calculated.  Because estimation 
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using the ANOVA is introduced well elsewhere (e.g., Field 2005, Howell 2002), it will not be 

discussed here, except to note three points: 

1. The double-entry correlation and ANOVA produce the same estimate; if one if negative, 

so is the other. 

2. The calculation of ICC as a ratio of two variances is biased even if the estimation of the 

variances is unbiased.  The bias, which is negative, can be corrected (Donoghue and 

Collins 1990). 

3. The expected mean squares in the ANOVA table have a close relationship with the 

variance of the double-entered points projected, after subtracting the sample mean, onto 

the lines y = x and y = -x, which are also the principal components of the unstandardized 

variance/covariance matrix (Table 3). (The factor 1/2 enters because every unit step along 

the lines y = x and y = -x corresponds to an increment of 1/√2 along the axes.) 

 

Table 3.  Correspondences between one-way ANOVA and Principal Components of Double-

entered Variance/Covariance Matrix 

 

Source Expected Mean 

Square in ANOVA 

Variance Principal 

Components (PC) 

Among Class Means kσa
2+ σw

2 σa
2+ σw

2/k = PC1/2 

Within Class Deviations 

from the means 

σw
2 σw

2 = k/(k-1)*PC2/2 

 

4. Conclusion 

 

The ICC for a set of classes in which the order of the values is arbitrary (and independent from 

one class to the next) is a non-negative quantity.  Negative ICC estimates are possible and can be 

interpreted as indicating that the true ICC is low, that is, two members chosen randomly from 

any class vary almost as much as any two randomly chosen members of the whole population.   
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