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Abstract: 

Quantitative genetics (QG) analyses variation in traits of humans, other animals, or plants in 

ways that take account of the genealogical relatedness of the individuals whose traits are 

observed.  This article focuses on "classical" QG where the analysis of variation does not involve 

data on measurable genetic or environmental entities or factors. Classical QG analysis employs 

models of genes with simple Mendelian inheritance and direct contributions to the trait 

(assumption 1).  However, the data analysed in QG are of traits, not genes, so it must be possible 

to analyze the variation without making reference to hypothetical genes.  Five other assumptions 

then warrant new or renewed attention: 2.  All other things being equal, similarity in traits for 

relatives is proportional to the fraction of all the genes that vary in the population which the 

relatives share, e.g., fraternal or dizygotic twins are half as similar as identical or monozygotic 

twins.  3.  In human twin studies, genotype-environment-interaction variance can either be 

discounted or be incorporated into the heritability estimates. 4. High heritability of a trait can 

guide decisions about whether to investigate genetic factors underlying the development of that 

trait (and analogously for other components of variance).  5. When similarity among a set of 

close relatives (such as twin pairs) is associated with similarity of (yet-to-be-identified and 

measured) genes or genetic factors, those factors are the same from one set of relatives to the 

next.  6. In human twin studies, residual variance is a within-family environmental effect.  

Allowing for alternatives to these assumptions can change markedly the results or interpretation 

of classical QG. Lines of further investigation are noted for classical QG, for current QG 

analyses that incorporate measurable genetic or environmental factors, and for debates in social 
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science about how to accommodate transmission in families of both environmental and genetic 

factors.  However, examination of those topics lies beyond the scope of this article.   

 

 

Quantitative genetics (QG) is the analysis of variation in traits of humans, other animals, 

or plants in ways that take account of the genealogical relatedness of the individuals whose traits 

are observed.  The variation in traits, such as IQ test scores, height, litter size, yield, etc., is 

analyzed for three primary purposes: to interpret outcomes of artificial and natural selection and 

guide further selective breeding; to assess the relative contributions of yet-to-be identified 

genetic and environmental entities or "factors" (to be defined shortly) underlying the 

development of the trait in question; and to decide whether to investigate what the specific 

factors are. Using the term "classical QG" to denote analysis that involves no data on measurable 

genetic or environmental factors, this article examines six assumptions of classical QG and 

plausible alternatives for each.  The first assumption and its alternative are key to the subsequent 

discussion.  Although classical QG analysis requires models of genes with simple Mendelian 

inheritance and direct contributions to the trait—assumption 1—the data analysed in QG are of 

traits, not genes, so it must be possible to analyze the variation without making reference to 

hypothetical genes.  Once a gene-free QG alternative is considered, the other assumptions, most 

of which have been noted in some form before, warrant fresh attention.  The alternatives can 

change markedly the results or interpretation of classical QG in ways that are difficult to pick up 

from standard accounts of QG (e.g., Falconer and Mackay 1996, Lynch and Walsh 1998) and 

human QG (Plomin et al. 1997, Rijsdijk and Sham 2002) and in accounts critical, to various 

degrees, of human QG (e.g., Layzer 1974, Jacquard 1983, Otto et al. 1995, Turkheimer 1998, 

Kamin and Goldberger 2002).  Before laying out the six assumptions and the alternatives, some 

preliminary remarks are needed. 

Scope and Exposition:  The scope of this article does not extend to QG analyses that 

incorporate data on measurable genetic or environmental entities or factors (e.g., Plomin et al. 

2003) or to debates in social science about how to accommodate transmission in families of both 

environmental and genetic factors (Turkheimer 2004).  Although the assumptions and 

alternatives discussed here have potentially important implications for those topics (noted in the 

final section of the article), the focus here is on classical QG.  This focus, which keeps us close 
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to first principles, seemed necessary in order to show that fresh perspectives are possible on 

issues that many researchers and critical commentators treat as settled or satisfactorily covered.  

By taking little for granted and by not attempting to encompass all of QG, the exposition should 

also be more accessible to readers who are not specialists. 

In several places the discussion centers on the case of human twin studies, but, except 

where explicitly indicated (e.g., assumptions 3 and 6), the points are intended to apply to 

classical QG in general.  As noted below, several other assumptions specific to twin studies have 

been extensively debated and reviewed elsewhere, and so are not examined here.  

Terminology:  Conventional terminology obscures some distinctions that are important to 

discussion of assumptions and alternatives, so some non-standard terms are employed.  "Factor" 

is used in this article in a non-technical sense simply to refer to something whose presence or 

absence can, at least in principle, be observed or whose level can be measured.  Measurable 

genetic factors include the presence of pairs of alleles (variant forms of a single gene) at a 

specific locus on paired (diploid) chromosomes, repeated DNA sequences, reversed sections of 

chromosomes, etc.  Measurable environmental factors include income level of the family of 

upbringing, maltreatment when a child, etc. 

In genetics a genotype is the set of genetic factors an individual possesses (or at least the 

subset held to be related to some given trait).  In QG, however, the label “genotype” is applied to 

groups of individuals that are genetically identical ("pure lines") or whose mix of genetic factors 

can be replicated (such as an open pollinated plant variety), or to groups whose relatedness by 

genealogy can be characterized (such as human twins).  No knowledge of actual genotypes is 

entailed in the QG use of the term.  Similarly, the label “environment” is applied in QG to the 

situations or places in which the genotypes are raised without knowledge of the relevant 

environmental factors.  In this article, the agricultural terms “variety” and “location” are used 

instead.  A human variety consists of the offspring of a pair of parents; being raised within a 

family becomes an instance of a location. 

In adopting the terms factor, variety, and location, the intention is to counter any 

conceptual slippage from analysis of observations of a given trait to claims about “genetic” and 

“environmental” differences, given that such claims suggest misleadingly that classical QG 

analyses of variation in traits address the measurable genetic and environmental factors involved 

in the development of the trait.  (For a similar reason, phenotype is not used here to refer to the 
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traits.)  This distinction between traits and underlying measurable factors is not clearly made or 

is not consistently maintained in most accounts of classical QG analyses, including accounts 

critical of human QG (see references cited earlier).  Most notably, heritability, which is 

calculated in QG without reference to measurements on genetic (or environmental) factors, is 

commonly described in terms like the "contribution of genetic differences to observed 

differences among individuals" (Plomin et al. 1997, 83) or "fraction of the variance of a 

phenotypic trait in a given population caused by (or attributable to) genetic differences" (Layzer 

1974, 1259).  The terminology in this article is chosen to help keep clear that classical QG looks 

at differences among variety (or "genotypic") averages (for the trait averaged across locations 

and replicates), not at differences in genes or genetic factors.  Translation from descriptive QG 

analyses to hypotheses about causal factors is far from direct and depends on assumptions of 

interpretation discussed in this article.  

Analysis of variance versus path analysis:  In QG the statistical analysis of variation in 

traits employs techniques of path analysis (or its generalization as structural equation modeling) 

or Analysis of Variance (ANOVA).  Path analysis is more common in QG, but this article uses 

an ANOVA formulation of data analysis for two reasons: The ANOVA formulation helps keep 

the distinction clear between traits and measurable factors underlying the development of the 

trait; and it makes explicit that analyses of variation are based on additive (“linear”) models that 

connect the values of the trait for an individual to the summation of several contributions.  

(Indeed, the exposition in this article involves no techniques of algebra, calculus, and statistics 

beyond simple sums of variables and use of subscripts to index some of those variables.)  In any 

case, any ANOVA can be translated into a path analysis.  (This translation is illustrated in the 

Appendix, which also makes the restrictive assumptions of path analysis explicit.)               

Twins raised together versus twins raised apart: Although not the case for QG in general, 

the most important data for human QG have been observations of identical and fraternal twins.  

The similarity of pairs of identical or monozygotic (MZ) twins (which share all their genes) is 

compared with the similarity of pairs of fraternal or dizygotic (DZ) twins (which do not share all 

their genes).  One variant of this comparison considers only twins raised together (in the same 

family); the other includes twins raised apart (at least for some of their lives).  In both kinds of 

study, it makes intuitive sense that the more that the similarity of MZ twins exceeds the 
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similarity of DZ twins, the more that genetic factors are influencing the trait.  (This can be said 

without identitying which factors are having that influence.) 

In this article, when the six assumptions are discussed in relation to human QG, the 

context is the comparison of raised-together MZ and DZ twins.  Five of the assumptions also 

pertain to the twins-raised-apart comparison (i.e., all except #3), but examination of the 

demanding additional assumptions or conditions required in those studies (and of studies of 

relatives of other degrees) is beyond the scope of this article.  So is the assumption that the 

experience of growing up in the same family is no more similar for MZ twins than for DZ twins.  

Those assumptions and other contentious issues (which include correct ascertainment and 

representative sampling of zygosity of twins; definition of traits such as IQ and schizophrenia; 

and the size of “genotype-environment” [here: variety-location] correlations) have been debated 

extensively elsewhere (for accessible reviews, see Nuffield Council on Bioethics 2002, Parens 

2004). 

 

Six assumptions and alternatives 

 

The full meaning of the assumptions and their alternatives has to emerge through a 

systematic sequence of steps, but a brief overview may help orient readers to what lies ahead.  

Classical QG analysis requires models of genes with simple Mendelian inheritance and direct 

contributions to the trait (assumption 1).  However, the data analysed in QG are of traits, not 

genes, so it must be possible to analyze the variation without making reference to hypothetical 

genes.  Of course, genealogical relatedness has to be taken into account even under a gene-free 

QG.  Classical QG assumes that, all other things being equal, similarity in traits for relatives is 

proportional to the fraction of all the genes that vary in the population which the relatives share, 

e.g., fraternal or dizygotic twins are assumed to be half as similar as identical or monozygotic 

twins (assumption 2).  However, this proportionality is an unreliable heuristic; instead, similarity 

in traits associated with different degrees of genealogical relatedness can be left for empirical 

determination.  In human studies, the conditions required for empirical determination also allow 

estimation of the variety-location-interaction variance ("genotype-environment-interaction" 

variance) component.  That component is, however, often discounted or incorporated into the 

heritability estimates (assumption 3). 
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These first three assumptions are made in QG analysis.  The other three are implicated in 

almost all interpretations of the results of the analysis:  High heritability of a trait can guide 

decisions about whether to investigate genetic factors underlying the development of that trait 

(and analogously for other components of variance) (assumption 4); when similarity among a set 

of close relatives (such as twin pairs) is associated with similarity of (yet-to-be-identified and 

measured) genes or genetic factors, those factors are the same from one set of relatives to the 

next (assumption 5); and, in human studies, residual variance is a within-family environmental 

effect (assumption 6).  Meaningful alternatives, which will be identified in due course, exist for 

each of these interpretive assumptions provided the distinction between traits and underlying 

measurable factors is kept clear. 

 

Assumption 1. QG analysis requires models of genes with simple Mendelian inheritance 

and direct contributions to the trait. An alternative analysis takes genealogical relatedness into 

account without making reference to hypothetical genes or genetic factors.   

Let us review the classical QG approach, then consider the alternative, "gene-free" QG 

analysis.  The standard models of QG (Falconer and Mackay 1996; Lynch and Walsh 1998) can 

be constructed through a sequence of steps.  The first step is to consider the case of a trait 

governed by a pair of alleles of a single gene (i.e., at a single locus) where all the individuals are 

raised in a single location.  In that location, the genes contribute directly to the trait in the sense 

that the presence or level of such a trait depends only on whether the individual has two copies of 

one allele (i.e., is “homozygote” for that allele), two of the other, or one of each 

(“heterozygote”).  For example, phenylketonuria (PKU) in humans is associated with having two 

copies of a non-functioning allele for the enzyme phenylalanine hydroxylase (PAH).  The 

development of such individuals is extremely impaired by the level of phenylalanine present in 

normal diets.  In this “normal-diet location” relatives will resemble each other more than 

unrelated individuals because if, say, a twin has PKU, both parents have at least one copy of the 

non-functioning PAH allele so the other twin is more likely to have two non-functioning PAH 

alleles than is an unrelated individual (i.e., one chosen at random from the population). 

Resemblance of relatives for any given trait can be quantified as an “intraclass 

correlation.”  If the variation among all the individuals is divided into two parts, namely, the 

average variance for the trait within the class (e.g., twin pairs) and the variance among the 
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averages of the different classes, the intraclass correlation is the ratio of the among-class 

averages part to the sum of both parts.  (This can be shown to be equivalent for classes of size 

two to the usual linear correlation of the two values when the order in each pair is arbitrary, as 

would be the case if we wanted to know the correlation of heights in same sex couples; Howell 

2002.)  For a trait governed by alleles at a single locus, the intraclass correlation for MZ twins is 

1—there is no variation within the pairs—and for DZ twins is .5. (Recent research shows 

discordance between MZ twins at the genetic level, e.g., Bruder et al. 2008, but the simplication 

of an intraclass correlation of 1 for MZ twins is preserved in this article.  Note also that the DZ 

intraclass correlation value is independent of the frequency in the population of the two alleles 

and of the degree of “dominance,” which refers to degree that heterozygote individuals depart 

from the intermediate between the other two homozygote forms.  The algebra is available from 

the author on request.) 

Few traits are dictated only by alleles at a single locus, so the standard models of QG 

envisage the influence of alleles at many loci adding up to shape the traits to be analyzed.  If 

each pair of alleles is assumed to add a small direct contribution to the trait in the sense that each 

contribution is independent of the others, then the ratio of the variation among twin-pair averages 

to the total variance is unchanged and the intraclass correlations for MZ and DZ pairs remain the 

same.  (This assumption might be labeled a “sub-assumption” to distinguish it from the six main 

assumptions discussed in this article, but the context makes clear which level of assumption is 

being referred to so the prefix will not be added in this and later instances.  Note also that, 

because these intraclass correlations incorporate no environmental or unsystematic influences, 

they have been termed "genetic similarity" or "genetic correlation."  However, to avoid any risk 

of implying that similarity in traits as analyzed in classical QG has a direct relation with 

similarity in genetic factors, the ambiguous adjective "genetic" is not used in this article's 

discussion of similarity.) 

Next, the models allow for some noise (from measurement error or unsystematic 

variation among the replicates of the variety), which, in the case of twins, is assumed to be equal 

for both kinds of twins, that is: 

Y = V+ + E   (1) 

where 

Y is the total variance for the trait across all replicates, 
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E is the noise contribution, and 

V+ refers both to the variance among the MZ twin-pair averages and to the variance 

among the DZ twin-pair averages combined with the average variance within the DZ 

twin pairs.  (The superscript will be explained in due course.) 

The intraclass correlations in the single location are no longer 1 and .5, but are given by: 

IMZ = V+ / Y   (2) 

IDZ = .5 V+ / Y   (3) 

where I is the intraclass correlation and the subscript refers to MZ or DZ twins. 

Finally, to allow for the variety to be raised in a number of locations, the standard models 

of QG incorporate into the equations a term for variance across locations of the average value of 

the trait in each location (or, in short, “among-location-average variance”).  Again, the models 

assume that this term—denoted here as L—is equal for both kinds of twins, that is: 

Y = V+ + L +E  (4) 

and 

IMZ = (V+ +L) / Y  (5) 

IDZ = (.5 V+ +L) / Y  (6) 

 

Now, if the intraclass correlations for the trait (in conventional terms: the "phenotypic 

correlations") are calculated from observations for a number of MZ and DZ twin pairs, then the 

fractions of the total variance made up by V+ and L can be estimated using the following 

algebraic rearrangements of equations 5 and 6:    

V+/ Y =  2 (IMZ - IDZ)   (7) 

L/ Y =  2 IDZ - IMZ   (8) 

Equations 7 and 8 are the basis for the estimation of heritability and “shared environmental 

effect” (i.e., among-location-average fraction of the overall variance), respectively, using twin 

studies (e.g., Rijsdijk and Sham 2002).  

Alternative sub-assumptions, such as MZ and DZ twins not having equal location and 

noise variances and the others mentioned at the end of the preliminary remarks, add complexities 

to the construction of this basic model.  However, let us consider an alternative analysis that does 

not even begin from assumption 1.  In this analysis the genealogical relatedness is taken into 

account without reference to the hypothetical multiple genes and the additional sub-assumptions 
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that went into the preceding construction of equations 7 and 8.  Consider first the general case of 

an agricultural evaluation trial, where it is possible to observe a set of animal or plant varieties in 

each of a set of locations, and to raise replicates for each variety-location combination.  Later, we 

will bring back in restrictions that match the situation in human twin studies.   

If the trait is recorded in all replicates, the data can be fitted to an additive (“linear”) 

model that connects the values of the trait for an individual to the summation of several 

contributions: 

yijk =  m   +vi  +lj    +vlij   +eijk (9)  

where yijk denotes the measured trait y for the ith variety in the jth location and kth 

replication; 

m is a base level for the trait; 

vi is the additional contribution of the ith variety; 

lj is the additional contribution of the jth location; 

vlij is the additional contribution from the i,jth variety-location combination—in statistical 

terms, the “variety-location-interaction” contribution; and 

eijk is an unsystematic or “noise” contribution adding to the trait measurement (see 

assumption 6 for further discussion of this contribution). 

 

Such an additive model can be converted to a model that adds up variances related to 

these contributions, or reciprocally, to partition the variance of the trait into these component 

variances, i.e., the "analysis of variance" (ANOVA).  The conversion to variances is made as 

follows: If each kind of contribution is uncorrelated with any of the others, and m is set at the 

average of the trait over all varieties, locations, and replicates, then the average of each of the 

other contributions is zero.  If m is subtracted from both sides, which are then squared and 

divided by the total number of individuals to arrive at the average of these squared contributions, 

equation 9 translates into the following partitioning of variance: 

Y = V + L +VL +E (10) 

where 

Y denotes the variance of the yijk observations as a whole, 

V denotes the variance of the vi terms, etc. 
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When the observations are fitted to this model, dividing the right hand side of equation 10 by Y 

gives the fractions of the overall variance for, respectively, among-variety-averages (which is 

another name for heritability), among-location-average fraction (“shared environmental effect”), 

among-variety-location-interaction contributions, and noise (or unsystematic or residual effects). 

As in any such partitioning, the results of fitting observations to an additive model are 

conditional on the specific set of varieties and set of locations observed—the results are not an 

indication of causes or properties of the varieties that apply more generally (Taylor 2006).  One 

way to keep this conditionality in mind is to consider how vi is fit to the data.  To use the 

simplest case, when the number of replicates observed for every variety-location combination is 

the same, the value of vi will be the average of yijk’s for variety i across all the observed locations 

and replicates minus the average over all varieties, locations, and replicates.  In other words, the 

contribution vi is not a property of the variety i alone.  Similarly, for any location contribution, 

the values that fit the data involve an average across all varieties. (Although partitioning of 

variance is often conducted without making explicit the original additive model, such as equation 

9, or estimating the values of the various contributions that fit the data, the partitioning can 

always be related to such a model.) 

Now consider a special case of the agricultural situation in which the varieties are 

replicated as MZ or DZ twins.  Equation 9 becomes: 

yijk =  m +  v-
i+  tik +  lj  +  vl-

ij +  tlijk+  eijk (11)  

where yijk, m, lj, eijk are as before;  

tik denotes an additional contribution from the kth twin (replicate) in the ith variety;  

tlijk is an additional contribution from the kth twin in the i,jth variety-location combination;  

v-
i  and vl-

ij replace the vi  and vlij contributions in equations 9.  (The superscript indicates 

that the new contributions would tend to be smaller given the contributions of tik and tlijk 

to differences among twins [replicates].) 

Note that for MZ twins ti1 = ti2 and tlij1 = tlij2.  Let us assume for simplicity that the variance of 

the trait over all individuals is the same as in the general case, namely, Y.  The partitioning of 

variance in equation 10 then becomes: 

Y = V-  +T + L + VL-  + TL +E (12) 

where V-  denotes the overall variance of the vi
- terms, etc. 
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The formulas for intraclass correlations in this situation can be derived by identifying the 

contributions that do not vary within the twin pairs (and are thus included in the twin-pair 

averages), summing the variance of these contributions, and dividing by the overall variance:  

IMZ = (V-  +T + L + VL-  + TL) / Y (13) 

IDZ = (V-   + L + VL-          ) / Y (14) 

The difference between the formulas for MZ twins and DZ twins can be understood by 

recognizing that the equal tik and equal tlijk values for MZ twins means that these components do 

not vary within MZ twin pairs.  Equations 12-14 can be rearranged to yield the following: 

 2 (     T                 + TL) / Y      = 2 (IMZ - IDZ)  (15)  

 (V- - T + L + VL- - TL) / Y      = 2 IDZ – IMZ   (16)  

                                     E /Y    = 1 - IMZ   (17)  

 

Equation 17 estimates E, the interpretation of which will be discussed later (under 

assumption 6).  Equations 15 and 16, however, do not resemble the formulas given in equations 

7 and 8 for the fractions of the total variance made up by V+ and L (i.e., heritability and “shared 

environmental effect”).  The connection emerges if the data meet the following empirical 

condition: 

V- + VL-        = T + TL          = .5 (V +VL)    (18)  

Under this condition, equations 15 and 16 simplify to: 

(V + VL) / Y                           = 2 (IMZ - IDZ )    (19)  

L / Y                                        = 2 IDZ – IMZ    (20)  

 

Equations 19 and 20 are now identical to 7 and 8 except that V+ has been replaced by V + VL.   

(In the Appendix, the same result is derived using path analysis.) 

What would be required to show empirical support for the equality condition in equation 

18?  Are there theoretical reasons for expecting the equality condition to be met?  In other words, 

for the move from the basic agricultural model (equation 9) to the situation in which replicates 

are twins (equation 11), which splits the overall variety variance (V) and variety-location-

interaction variance (VL) into two parts, should we expect to find that the two parts are equal?  

These questions, as well as the equivalence of V+ to V + VL and whether heritability should be 

equated to V+/Y or V/Y are examined under assumptions 2 and 3 below. 
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What is important to note here, in relation to assumption 1, is that equations 19 and 20 

allow observations to be analyzed in a way that takes into account the genealogical relatedness 

but makes no reference to or assumptions about hypothetical genes.  No models of the 

contribution of such genes to the trait are needed in this derivation of the formulas that use 

intraclass correlations to estimate heritability and the fraction of the total variance made up by 

the among-location-average variance, L, (i.e., “shared environmental effect”).  Moreover, gene-

free derivations of analyses for comparing relatives of other degrees (e.g., full sibs versus half-

sibs) can be derived by the same approach, each derivation having its own equivalent of the 

equality condition. 

Let us now move from the agricultural case to the restricted circumstances of human twin 

studies, where each variety is observed only in a single, randomly chosen location (one location 

for each variety) and the twins are the two replicates for each of those variety-location 

combinations.  (Non-random assignment of varieties to locations [“genotype-environment 

correlation”] is possible, but will not be considered here; Jacquard 1983.)  Instead of partitioning 

the variance based on equation 11, we need to employ a variant of equation 11 that replaces the 

subscript j with the subscript i.  Provided the locations are randomly chosen, the expected 

estimates of the variances in equation 12 remain the same, and, given this, the expected results of 

the formulas based on intraclass correlations (equations 19 and 20) are the same.  In short, the 

alternative derivation in the agricultural case still holds in human twin studies.  (The rationale 

and empirical basis of the equality condition, equation 18, still remains to be discussed; see 

assumptions 2 and 3.) 

In summary, the formulas in classical QG for data analysis are based on models 

constructed through a series of steps that build on the case of traits governed by alleles at a single 

locus in a single location.  Each step involves additional assumptions, e.g., in twin studies, 

unsystematic variation within twin pairs for MZ twin pairs is equal to that within DZ pairs.  The 

same formulas, except for one modification, can be derived without referring to or making 

assumptions about hypothetical genes provided the partitioning of the variance meets a certain 

condition.  In the example of twins, the condition is that, when averaged over all locations, the 

variance among DZ twin-pair-averages in the single location is equal to average variance within 

DZ twin pairs. (See assumption 2 for discussion of this condition; equivalent conditions are 

needed for gene-free analyses of data from relatives of other degrees.)  The one modification 
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(which will be discussed under assumption 3) is that the term for variance among variety 

contributions (e.g., among the MZ twin pairs for the twin-pair averages) in a single location is 

replaced by the sum of the variances of variety and variety-location-interaction contributions as 

derived by fitting an additive model to the observations. 

 

Assumption 2. All other things being equal, similarity in traits for relatives is proportional 

the fraction of all the genes that vary in the population which the relatives share, e.g., 

fraternal or dizygotic twins are assumed to be half as similar as identical or monozygotic 

twins. Alternatively, similarity does not have to follow this proportionality. 

The discussion of this assumption and the alternative centers on MZ and DZ twins, but 

the issue of similarity in the trait in relation to the fraction of shared genes applies to relatives of 

any degree.  

As noted earlier, for a trait observed at a single location and governed only by alleles at a 

single locus, the intraclass correlation for MZ twins is 1 and for DZ twins is .5.  In this case, DZ 

twins are half as similar as MZ twins.  Can we extrapolate from this fact and conclude that the 

same ratio holds for other kinds of traits?  The answer might be yes if there were evidence for the 

assumptions built into the subsequent steps in the derivation of the standard QG formulas (i.e., 

assumptions such as, each pair of alleles adds a small contribution independently of the others). 

Such evidence is lacking, which is not surprising given the problems inherent in trying to 

discriminate among the contributions of many different loci (Lewontin 1974).  In the absence of 

such evidence, QG researchers invoke a heuristic that connects the set of genes as a whole to 

similarities in the trait, namely, all other things being equal, DZ twins are half as similar as MZ 

twins because DZ twins share half the genes that vary in the population, while MZ twins share 

them all (e.g., Kendler and Prescott 2006, 42).  (The common statement that DZ twins share half 

of their genes is not correct; it fails to acknowledge the large proportion of genes shared by all 

humans.) 

The heuristic is not reliable.  It is straightforward to invent plausible models of the 

contributions of multiple genes to a trait that result in ratios of DZ: MZ similarity that are not .5 

and that vary considerably around their average.  Consider, for example, a disease trait modeled 

in the following way: The trait occurs when the combined “dosage” from many loci exceeds a 

threshold, where each pair of alleles contributes a full, zero, or half dose according to whether 
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the alleles are, respectively, both the same for one variant, same for the other, or one of each.  In 

this case, the intraclass correlation varies according to the frequency of alleles, level of 

dominance, and so on, and the varying values are predominantly well above .5.  (The 

calculations are available from the author on request.)  Of course, more complicated models of 

the interaction of genes and the timing of their contributions during development are possible.  

However, the point here does not depend on the validity of the model just mentioned or of any 

particular hypothetical model of multiple genes contributing to the trait.  The reason that the 

heuristic is unreliable is that the relevant correlations need to be based on observed traits and, as 

such, cannot be directly given by the proportion of shared genes involved in the development of 

those traits.  (For the same reason, heuristic values of the similarity of relatives of other degrees, 

which are ubiquitous in QG path analyses, are also unreliable.)  

The alternative analysis without assumption 2 allows for similarities in a single location 

other than .5.  This alternative can be achieved with the basic model under assumption 1 by 

allowing for variety-location ("gene-environment") correlation and "epistasis"—the small direct 

contributions to the trait from each locus not to be independent of each other (Otto et al. 1995).  

It can also be achieved by considering a general case of the move discussed under assumption 1 

from the basic agricultural model (equation 9) to the situation in which replicates are twins 

(equation 11).  Recall that this splits the overall variety variance (V) and variety-location-

interaction variance (VL) into two parts.  Suppose that the data meet the following empirical 

condition: 

(V- + VL-) / f  = T + TL               = (V +VL) /(f +1)   (21) 

where f is a positive number (not necessarily equal to 1; i.e., the two parts are not 

necessarily equal). 

The standard twin studies formulas for heritability and among-location-average variance fraction 

(“shared environmental effect”) can then be estimated using observations across a number of 

locations: 

(V + VL)/Y * 2 /(f+1)                 = 2 (IMZ – IDZ)   (22) 

L/Y + (V +VL)/Y * (f-1)/(f+1)   = 2 IDZ – IMZ   (23) 

If f > 1, the left hand side of Eq. 22 is smaller than the left hand side of Eq. 19 (which assumes f 

=1); similarly, the left hand side of Eq. 23 is larger than the left hand side of Eq. 20.  Conversely, 



 15 

if f < 1.  These discrepancies disappear, however, if equations 19 and 20 are replaced by the 

following generalized forms: 

(V + VL)/ Y                                 = (f + 1) (IMZ – IDZ)   (24) 

L / Y                                             = IDZ - f (IMZ – IDZ)   (25) 

 

If equations 24 and 25 are used, the empirical question of whether the equality condition 

(equation 18) is met is superseded by the empirical question of what value f takes (to be 

discussed further under assumption 3 below).  (Note that equations 24 and 25 would result from 

the standard Mendelian construction of twin studies described under assumption 1 if that 

construction began with intraclass correlation of γ for DZ twins for a trait governed by a single 

locus observed in a single location, set f to γ / (1- γ) and, as before, took V+ as equivalent to V + 

VL.   However, the justification for a DZ intraclass correlation other than .5 in the single-locus, 

single-location case is not obvious.) 

In summary, similarity in traits for relatives need not, all other things being equal, be 

proportional to the fraction of all the genes that vary in the population which the relatives share, 

e.g., fraternal or dizygotic twins need not be half as similar as identical or monozygotic twins.  

Such proportionality is an unreliable heuristic.  The derivation of the standard classical QG 

formulas can be adjusted, by incorporating an empirically determined parameter, to 

accommodate similarity for relatives that does not necessarily match that heuristic.  

 

Assumption 3. In human twin studies, variety-location-interaction variance ("genotype-

environment interaction” variance) can either be discounted or be incorporated into the 

among-variety-averages fraction of the total variance, i.e., into the heritability.  The 

alternative analysis allows for variety-location-interaction variance when deriving formulas that 

link intraclass correlations to the partitioning of the total variance (even if the interaction 

variance turns out to be a small fraction of the total variance observed in the trait). 

First a note of clarification:  The term "genotype-environment interaction" is used in 

range of ways, including cases in which "genotype" denotes a value of a measured genetic factor 

and/or "environment" denotes a value of a measured environmental factor (e.g., Plomin et al. 

1977, Moffitt et al. 2005).   The substitute term "variety-location interaction" is used here to refer 

only to the analysis of trait variation made without reference to measured factors (see equation 
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9).  In everyday terms, a high degree of variety-location interaction means that the responses of 

the observed varieties across the range of the observed locations do not parallel one another, that 

is, one variety may be highest for the trait in one location, but another variety may be highest in 

another location—or, at least, the difference between any two varieties may change location to 

location. 

We saw under assumption 1 that the standard and alternative derivations of the formulas 

for analyzing observations from twin studies give the same results if V+ is equivalent to V + VL.  

By definition heritability is V/Y.  Equation 7 provides, therefore, an estimate of heritability 

inflated by VL/Y.  To understand where VL becomes incorporated into V+ during the standard 

derivation, consider equation 9 in some fixed location, say, J: 

yiJk  = m  + vi + lJ   + vliJ  + eiJk (26)  

Collecting the terms that are constant and the terms that vary from one variety to the next, 

yiJk  = (m + lJ)   + (vi + vliJ)  + eiJk (27)  

and 

Y =    (V +VL) + E  (28)  

Equation 28 reminds us that, in equation 1, which refers to a single location, the variance for the 

trait among the MZ twin pairs, V+, combines variance that is specific to that location with 

variance that would, if the varieties were raised across all locations, show up as differences 

among the averages for the varieties.  The combination of location-specific (i.e., the variety-

location-interaction variance) and across-location (i.e., the variance among variety averages)—in 

short, the summation of VL and V—is preserved through the subsequent steps of the derivation 

of the standard models of twin studies (and into equations 7 and 8).   The combination of VL and 

V in human QG should not be surprising.  In the case of agricultural evaluation trials, in which a 

set of varieties is observed in each of a set of locations, it is possible to estimate V and VL 

separately. In studies of human twin raised together, in contrast, when each variety is observed in 

one location with two replicates (twins) for each of those variety-location combinations, there is 

no way to ascertain how much the variation among varieties would change if the varieties were 

observed in locations (families) other than the ones where they were actually observed.  

When the standard twin studies methods label V+/Y as heritability, what is being assumed 

is either that the variety-location-interaction variance can be discounted or that it can be 

subsumed in the variance among variety averages across locations. With respect to the first 
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assumption: While it is possible that in some cases the fraction of the total variation due to 

interaction variance is small, any method that assumes that cannot demonstrate it.  Because the 

standard method takes V+ as an estimate of variance among variety averages, it cannot 

demonstrate that the interaction is negligible.  With respect to the second assumption: When 

agricultural and laboratory breeders raise each generation of plants or animals in the same 

location or conditions as in the previous generation, it is reasonable to incorporate the interaction 

variance into the heritability estimate.   What they are interested in that case is what is 

technically called within-location heritability (Lynch and Walsh 1998, 669).  For humans, 

however, control of locations so they are the same from one generation to the next is not 

possible. 

The size of the interaction variance has to be estimated by anyone wanting to claim that 

variation among locations (families) is of small importance (or of smaller importance than had 

been believed).  To support such a claim entails showing not only that the among-location-

averages variance (“shared environmental effect”) is a small fraction of the total variance, but so 

also is the variety-location-interaction variance.  There is good and bad news on this count.  The 

good news is that there are human QG methods that can separate out the variety-location-

interaction variance fraction.  To do so it is necessary to combine studies of twins raised together 

with two other kinds of study: twins raised apart in randomly chosen locations; and groups of 

individuals from different varieties raised together, that is, each group in one randomly chosen 

location.  Making use of the twins-raised-apart studies requires that the choice of locations of 

twins raised apart is truly random, that is, they are no more similar to each other on average than 

any two of the possible locations.  Making use of the three kinds of studies together also requires 

the “equal environment assumption," that is, the treatment or experience of the twins or unrelated 

individuals within a family is unaffected by whether they are MZ or DZ twins, non-twinned 

siblings, or unrelated.  Under these conditions, it becomes possible to use intraclass correlations 

to estimate values for V-, T, L, VL-, and TL (each as a fraction of Y) without assumption 2 (or 

related assumptions about similarity of relatives of other degrees) (Taylor 2007).  From the the 

fractions for V-, T, L, VL-, and TL we can determine the size of the fraction for V (and thus 

heritability), and for variety-location-interaction variance (i.e., VL- + TL), as well as estimate the 

value of f and thus resolve the empirical question raised under assumption 2.  Bouchard and 

McGue's (1981) summary of available studies of IQ test scores yields, if the conditions are 
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assumed to hold, estimates, as a fraction of Y, of V, .72; L, .24; VL, -.10; and E, .14; which 

translates to f, 1.4 and γ, .58 (calculations available from the author on request).    

The bad news is that suitable data sets are rare and may not meet the conditions.  In 

particular, data on twins raised apart are not always accompanied by data on unrelated 

individuals raised together.  This prevents the separation of L from VL- and only allows bounds 

to be put on the value of f.  Even when data are available, the estimates of some of the values 

turn out to be quite negative, which is hard to interpret and could indicate that the two required 

conditions above do not hold.  Indeed, whether the two conditions hold in any actual study 

remains under debate (Richardson and Norgate 2005), not the least because twins share at the 

very least environmental conditions before birth. 

Suppose that we decide not to employ observations where those conditions are disputed, 

but to rely only on the raised-together MZ:DZ comparison.  Given the absence of any better 

estimate for the variety-location-interaction variance fraction, the systematic fraction (i.e., 1 - the 

noise fraction) could be divided by three (because there are three systematic components, V, L, 

and VL). This comes out as IMZ /3 (see equation 17), leading us to the following adjusted 

formulas for heritability: 

V / Y                           = 5IMZ/3  - 2IDZ    (29)  

(in place of equations 7 and 19), and 

V / Y                           = (f + 2/3) IMZ – (f+1) IDZ  (30)  

(in place of equation 24). The first formula (equation 29) reduces most human heritability 

estimates to values that in almost all cases are below the fractions for among-location-average 

variance (“shared environment effect”) and variety-location-interaction variance (Table 1, using 

data cited in Falconer 1960, 185 and Falconer and Mackay 1996, 173, and data given in Nichols 

1978).  Results from the second formula (equation 30) depend on the unknown value of f.  If a 

plausible range for f could be given, say, from observations of other traits for twins raised apart 

or from some model of the influence of alleles at many loci, a range could be given for 

heritability estimates derived from the second formula.  Note, however, that f would have to be 

approximately 2 for such adjusted estimates to be as high the ones derived using the commonly 

used formulas (calculations not shown here). 
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Table 1.  Heritability estimates subject to a simple adjustment that excludes variety-location-

interaction variance 

Intraclass 
correlations Fractions of total variance 

Trait IMZ IDZ heritability* 
adjusted 
heritability 

interaction 
fraction 

location 
fraction 

noise 
fraction 

From Falconer 1960, 185 
height 0.93 0.64 0.58 0.27 0.31 0.35 0.07 
weight 0.92 0.63 0.58 0.27 0.31 0.34 0.08 
IQ 0.88 0.63 0.50 0.21 0.29 0.38 0.12 
birth weight 0.67 0.58 0.18 -0.04 0.22 0.49 0.33 

From Falconer and Mackay 1996, 173** 
Finger-ridge 
count 0.96 0.47 0.98 0.66 0.32 -0.02 0.04 
Height 0.90 0.57 0.66 0.36 0.30 0.24 0.10 
IQ score 0.83 0.66 0.34 0.06 0.28 0.49 0.17 
Social maturity 
score 0.97 0.89 0.16 -0.16 0.32 0.81 0.03 

From Nichols 1978 
Verbal 
comprehension 0.78 0.59 0.38 0.12 0.26 0.40 0.22 
Verbal fluency 0.67 0.52 0.30 0.08 0.22 0.37 0.33 
Reasoning 0.74 0.50 0.48 0.23 0.25 0.26 0.26 
Spatial 
visualization 0.64 0.41 0.46 0.25 0.21 0.18 0.36 
Perceptual 
speed 0.70 0.47 0.46 0.23 0.23 0.24 0.30 
Memory 0.52 0.36 0.32 0.15 0.17 0.20 0.48 
* Heritability calculated as 2 (IMZ - IDZ).  ** IDZ values are for same-sex twins.  Estimates of error 

in the original are not reported by Falconer and Mackay. 

 

In agricultural plant evaluation trials, VL is typically as large as V.  We do not know 

whether this is also the case for traits in animal or human populations observed in a typical range 

of locations.  The adjusted human heritability estimates in Table 1 should be viewed, therefore, 

not as the correct estimates, but as exclamation points that emphasize the dependency of the 

standard human heritability estimates on a fundamental assumption about variety-location-

interaction variance.  The alternative introduced in this section is to allow for non-zero variety-

location-interaction variance when deriving formulas that link intraclass correlations to the 

partitioning of the total variance. 
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Assumption 4. High heritability of a trait can guide decisions about whether to investigate 

genetic factors underlying the development of that trait (and analogously for other 

components of variance).  Alternatively, when researchers are making hypotheses to account 

for any given fraction of variance, they could allow for the integration of underlying genetic and 

environmental factors. 

The conventional wisdom is that, although high heritability provides no clues about the 

identity of the genetic factors that underlie differences among varieties, it can indicate that a trait 

is a good candidate for molecular research to expose those factors (Nuffield Council on Bioethics 

2002).  By the same thinking, a high fraction of variance among locations would indicate that the 

trait is a good candidate for exposing the environmental factors, and, if variety-location-

interaction were estimated, a high value would invite us to investigate the combination of genetic 

and environmental factors operating (perhaps along the lines of Moffitt et al. 2005).  The 

assumption, in other words, is that partitioning of variation provides insight into the relative 

strength of the different kinds of factors underlying the development of the trait. 

Three observations call the assumption into question (and a fourth pertinent observation 

will be added under assumption 5):   

a.   Variation or differences among variety contributions to the values of the observed 

traits are conceptually distinct from differences in the genetic factors underlying those traits, 

even though the former quantity is often labeled "genetic variation" and ambiguously described 

as a measure of "genetic differences" (see preliminary remarks on terminology). 

b.  An ANOVA based on a model that adds up variety, location, and interaction 

contributions (e.g., equations 9 and 11) can be undertaken without assuming that any gradient of 

a measurable genetic factor (or composite of factors) runs through the differences among variety 

averages.  Similarly, such an ANOVA does not require that any gradient of a measurable 

environmental factor runs through the differences among location averages.  (This observation is 

obvious in the situation where the varieties are drawn from different species.  As we move 

towards the situation in which the varieties are drawn from a single species—perhaps even made 

up of inbred lines—there is no logical point at which the observation ceases to hold and we can 

assume that an underlying gradient is indeed present.)  

c. As many have noted, the results of fitting observations to an additive model are 

conditional on the specific set of varieties and set of locations observed.  Similarly for 
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coefficients calculated through “path analyses” based on additive models related to those in 

ANOVA (Lynch and Walsh 1998, 827ff) and for heritability, which derives from the variety 

contributions.  (For example, as Turkheimer et al. 2003 show for heritability of IQ test scores, 

estimates decrease when families of low socioeconomic status are included.)  Conditionality also 

means that the contribution of any given variety is not a property of the variety alone (see 

discussion of assumption 1). 

The alternative to assumption 4 is that, when researchers are accounting for any specific 

fraction of variance, they could consider hypotheses that integrate genetic and environmental 

factors in ways that may vary among subsets of varieties and locations.  Knowledge from sources 

other than the data analysis is always needed to help researchers generate hypotheses.  Other than 

these points, nothing general can be said about such hypothesis generation.  

 

Assumption 5.  When similarity among a set of close relatives is associated with similarity 

of genetic factors, those (yet-to-be-identified and measured) factors are the same from one 

set of relatives to the next (in humans: from one family to the next).  Alternatively, 

interpretations of heritability should allow for the possibility that genetic and environmental 

factors underlying the development of observed traits are not the same, i.e., are heterogeneous. 

 The conventional wisdom that high heritability traits are good candidates for molecular 

research to expose the underlying genetic factors is also based on the assumption that those (yet-

to-be-identified and measured) factors are the same from one set of relatives to the next (in 

humans: from one family to the next).  Similarly, for the other fractions of the variance. 

The alternative interpretation, which does not make assumption 5, is that the genetic and 

environmental factors underlying the development of the trait are not necessarily the same from 

one set of relatives to the next.  Consider the approach that is central to human QG, namely, the 

comparison of the similarity of MZ twins with the similarity of DZ twins.  The more that the 

former quantity exceeds the latter, the higher the trait’s heritability. Suppose, indeed, that the 

similarity among a set of close relatives is associated with similarity of specific genetic factors.    

There is nothing in the methods of human QG that requires those factors to be the same from one 

set of relatives to the next, or from one family (location) to the next.  In other words, the factors 

underlying the observed traits may be heterogeneous.  It could be that pairs of alleles at a number 

of loci, say, AAbbccDDee, subject to a sequence of environmental factors, say, FghiJ, are 
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associated, all other things being equal, with the same outcome for the trait as are alleles 

aabbCCDDEE subject to a sequence of environmental factors FgHiJ (Figure 1).  (Again, this 

possibility is obvious in the case where the varieties are drawn from different species.) The 

possibility of underlying heterogeneity of factors means that heritability is an unreliable basis for 

judging a trait to be a good candidate for molecular research.   Similarly for the other fractions of 

the variance.     
 

Location L1 L2 L3 L4 L5 L6 L7 L8

Twin Pair

TP1 DZT

TP2 MZT  AAbbccDDee // FghiJ

TP3 MZT

TP4 DZT

TP5 DZT

TP6 MZT  aabbCCDDEE // FgHiJ

TP7 DZT

TP8 MZT

{

{

{

{

{

{
{

{

genetic factors
(pairs of alleles)

sequence of 
environmental

factors

 
Figure 1.  Factors underlying a trait may be heterogeneous even when identical (or 

monozygotic) twins raised together (MZT) are more similar than fraternal (dizygotic) twins 

raised together (DZT).  The greater similarity is indicated by the smaller size of the curly 

brackets.  The underlying factors for two MZ pairs are indicated by upper and lower case letters 

for pairs of alleles (A-E) and environmental factors to which they are subject (F-J). 

----- 
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Assumption 6.  Residual variation is a within-family environmental effect.    Alternatively, 

this variation can be viewed simply as what remains after systematic variation (among variety 

averages, among location averages, and among variety-location-combination averages) is taken 

into account. 

When QG analysis assigns fractions of the variation to heritability and to location 

variance (or “shared environmental effect”), a residual fraction remains.  This fraction is 

commonly labeled a “non-shared environmental effect."  In line with assumption 4, under which 

partitioning of variation is viewed as providing insight into the relative strength of the different 

kinds of factors underlying the development of the trait, this labeling has stimulated the search 

for environmental factors that differentially affect members within the same family.  Turkheimer 

and Waldron (2000) review this research and Turkheimer (2000) concludes that the search has 

not been very fruitful.  Nevertheless, considerable currency is still given to the idea that 

differences within families are large relative to the effects due to the members of a family 

growing up in the same location.  (In discussions of this idea it is not always clear when effects is 

being used to refer to fractions of variance or to causal factors.)  

The alternative to assumption 6 is that residual variation—E in equations 10, 12, 17 

etc.—can be viewed simply as what remains after systematic variation is taken into account (as 

acknowledged by Turkheimer 2004, 163).  To the extent that components of variation can be 

translated into hypotheses about underlying factors (see discussion of such translation under 

assumptions 4 and 5), residual variation can be attributed to measurement error and to 

differences among replicates (twins) within variety-location combinations that are unrelated to 

variation within other combinations.  Such differences provide no basis for expecting the same 

kind of environmental factor—or the same combination of genetic and environmental factors—

to generalize across families.   

 

Implications 

 

This article has examined six assumptions in classical QG and the analysis of human 

twins raised together.  Alternatives to these assumptions are given little attention in standard QG 

texts or in critiques of human QG, even though allowing for the alternatives could change 

markedly the results and interpretations of classical QG. The central contention of this article—
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that these assumptions and alternatives warrant more attention—is amplified by additional 

theoretical and empirical issues that have not been resolved and invite investigation.  The 

following sequence of issues arise from the assumptions or alternatives taken in turn: 

1. The models on which classical QG is based, namely, of genes with simple Mendelian 

inheritance and direct contributions to the trait, have been elaborated by allowing dominance 

interactions among alleles at separate loci, epistatic interactions among loci, narrow versus broad 

heritability, and so on.  Could such elaborations be recast meaningfully in a gene-free QG (i.e., 

following the alternative to assumption 1)?  

2. If the proportionality used heuristically to link similarity of variety contributions to 

fraction of variable genes that relatives share is replaced by an empirically determined parameter 

(f or γ for twin studies), what average value and range do these parameters take in agricultural 

and laboratory populations, where empirical estimation is not difficult?  In twin studies, is the 

empirical ratio of DZ: MZ similarity generally close to .5?  Do the same values apply to the 

similarity of variety-location interaction contributions?  If these average values and ranges are 

extrapolated to human QG, what difference does it make to previously reported results?  The 

same questions could be asked of the equivalent parameters that arise in gene-free derivations of 

analyses for comparing relatives of other degrees (e.g., full sibs and half-sibs).  Is there a linear 

relation between the empirically determined parameters for relatives of various degrees and the 

fraction of variable genes that each kind of relative shares? 

3. Can existing sets of data for twins raised together and apart and non-related individuals 

raised together be used to generate estimates for the variety-location-interaction (“genotype-

environment interaction”) fraction of variance for human QG?  This is a fraction that twin 

studies subsumes in the term for heritability, thus systematically inflating the heritability 

estimates.  Is the variety-location-interaction variance, and thus the amount of inflation, 

generally negligible?  How sensitive are the estimates to the special conditions required for the 

analyses of twins raised apart (see discussion under assumption 3)?   

4. Interpretations of the partitioning of variance could be rewritten to eliminate the 

unfounded implication that analysis of observations of a given trait translate directly into claims 

or hypotheses about differences in measurable genetic and environmental factors (see 

preliminary remarks on terminology).  When does the rewriting make a substantive difference, 

and when does it not? For example, agricultural and laboratory breeders can proceed as if 
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heritability were related to some underlying gradient in genetic factors, assess whether the results 

meet their expectations, and, when the results do not, try to compensate by discarding those 

offspring that do have the desired traits.  When does it make a difference to expose the identity 

of the actual genetic and environmental factors and investigate their dynamic integration?  

5. If the method of data analysis does not allow researchers to tell whether or not the 

genetic and environmental factors underlying the observed trait are heterogeneous, what can 

researchers do on the basis of knowing a trait’s heritability?  Taylor (2008a) notes five possible 

directions that can be pursued.  In particular, as with assumption 4, agricultural and laboratory 

breeders can proceed as if there were no underlying heterogeneity, assess whether the results 

meet their expectations, and try to compensate when the results do not. When does it make a 

difference to allow for breeders to allow for the posibility of underlying heterogeneity?  

6. Interpretations of the partitioning of variance in human twin studies could be rewritten 

to eliminate the implication that residual variation is a within-family environmental effect.  In 

what ways does such a revision affect the results and interpretation of the search for 

environmental factors that differentially affect members within the same family? 

Investigation of the preceding issues lies beyond the scope of this article, as does 

examination of implications beyond classical QG.  Briefly however on the latter, suppose that 

researchers find that in many cases classical QG analyses of empirical data are sensitive to first 

three assumptions or that the researchers want to avoid interpretations based on the last three 

assumptions.  The obvious next step would be to investigate whether the assumptions have also 

been worked into more recent QG where the analysis of variation involves data on measurable 

genetic or environmental factors (Plomin et al. 2003), and whether the results are sensitive to 

those assumptions.  If so, could the assumptions be reformulated given that, in this age of 

genomics, empirical investigation of measurable genetic factors as well as environmental factors 

is possible?  If reformulation proves difficult, what would QG gain and lose by shifting to 

analyses of variation that build on different foundations (e.g., Moffitt et al. 2005, Davey-Smith 

and Ebrahim 2007, Khoury et al. 2007)? 

The answers to these various questions might well have implications for long-standing 

debates between, broadly, those who argue that human QG produces little that is reliable or 

relevant to social policy and those who argue that social science research on determinants of 

behaviors is limited by its inattention to hereditary transmission within families (Turkheimer 
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2004). Moreover, whatever answers are arrived at, historians, philosophers, and sociologists of 

science might be interested to explore why the questions have not emerged more clearly in 

previous methodological debates (Taylor 2008b).  Researchers who have taken any or all of the 

six assumptions as given—or, at least, as plausible—might not welcome this questioning.  

However, understanding and avoiding past oversights could be seen as a constructive step as 

researchers continue to advance methods for analyzing similarity among genealogically related 

individuals.  At the very least, newcomers to quantitative genetics should be informed that 

alternatives to the standard assumptions exist so they can take the implications into account as 

they define their own directions of analysis and interpretation.  

 

Acknowledgements 

This article is based on research supported by the National Science Foundation under 

grant SES–0634744. The comments of Marc Feldman, Steve Orzack, Ken Richardson, Hamish 

Spencer, Erik Turkheimer, and an anonymous reviewer helped in the revision process. 

 

References 

Bouchard, T., & McGue, M. (1981). Familial studies of intelligence: a review. Science, 212(4498): 

1055-1059. 

Bruder, C. E. G., A. Piotrowski, et al. (2008). "Phenotypically Concordant and Discordant Monozygotic 

Twins Display Different DNA Copy-Number-Variation Profiles." American Journal of Human 

Genetics 82:763-771. 

Davey-Smith, G. and S. Ebrahim (2007). Mendelian randomization: Genetic variants as 

instruments for strengthening causal influences in observational studies.  Pp 336-366 in 

Weinstein, M., Vaupel, J. W., Wachter, K.W. (eds) Biosocial Surveys. Washington, DC, 

National Academies Press. 

Falconer, D. S. (1960). Introduction to Quantitative Genetics. New York, The Ronald Press 

Company. 

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics (4th ed.). Harlow: 

Longman. 

Freedman, D. A. (2005). Linear statistical models for causation: A critical review. Encyclopedia 

of Statistics in the Behavioral Sciences. B. Everitt and D. Howell. Chichester, Wiley. 



 27 

Howell, D. C. (2002). "Intraclass Correlation: For Unordered Pairs." 

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/icc/icc.html (viewed 10 Jan. '07). 

Jacquard, A. (1983). "Heritability: One word, Three concepts." Biometrics 39: 465-477. 

Kamin, Leon J., and Arthur S. Goldberger. (2002). "Twin studies in behavioral research: A skeptical 

view." Theoretical Population Biology 61:83-95. 

Kendler, K. S. and C. A. Prescott (2006). Genes, Environment, and Psychopathology: 

Understanding the Causes of Psychiatric and Substance Abuse Disorders. New York, The 

Guilford Press.  

Khoury, M. J., J. Little, M. Gwinn and J. P. Ioannidis (2007). "On the synthesis and 

interpretation of consistent but weak gene-disease associations in the era of genome-wide 

association studies." International Journal of Epidemiology 36: 439-445. 

Layzer, D. (1974). Heritability Analyses of IQ Scores: Science or Numerology? Science 183(4131): 

1259 - 1266. 

Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change. New York, Columbia 

University Press. 

Lynch, M. and B. Walsh (1998). Genetics and Analysis of Quantitative Traits. Sunderland, MA, 

Sinauer. 

Moffitt, T. E., A. Caspi, and M. Rutter (2005). "Strategy for investigating interactions between 

measured genes and measured environments." Archives of General Psychiatry 62(5): 

473-481. 

Nichols, R. C. (1978). Twin studies of ability, personality, and interests. Homo 29: 158-173. 

Nuffield Council on Bioethics. (2002).  Genetics and Human Behavior: The Ethical Context. 

http://www.nuffieldbioethics.org (viewed 22 June 2007) 

Otto, S. P., Christiansen, F. B., & Feldman, M. W. (1995). Genetic and cultural inheritance of 

continuous traits. Stanford University, Morrison Institute for Population and Resource Studies 

Working Paper Series #64. http://www.stanford.edu/group/morrinst/pdf/64.pdf (viewed 29 

March 2009) 

Parens, E. (2004). "Genetic differences and human identities: On why talking about behavioral 

genetics is important and difficult." Hastings Center Report (January-February): S1-S36. 

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge, Cambridge University 

Press. 



 28 

Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction correlation in 

analysis of human behavior. Psychological Bulletin, 84: 309-322. 

Plomin, R., J. C. Defries, G. E. McClearn, M. Rutter (1997). Behavioral Genetics. New York, 

Freeman. 

Plomin, R., J.C. Defries, I. W. Craig, and P. McGuffi (eds.) (2003). Behavioral Genetics in the 

Postgenomic Era. Washington, DC: American Psychological Association. 

Richardson, K. and S. Norgate (2005). "The equal environments assumption of classical twin 

studies may not hold." British Journal Educational Psychology 75(3): 339-350. 

Rijsdijk, F. V. and P. C. Sham (2002). "Analytic approaches to twin data using structural 

equation models." Briefings In Bioinformatics 3(2): 119–133. 

Taylor, P. J. (2005). Unruly Complexity: Ecology, Interpretation, Engagement. Chicago, University of 

Chicago Press. 

Taylor, P. J. (2006). "Heritability and heterogeneity: On the limited relevance of heritability in 

investigating genetic and environmental factors." Biological Theory: Integrating 

Development, Evolution and Cognition 1(2): 150-164. 

Taylor, P. J. (2007). "The Unreliability of High Human Heritability Estimates and Small Shared Effects 

of Growing Up in the Same Family " Biological Theory: Integrating Development, Evolution 

and Cognition 2(4): 387-397. 

Taylor, P. J. (2008a). "Underlying heterogeneity: A problem for biological, philosophical, and 

other analyses of heritability?" Biology & Philosophy 23:587–589. 

Taylor, P. J. (2008b). "The under-recognized implications of heterogeneity: Opportunities for 

fresh views on scientific, philosophical, and social debates about heritability," History 

and Philosophy of the Life Sciences 30: 423-448. 

Turkheimer, E. (1998). Heritability and Biological Explanation. Psychological Review 105(4): 782-791. 

Turkheimer, E. (2000). "Three laws of behavior genetics and what they mean." Current 

Directions in Psychological Science 9(5): 160-164. 

Turkheimer, E. (2004). Spinach and Ice Cream: Why Social Science Is So Difficult. Pp. 161-189 in 

DiLalla, L. (ed.), Behavior genetics principles: Perspectives in development, personality, and 

psychopathology. Washington, DC: American Psychological Association. 

Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic 

Status Modifies Heritability of IQ in Young Children. Psychological Science, 16(6), 623-628. 



 29 

Turkheimer, E., & Waldron, M. (2000). Nonshared Environment: A Theoretical, Methodological, and 

Quantitative Review. Psychological Bulletin, 126(1), 78-108. 

 

 

Appendix. Path Analysis used to derive the alternative analysis without assumption 1.  

 

Path analysis is a data analysis technique that quantifies the relative contributions (“path 

coefficients”) of variables to the variation in a focal variable once a certain network of 

interrelated variables has been accepted (Lynch & Walsh 1998, 823).  Although some 

researchers interpret “contribution” in causal terms (e.g., Pearl 2000, 135 and 344-5), others 

criticize such an interpretation (e.g., Freedman 2005).  Here contribution refers neutrally to the 

term of an additive model fitted to data.  

The usual starting point for path analysis is an additive regression model that associates 

the focal variable with several other measured variables, but it is possible to employ the 

technique when there are no measured variables except the observed focal variable, as is the case 

in classical QG.  This can be done by converting the additive model on which any given Analysis 

of Variance is based into an additive model of constructed variables that take the values of the 

contributions fitted to the first model.  For example, the path model equivalent to equation 9 is  

yx =  m   +z1x  +z2x  +z3x  +ex (A.1)  

where  

y is the measured trait as before and x denotes the replicate 

z1x = vi if x if a replicate of variety i, or 0 otherwise 

z2x = lj if x if a replicate in location j, or 0 otherwise 

z3x = vlij if x if a replicate of variety i in location j, or 0 otherwise 

ex = eijk where x is replicate k of variety i in location j 

 

The path coefficients are then set to equal the square root of the ratio of the variance of the 

contribution (V, L, etc.) to the total variance for the trait (Y).  The “equation of complete 

determination” that lies at the heart of path analysis becomes 

1 = Σ variance (zw) / Y  (A.2) 

where w denotes the different contributions in the Analysis of Variance model. 
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Thus far, path analysis is simply an algebraic reformulation of the Analysis of Variance.  

However, when the same trait is observed in two relatives, their separate path analyses can be 

linked in one network and the intraclass correlation between the relatives calculated (Lynch & 

Walsh 1998, 826)—provided it is assumed that the contributions (and path coefficients) apply to 

both and that the noise contributions are uncorrelated.  For the Analysis of Variance based on 

equation 11 the corresponding path network is given by Figure A.1.   Applying the formulas for 

linking separate path analyses given in Lynch & Walsh (1998, 826), the intraclass correlation 

between, for example, DZ twins where both members of any pair are raised in the same location, 

becomes: 

IDZ = (V- +L +VL-) /Y  (A.3) 

Equation A.3 is the same as equation 14 in the text.  This same network diagram can be used to 

calculate the equations for intraclass correlations for MZ twins, and for both kinds of twins 

raised apart (i.e., the two members of each pair raised in randomly chosen locations).   The 

estimation of the separate variances as a fraction of the total variance (Y) then proceeds as in the 

text.  

variety contribution

twin contribution

location contribution

variety-location-interaction contribution

twin-location-interaction contribution

Twin 1 Twin 2

*

**

***

**

values of traits of twin 1 values of traits of twin 2

intraclass correlation = ?

1
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Figure A.1.  Path diagram linking trait values of two twins.  The path coefficients linking each of 

the  contributions to the values of the traits are the square roots of, respectively, V-, T, L, VL-, TL 

(i.e., square root [variance (zw) / Y], see equation A.2).   The correlation between the variety 

contributions for any two twins is 1.  For the other correlations, * indicates a value of 1 if the 

twins are MZ, 0 otherwise; ** indicates a value of 1 if the both members of any pair are raised in 

the same location, 0 otherwise; *** indicates a value of 1 if both conditions hold, 0 otherwise.   

The noise contributions for the two twins are omitted from this diagram because they are 

uncorrelated.   

 

The relationship between the path diagram above and standard diagrams for analysis of 

twins raised together can be shown if the correlation between the variety contributions for any 

two DZ twins is set at γ (typically assumed to be .5; see assumption 2) and the correlation for any 

two MZ twins remains at 1, because this assumption allows the separate twin contribution to be 

eliminated.  Similarly for the variety-location interaction contribution (which is typically omitted 

from published path diagrams).  Figure A.2 gives the resulting path diagram, which generates: 

IMZ = (V +L +VL)  /Y (A.4) 

IDZ = (γ  V +L + γ  VL) /Y (A.5) 

If γ is replaced by f / (1+f), equations A.4 and A.5 can be rearranged into equations 24 and 25.   

 

variety contribution

location contribution

variety-location-interaction contribution

Twin 1 Twin 2

1

values of traits of twin 1 values of traits of twin 2

intraclass correlation = ?

1 or !

1 or !

 
Figure A.2.  Path diagram linking trait values of two twins raised together for a fixed correlation 
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between the variety contributions and between the variety-location-interaction for DZ twins.  

The path coefficients linking each of the contributions to the values of the traits are the square 

roots of, respectively, V, L, VL.   The correlation between the variety contributions for any two 

MZ twins is 1 and for any two DZ twins is γ (typically assumed to be .5); similarly for the 

variety-location interaction contribution (which is typically omitted from published path 

diagrams).  The correlation between location contributions is 1 because they are raised together.  

The noise contributions are omitted from this diagram because they are uncorrelated.   

----- 

Since separate values of V and VL cannot be estimated in this case, i.e., where the twins are 

raised in the same locations, V+ can be substituted for V+VL and A4 and A5 can be replaced by: 

IMZ = (V+ +L) /Y   (A.6) 

IDZ = (γV+ +L) /Y   (A.7)  

which are the same as equations 5 and 6 in the special case of γ  = .5. 


