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1.  Introduction: The IQ paradox and the persistent plausibility of genetic explanations

This working paper represents an ongoing process of conceptual clarification that began

with my attempt to understand the motivation for and logic of the models of Dickens and Flynn

(2001).  Dickens and Flynn address the “IQ paradox,” which they see as the co-existence of high

estimates of heritability (Neisser et al. 1996) and large IQ test score gains between generations

(the “Flynn effect”) (Flynn 1994).  The change in gene frequencies in a human population over

one generation is negligible.  Yet high heritability implies, in the conventional view of human

behavioral genetics, that “observed variance in environment accounts for… little variance in

adult IQ” test scores (Dickens and Flynn 2001, 346).  So, Dickens and Flynn ask, how could

large differences between generations be caused by environmental factors?  Their answer

depends on the possibility that environmental differences can be linked to and amplify genetic

differences.

This idea is not new (see citations in Dickens and Flynn 2001, 347), but their “reciprocal

causation” models allow systematic examination of its implications.  Two features of these

models contribute to the resolution of the paradox: a matching of environments to differences

that may initially be small (e.g., children who show an earlier interest in reading will be more

likely to be given books and receive encouragement for their reading and book-learning); and a

social multiplier through which society’s average level for the attribute in question influences the

environment of the individual (e.g., if people grow up and are educated with others who, on

average, have higher IQ test scores, this will stimulate their own development).
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Dickens and Flynn’s models not only resolve the IQ paradox, but also challenge the

conventional wisdom about differences between mean IQ test scores for racially defined groups.

Many psychometricians and human behavioral geneticists believe that high heritability of IQ test

scores within groups, combined with a failure of environmental hypotheses to account for the

differences, lends plausibility to explanations of differences in means in terms of genetic factors

(even if these factors have yet to be elucidated) (e.g., Jensen in Miele 2002, 111ff).  The same

logic, Dickens and Flynn note, would apply to explaining differences across generations in mean

IQ test scores.  However, given the negligible change in gene frequencies over one generation,

genetic explanations are not plausible in the latter case and so something must be wrong with the

logic.  Reciprocal causation overcomes the problem, allowing us to conceive of a strong role for

environmentally induced differences between means scores for generations or racial groups

together with high heritability.

Dickens and Flynn’s contribution has the potential to move the debate about heritability

and differences between racial-group means onto fresh ground, although the response to their

work has of yet been limited (Loehlin 2002, Rowe and Rodgers 2002; see Dickens and Flynn

2002).  This paper challenges the conventional wisdom at deeper levels. In particular, I question

two lines of thinking in which high heritability is held to bolster the plausibility of genetic

explanations of differences between group means.  Both lines begin by conceding that high

heritability of IQ test scores within a racial group does not on its own allow us to conclude that

the persistent difference between groups in mean IQ test scores also has a high heritability, but

the following rejoinders are then put forward:

1.  high within-group heritability suggests that it will be possible for researchers to find

direct effects of genotypes on traits that influence IQ test scores (or indirect effects of

environments induced by such genotypes).  Researchers can expect different forms of the

same genes to direct the development of traits that influence IQ test scores within other

racial groups given the human biology that the groups share.  The rapid advances in

molecular genetics lend support for the expectation that genes and their effects can be

identified.

2. high heritability of between group mean differences becomes more plausible when we

note that:
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a. If the differences are not caused by genetic differences, then they must be caused by

environmental differences.  Yet, all environment-only explanations that have been tested

have been disproved (Flynn 1980, 40ff; Jensen in Miele 2002, 127ff).

b. High heritability means that the fraction of variation in IQ test scores within a group

that is associated with environmental variation is low.   If the IQ test score gap between

group means were solely due to environmental causes and these causes varied within

groups, then the number of standard deviations (SDs) of change in the environment

causes that would be necessary to produce the gap is high if the heritability is high.

Heritability of .75 translates to 2 or more SDs (Dickens and Flynn 2001, 348). No known

environmental factor shows such wide variation between racial groups.

c. If the IQ test score gap between group means were solely due to environmental causes

and these causes did not vary within groups, this could be consistent with high

heritability, but no known environmental factor operates in such a fashion (sometimes

called an X-factor) (Dickens and Flynn 2001; Flynn 1980, 62; Jensen 1973, 137ff;

Sesardic 2000).

In questioning these lines of thinking I am not claiming that environment-only (or

“culture-only”) explanations account for variation between racial group means.  Instead, my

contention is that the concept of heritability and the statistical Analysis of Variance (AOV) on

which it is based cannot logically or methodologically support the two lines of thinking above.

Clearly I am entering a debate with a long and politically charged history. (For early points in the

debate, see the 1969 Harvard Educational Review article by psychometrician Arthur Jensen,

which elicited a critical response from, among others, the population geneticist, Richard

Lewontin [1970a, b; 1974; Jensen 1970].  Jencks and Phillips [1998] reviews recent research on

the black-white test score gap and Parens [2004] provides an even-handed overview of past and

potential contributions of human behavioral genetics to discussions of social importance.)  In

order to contribute something new, I step away from human behavioral genetics into the analysis

of agricultural crop trials in which a number of different varieties or “cultivars” of a crop are

grown under different conditions.  As will emerge, the two lines of thinking run into trouble even

in this ideal case where discrimination among various factors is possible.  In human behavioral
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genetics, where heritability estimation and AOV depart from that ideal in significant ways, the

lines of thinking are even less supportable.

Although I reinterpret selected contributions to the debate in light of my account of

heritability and AOV (sect. 5), the scope of this paper does not extend to a detailed conceptual

analysis of previous work on heritability and group-mean differences, to a sociological analysis

of the production and maintenance of the conventional wisdom I am challenging, or to an

alternative analysis of empirical data on IQ tests, racial classification, and generational

differences.  My goal here is primarily to motivate a set of themes (compiled in the appendix)

that should help non-specialists as well as specialists visualize more clearly the limited relevance

of human heritability estimates for explaining differences between means across groups or across

generations.   For readers who can keep these themes in mind, much that might have once

seemed plausible will, I hope, become problematic.  Along the way, the paradox that motivated

Dickens and Flynn’s reciprocal causation modeling will disappear, to be replaced by the

challenge of deriving models of developmental pathways whose heterogeneous components

differ among individuals at any one time and over generations.

2. Preamble: Changeability and Causes

Changeability is a key concern in this debate.  I would be interested, for example, in

knowing how white and black Americans’ scores on IQ tests would change if everyone were

raised in a non-racist environment, that is, without anyone having the disadvantages or

advantages that are associated not with their individual abilities, but with their membership in a

racial group (Flynn 2000, 142ff).  Posing such a utopian question makes clear that changeability

is not only a matter to be investigated through biological and social scientific research, but also a

matter of whether the change in social arrangements implied by the question is within the range

of movement of society that the researchers want to entertain.  Even if I persisted in this line of

questioning, I would not expect much insight to follow from social scientific research based in

racially marked situations.  On the other hand, I would hope that research could shed light on

how and how much IQ test scores can be changed (absolutely or relatively) for individuals in

racially defined groups.  Yet, although such results would help people identify measures that are

effective, replication of those measures might entail more social movement than the researchers
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deem likely.  In short, ideas about “social movement” changeability are entangled with

extrapolation from particular or “local” conditions that researchers have analyzed through their

specific questions and methods—with “local research” changeability, as we might call it.   When

Flynn (1980, 73) asks how whites would score on IQ tests if raised in the environments that

blacks experience and vice versa, his question implies more change in society than I can

imagine.  At the same time he speaks to researchers studying IQ test scores, racial group

differences, and heredity who think that their (local) research can reveal something meaningful

about changeability (or lack thereof).

Against this backdrop, let me acknowledge the degree of changeability that underlies my

discussion; it corresponds to asking what  “local research” can learn about ways in which IQ test

scores can be changed for individuals in racially defined groups and how much change

(absolutely or relatively) is achieved.  That question could, of course, be transferred to other

socially marked groups (e.g., class and gender) and to attributes beyond IQ test scores.  For

example, how much can people’s life achievements be changed absolutely or relatively for

individuals in some socially defined group (racial, class, gender, etc.)?  Indeed, IQ test scores

would be of limited interest to educational and social policy-makers unless there were some link

between them and life achievements.  We could also ask how changeable that link is, but for the

purposes of this essay, I assume that IQ test scores and traits that influence IQ test scores do have

wider significance for people’s lives.

Although the question about how much and through what means IQ test scores can be

changed usually evokes educational interventions or social policy changes, it does not presume

that changeability depends only on social (“environmental”) factors or that unchangeability

depends only on genetic factors.  The ideal way to address the changeability question without

such assumptions would be to have a detailed understanding of the ways different influences

build on each other during the process of development of traits that influence IQ test scores

(depicted schematically in Figure 1).  Let me call this knowledge of “causes in developmental

dynamics,” or “developmental causes” for short.  (See Pearl [2000] for a more elaborate and

formalized approach to the analysis of causes and changeability.)
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Figure 1.  Schematic depiction of the process of development from time t 
to t+1 etc. of the state of an organism (St ) in relation to its ability in IQ 
tests.  
The state of organism at time t induces action by genetic factors (gf) and 
environmental factors (ef).  gf and ef modulate the effect of each other on 
state of organism at time t+ 1, and so on.  The nature of the genetic 
factors and environmental factors that are implicated in this process 
changes as the organism develops from a zygote to fetus to child to adult. 
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Debates about IQ test scores center on two other construals of causation, which I refer to

as difference-in-effects causes and measurable factors.  As will emerge, to move from

difference-in-effects causes to measurable factors to developmental causes is to progressively

loosen the assumption of control over the combinations of genetically defined varieties and

locations that can be observed and, thereby, be able to provide insight about changeability.

3. Agricultural Crop Trials as the Ideal Case for Analysis of Variance, Heritability

Estimation, and Regression Analysis

What can data analysis in the form of AOV, heritability estimation, and regression

analysis tell researchers who conduct agricultural crop trials in which a number of different

cultivated varieties or “cultivars” of a crop are grown in a number of plots (or replications) in

different locations or under different conditions. Let me call these observational trials, in contrast

with experimental trials in which specific environmental or genetic factors are systematically

varied.  (The term “location” need not be taken literally; it can refer to distinguishable conditions

of many kinds, e.g., the weather in different years at the same site.)

The primary purpose of centering the paper on analysis of agricultural trials is to show

that it is possible to question the lines of thinking identified in the introduction even in a case

where researchers have great control over the genetic types and environmental conditions
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studied.  Moreover, given that my argument rests not on empirical details, but on logical and

methodological grounds, it is appropriate to focus on agricultural crop trials and breeding

programs because AOV and related techniques of quantitative genetics (which formed the basis

of behavioral genetics) were first developed in that context.  The use of agricultural terminology

also allows me to avoid using the more conventional terms “genotype,” “environment,” and

“GxE interaction,” which tend to cloud the conceptual distinctions I will be making.

3.1 Linear models and Partitioning of Variance

The statistical concept of the heritability of a measurable attribute relies on partitioning

into different components the variation observed among a set of individuals.  This partitioning

can be undertaken through an Analysis of Variance (AOV), which is always based on some

specific linear model that separates into a series of “effects” the deviations of the measurements

from their overall mean.  For example, suppose that the yield was measured from a number of

different cultivars in a number of plots (replications) in different locations. A linear model for the

yield would be

Yield for cultivar i grown in plot k in location j

= the mean yield over all the measurements (“the grand mean”)

+ the deviation from the grand mean of the mean of cultivar i over all locations and plots

+ the deviation from the grand mean of the mean in location j of all plots of all cultivars

+ the deviation from the sum of the above for cultivar i grown in location j of the mean

over all plots of that cultivar grown in that location

+ the residual (the deviation from the sum of the above for cultivar i grown in location j

of the yield in a particular plot of that cultivar grown in that location) (1a)

Conventionally, the verbal model is abbreviated as

Yield for cultivar i grown in plot k in location j

= the grand mean

+ the main effect of cultivar i

+ the main effect of location j

+ the interaction effect for cultivar i in location j
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+ the residual effect (1b)

Alternatively, the model can be expressed in symbols:

yijk = m + ci + lj 
 + clij + rk:ij (1c)

where the notation k:ij denotes k is nested within i and j.  If the residual effect is taken to

be equivalent to noise or measurement error, it can be denoted by εk:ij.

The statistical significance of these effects is assessed in terms of the size of their variance in

relation to the variation associated with noise or measurement error.  Indeed, estimating the

effects in the linear model is mathematically equivalent to partitioning the variation around the

grand mean, i.e.:

σ2
y = σ2

c +σ2
l +σ2

cl +σ2
r (2)

where  σ2
y denotes the variance of yield measurements (i.e., sum of squared deviations

from the grand mean), σ2
c denotes the variance of cultivar effects, etc.

and the partitioning produces the lowest value of σ2
r subject to the constraint that Σici= 0;

Σjlj = 0; Σiclij = 0 for each j; Σjclij = 0 for each i; and Σkrijk= 0 for each ij combination.

(These constraint means that the different kinds of effects in model 1c are independent,

i.e., information about any one kind tells you nothing about any other.)

This method of partitioning can be applied to a wide range of situations.  In principle, the

cultivars in a trial may even be from different species, e.g., wheat, rye, oats, sorghum; the

locations may be similarly heterogeneous, e.g., location 1 could be a no till cultivation site,

location 2 a greenhouse site, location 3 drip irrigation, and so on.

Theme 1—Gradient-free conditions:  Use of the AOV does not require that any gradient of a

measurable genetic factor runs through the differences among genetically defined varieties or

any gradient of a measurable environmental factor runs through the differences among

locations.

Theme 2—Conditionality: All effects are conditional on the particular set of genetically defined

varieties and locations observed.

(The abbreviated and symbolic models 1b and 1c hide this qualification, so we should refer back

to the full wording of the linear model 1a if ever tempted to forget the conditionality.)
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A simple numerical example will illustrate the conditionality of effects, variances, and

heritabilities.  (The figures in this paper’s data sets are invented, but my arguments do not

depend on correspondence between the data in the examples and actual observations.)  Notice

the changes in values as more locations and cultivars are included in the data analyzed.

Table 1

DDDDaaaattttaaaa    SSSSeeeetttt    1111aaaa EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss
VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 m 3.7 σ2
c 1.21 (83%**)

cultivar l1 0 σ2
ε 0.25 (17%)

1 5.3,4.3*

2 3.1,2.1 c1 1.1 h2w/in location 1 0.83***

c2 -1.1
εk:ij +/-.5

DDDDaaaattttaaaa    SSSSeeeetttt    1111bbbb
 location 1 2 m 2.5 σ2

c 0.0625 (2.5%)

cultivar l1 1.2 σ2
l 1.44 (58%)

1 5.3,4.3 0.2,1.2 l2 -1.2 σ2
cl 0.7225 (29%)

2 3.1,2.1 2.4,1.4 c1 0.25 σ2
ε 0.25 (10%)

c2 -0.25 h2w/in location 1 0.83

clij ±0.85 h2w/in location 2 0.59
εk:ij +/-.5 h2across locations 0.25

DDDDaaaattttaaaa    SSSSeeeetttt    1111cccc
 location 1 2 m 3.0 σ2

c 0.3125 (13%)

cultivar l1 1 σ2
l 1 (43%)

1 5.3,4.3 0.2,1.2 l2 -1 σ2
cl 0.7625 (33%)

2 3.1,2.1 2.4,1.4 c1 -0.25 σ2
ε 0.25 (11%)

3 4.9,5.9 1.6,2.6 c2 -0.75

4 3.7,2.7 2.8,3.8 c3 0.75 h2w/in location 1 0.84

c4 0.25 h2w/in location 2 0.77

cl1j, cl4j ±1.05 h2across locations 0.13

cl2j, cl3j ±0.65
εk:ij +/-.5

Notes:
*  The two figures separated by a comma denote two independent replications.  The order of the figures is
of no significance.
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**  Figures in parentheses give percentages of the total variance.
*** The meaning and significance of the heritability estimates, denoted by h2, will be discussed in sections
3.3 and 4.

If the conditionality of effects derived from partitioning of variance is kept in mind,

effects can be construed as causes in a particular sense:  Differences between the effects for

individuals of different genetic types can be interpreted as causes of differences (on average over

locations) between the yield for different cultivars.  Similarly, the difference between the effects

for locations can be interpreted as causes of differences (on average over cultivars) between the

yield in different locations.  Finally, the difference between interaction effects for cultivar-

location combinations can be interpreted as causes of the differences between the cultivar yields

in different locations over and above the two differences above.  Let me call this a “difference in

effects” sense of causality.   Notice that difference-in-effects causes do not require identification

of measurable genetic or environmental factors (see theme 1). (We should refer back to the full

model 1a if ever tempted to read the symbolic model 1c as if the ci’s corresponded to genetic

factors, lj’s corresponded to environmental factors, and clij’s corresponded to interactions

between otherwise separable genetic and environmental factors.)

Theme 3—Rerun control:  The conditionality of effects means that any predictions made using

difference-in-effects causes entail an assumption of control over the genetically defined varieties

and locations that would allow the original combinations to be rerun and observed again.

If the control is imperfect, for example, if the weather varies between growing seasons or the

cultivars are not identical, the accuracy of predictions will diminish.  Nevertheless, as described

in the section to follow, meaningful predictions can be made on the basis of difference-in-effects

causes if the data can be appropriately rearranged and the variance repartitioned.

 3.2  Clustering and repartitioning of variance

Consider the analysis of large international crop trials, e.g., the 1967-68 trial of 49 wheat

varieties grown in 63 locations discussed in Byth et al. (1976).   The AOV for such data sets

typically finds that the cultivar-by-location-interaction variance component is as large as the

cultivar component.  In practical terms this means that no cultivar performs well in all locations

so it would be ill-advised to make recommendations to farmers as if you can predict which

cultivar would perform best; similarly, for recommendations about which cultivars to cross with
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each other in subsequent breeding programs.  Byth et al. (1976) addressed this problem as

follows.

First, Byth’s team of researchers performed cluster analysis to group cultivars by

similarity in responses across all locations.  Similarly, they grouped locations by similarity in

responses elicited across the full range of cultivars.  For cultivars in some cultivar group or

locations in some location group, they found that the relative sizes of within-group variance

components had changed so that the ranking of the cultivars tended to hold across locations

within any location group. In any case, differences among the cultivars within a cultivar group

and differences among the locations within a location group were small because the clustering

method resulted in within-group variance components that were relatively small.  In short, these

researchers were able to make recommendations for farmers that were conditional on working

within the range of cultivars and locations in the specific cultivar and location groups but were

not dependent on perfect control over which cultivar and location were chosen in those groups.

Clustering resulted in variance components for among cultivar group means, among

location group means, and the interaction of among cultivar group means and among location

group that were much greater than the corresponding within-group components.  This meant that

the responses of cultivars across different locations could be efficiently summarized in terms of

the patterns of cultivar group means across location groups (Figure 2).  Recommendations could

be made to plant breeders, for example, to cross cultivars from two specific groups so as to bring

the strengths that the first group exhibited in specific location groups to overcome the

weaknesses of cultivars in the other group in the same locations.  It should be noted, however,

that making such recommendations discounts the possibility that different conjunctions of

underlying developmental causes or measurable factors might lie behind cultivars having similar

patterns of responses across locations.  It might seem unreasonable to worry about this when

clustering takes into account response across a wide range of locations, but concern is justifiable

when+ groups are formed on a limited range of locations or on some basis other than similarity

in responses.

Theme 4—Questionable homogeneity: An assumption that is always open to questioning is that

similar patterns of responses of different genetically defined varieties across locations (or

environmental factors) have been produced by similar conjunctions of underlying developmental

causes or measurable factors.
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   --insert Figure 2, reproduced from Byth (1976)--

As an illustration of clustering and repartitioning of variance, consider the effect of

clustering cultivars for data set 1c.  (For this illustration the two locations could be considered as

two groups of size one.)  As figure 3 shows, cultivars 1 and 3 would be grouped because they

have similar responses across locations; similarly, cultivars 2 and 4 would be grouped.   Within

each cultivar group the ranking does not change across locations, that is, the interaction within

cultivar groups has been reduced.  This is shown numerically in Table 2, which presents the

results of an AOV performed with the appropriate model, namely,

yijk = m + CI + ci:I + lj 
 + ClIj + cli:I,j + εk:ij  (3)

where i:I denotes the ith cultivar in cultivar group I

Figure 3.  Data Set 1c
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Table 2

DDDDaaaattttaaaa    SSSSeeeetttt    1111cccc    ddddiiiivvvviiiiddddeeeedddd    iiiinnnnttttoooo    ttttwwwwoooo    ggggrrrroooouuuuppppssss EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
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bbbbyyyy    ssssiiiimmmmiiiillllaaaarrrriiiittttyyyy    ooooffff    rrrreeeessssppppoooonnnnsssseeee    aaaaccccrrrroooossssssss
llllooooccccaaaattttiiiioooonnnnssss

hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.0 σ2
C 0.0625 (2.7%)

Cultivar
Group cultivar l1 1 σ2

c:C 0.25 (11%)
A 1 5.3,4.3 0.2,1.2 l2 -1 σ2

l 1 (43%)
B 2 3.1,2.1 2.4,1.4 CA 0.25 σ2

Cl 0.7225 (31%)
A 3 4.9,5.9 1.6,2.6 CB -0.25 σ2

c:C,l 0.04 (1.7%)
B 4 3.7,2.7 2.8,3.8 c1:A -0.5 σ2

ε 0.25 (11%)

c2:B -0.5

c3:A 0.5
h2within  cultivar group
A or B within location 1 0.26

c4:B 0.5
h2within  cultivar group
A or B within location 2 0.66

ClIj ±0.85
h2 within cultivar group
A across both locations 0.06

cli:I,j ±0.2
h2 within cultivar group
B across both locations 0.44

εk:ij +/-.5

When researchers in Byth’s team formulated recommendations after creating groups and

repartitioning variance, they were not relying on any knowledge about the biophysical pathways

of the plant growth and development (developmental causes) and how these pathways were

affected by the different genetic makeup of cultivars and the different environmental factors in

the locations.  The recommendations assumed that farmers and breeders would be able to re-

grow the cultivars again in subsequent years and confine themselves to sites that were similar to

the locations within a specific group of locations.  This meant that difference-in-effects causes

could provide meaningful predictions (theme 3).  Subject to the variation in weather from year to

year, farmers could expect yields from the cultivars they grew that matched those achieved in the

trial in locations like their farm; plant breeders could expect that, subject to the complexities of

genetics and development, crosses between cultivars would have predictable results.

3.3 Rerun predictability and heritability

Predictions made on the basis of an AOV are not identical to the original observations

because of the residual variation or error that corresponds to replications within any given

cultivar-location combination.  We can generate formulas to estimate the correlation between

observations and predictions if we use the linear model on which the AOV was based to make
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the prediction and if we specify how the original situation and predictions are to be

matched—Will the cultivar in the observed case be paired with the predicted values in the rerun,

or the location?  Will all cultivars be matched, or only those in one group?  Will all locations be

considered or one only?

Let me call such correlations “rerun predictability.”  For example, the rerun predictability

for the first location and cultivar group A when each cultivar is matched in the current case and

the rerun is the correlation between the all the possible permutations depicted in Figure 4.  The

rerun predictability across both locations is the correlation depicted in Figure 5.

Figure 4.  Cultivar group A in location 1:
Correlation between observed values &
predicted rerun values
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Figure 5.  Cultivar group A across both
locations: Correlation between observed
values & predicted rerun values
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Although rerun predictability is a measure of correlation, the general formula turns out to

consist of variance terms, namely:

Variance of components in the model that are constrained to be the same in observed case

and the rerun in the defined situation /

Variance of all components in the model that are not constant in the defined situation

(which includes appropriate error variance) (4)

(Note that rerun predictability, like the variance components that enter into this formula, is

conditional on the particular set of cultivars and locations observed; see theme 2.)  For example,
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for the situation depicted in figure 4, the formula for rerun predictability can be derived as

follows:

Correlation (observed and predicted)

= Covariance (observed, predicted)/ [Variance (observed)* Variance (predicted)] 1/2

= Cov (m + ci + lj 
 + clij + εk:ij, , m + c'i + lj 

 + cl'ij + ε'k:ij)

/ [Var (m + ci + lj 
 + clij + εk:ij) * Var (m + c'i + lj 

 + cl'ij + ε'k:ij)]
 1/2

where j is fixed, but i and k can vary & ' denotes the rerun

which can be estimated by Cov (ci+ clij, c'i+ cl'ij) / [ ( σ
2

c +σ2
cl +σ2

ε) * (σ2
c +σ2

cl +σ2
ε)]

1/2 ,

given that error effects are independent and m + lj  is a constant

which can be estimated by (σ2
c + σ2

cl ) / (σ
2

c + σ2
cl +σ2

ε), given that the cultivar is

constrained to be the same in the observed situation and the rerun (i.e., i = i') (5)

Quantitative and behavioral geneticists will recognize eqn. 5 as a formula for heritability

in the case where cultivars are confined to a single location (Lynch & Walsh 1998, 669).

Theme 5—Heritability as rerun predictability:  In its technical meaning, heritability is a special

case of rerun predictability (a concept that encompasses a more general class of correlations) in

which the cultivar is matched in the observed data and rerun (i.e., i = i’).

As a specific form of rerun predictability, heritability is based on conditional estimates from an

AOV and provides meaningful predictions to the extent that cultivars and locations can be

controlled and replicated (see themes 2 and 3).  The difference between heritability within one

location and heritability across locations (e.g., .26 in Figure 4 versus .06 in Figure 5) can be

understood in terms of rerun predictability and reflects nothing about the underlying gene-based

dynamics of reproduction or their differences between locations.

Like heritability, rerun predictability can be applied more generally to linear functions of

effects derived from the measurements, such as differences between the means of the cultivar

groups or predicted outcomes of crossing or mating between cultivars.  The latter predictions

have to factor in the relatedness of parents—e.g., are they sibs or cousins or unrelated?—and

require assumptions about the result of crosses—e.g., will the offspring tend to come out half

way between the parents or will they show the effects of Mendelian combinations of a small

number of genetic alleles?   More complicated formulas for heritability are required  (see Lynch

and Walsh 1998), but they all involve partitioning of variance and can be construed as variants of
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the basic idea of rerun predictability.  (Similarly for formulas that allow estimation of heritability

when there is only one replicate because there is genetically relatedness among cultivars and

replicates are correlated, not random within the location; Lynch and Walsh 1998, 153ff.)

A formula for heritability that is commonly cited—genetic variance divided by the total

variance of the trait (“phenotypic variance”)—is too loose to help us conceptualize the variants

under different conditions (e.g., within a location vs. across all locations).  Moreover, the term

“genetic variance,” which in this context refers to the variance of the cultivar effect in a specific

model, could be misread as the variance of some measurable genetic factor.

Theme 6.  Heritability vs. “heritable.” Ambiguity in the term “genetic variance” invites the

technical term heritability to be misidentified with the colloquial idea that a trait is “heritable”

or “genetic” if differences in a trait are associated with differences in specific genetic factors in

the gene-based dynamics of organisms’ reproduction.

The neutral term rerun predictability has the virtue of avoiding the connotations that heritability

has with gene-based dynamics of organisms’ reproduction.

3.4 Causes and measurable factors derived from observational and experimental trials

Plant breeders do not have to unravel the biophysical processes of plant growth and

development (i.e, the developmental causes) before they make recommendations to farmers on

the basis of clustering and partitioning variation from observational trials, in which multiple

cultivars are each grown in multiple locations.  It is possible, however, to build on such analysis

to learn more about a kind of cause intermediate between difference-in-effects and

developmental causes, namely, measurable genetic and environmental factors that differ among

cultivars and locations in association with differences among cultivars and locations in the yield

(or other trait) that has been observed.  (As an analogy, without knowing how eyes develop in

fruit flies, geneticists long ago identified a mutant gene associated with the flies’ eyes being

white instead of the normal red color. Reciprocally, researchers have identified environmental

conditions that induce traits or “phenocopies” that resemble those of flies that have mutant

genes; e.g., Mitchell and Lipps 1978.)  Let me distinguish three ways that measurable factors

associated with differences, or “measurable factors” for short, can be elucidated.
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a.  Natural history hypothesizing.  Researchers, drawing on sources of knowledge—“natural

history”—other than the data from the crop trials, can formulate hypotheses about what

aspects of the locations in any particular location group elicited basically the same

response from the cultivars in a particular cultivar group that distinguished them from

other groups.  That is, they can make hypotheses about measurable factor causes.  To

invent an example, if rainfall occurred in concentrated periods on poorly drained soils,

then cultivars whose genes originated from particular parental stock that was more

susceptible to plant rusts may have yielded badly. (See Byth et al. 1976, 224ff for actual

hypotheses after analysis of the international wheat cultivar trial referred to earlier.)

b. Regression analysis.  If data are available on some environmental factors (e.g., rainfall,

soil type, day lengths) in the different locations within a location group, statisticians can

estimate the parameters (“regression coefficients”) that best fit models such as the

following to the observed data:

yijk = m + CI + ci:I + Σqbiqejkq + εk:ij (6)

where ejkq denotes the value of environmental factor q in replication k in location j;

biq denotes the regression coefficient that conveys the (partial) correlation of cultivar I’s

yield with environmental factor q (across locations and replicates, j and k); and

εk:ij is a residual or error term (but not the same one as in the AOV models; this residual

reflects the particular range of environmental factors for which measurements are

available and included in the model).

To increase the number of observations on which each regression analysis is based, the

models for separate cultivars (eqn. 6) in a cultivar group may be consolidated into a

smaller set of analyses.  This requires that we assume that all biq’s are the same across

cultivars in the same cultivar group (= “bIq”).

yijk = m + CI + ΣqbIqejkq + εk:ij (6a)

The homogeneity assumption involved in such consolidations is subject to questioning

(theme 4), especially since such consolidation shifts the ci and cli:I,j effects into the
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residual term as if they were negligible. If data are available for measurable genetic

factors, such as presence or absence of an allele at a genetic locus, eqn. 6a could be

elaborated so as to bring those effects back out of the residual:

yijk = m + CI + Σpbpgip + ΣqbIqejkq + ΣpΣq bpqgipejkq + εk:ij (6b)

where gip denotes the value of genetic factor p in location i, and

bp and bpq denote the regression coefficients that convey the (partial) correlation of

cultivar yield with, respectively, genetic factor p and the product of genetic factor p and

environmental factor q (as these factors vary across cultivars, locations, and replicates i, j,

and k).

c. Experiments.  Hypotheses drawn from natural history can be examined through

experimental crop trials in which the cultivars are grown subject, for example, to

differing watering schedules and soils of varying degrees of drainage.  Similarly, the

results of regression analysis can be validated if experimental crop trials are conducted in

which the genetic and environmental factors are systematically varied.  Results of such

trials can be analyzed using AOV under models such as:

yijpqk = m + ci + lj + wp + dq + clij + cwip + cdiq + lwjp + ldjq + wdpq + clwijp + cldijq +

cwdipq + lwdjpq + clwdijpq + εk:ijpq (7)

where w denotes the “watering schedule” effect, d the “degrees of drainage” effect, and

the longer terms denote interaction effects,

and i and j are restricted to the particular cultivar and location groups under

consideration.  (Strictly, the notation should be specify i:I and j:J at appropriate points.)

If the watering schedule and degrees of drainage effects were significantly different from

zero we would gain the insight that differences in these environmental factors made a

difference (conditional again on the particular groups of cultivars and locations).  (In
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principle, since the advent of genetic engineering, we can also conduct experimental trials

varying the degrees of expression of specific genes in the cultivars.)

To the extent that other researchers are unraveling the pathways of plant growth and

development, insights from crop trials in which environmental and genetic factors are varied may

contribute to understanding (or hypothesizing about) the ways that pathways of growth and

development are affected by the genetic makeup of cultivars and the environmental factors in the

locations.  Let me articulate a theme about the contribution of regression analysis and

experiments that build on observational trials, then draw out several implications or sub-themes.

Theme 7—From Observation to Hypothesis to Experiment to Understanding of Developmental

Causes: After the appropriate simplification of the data set by clustering, the AOV of

observations and subsequent regression analysis can contribute to the formulation of hypotheses

that may be subject to experimental trials designed to examine the effect of varying specific

genetic or environmental factors.  In such trials the number of factors that can be considered

simultaneously is constrained in practice (an extension of theme 3 on control) and the effects

exposed by AOV are conditional (theme 2), but such experimental trials may contribute to a

larger project of unraveling the biophysical pathways of development.

The distinctions between observation of multiple cultivars in multiple locations, natural

history hypotheses, regression analyses, and experimental crop trials that vary specific factors

have a number of implications for thinking about causes and factors:

Sub-theme 7a. Hypothesis generation following observational trials is enhanced by simplifying

the large data set into groups for which the response of a cultivar group member (or response

elicited by a location group member) is similar to the average for the group as a whole.

Hypotheses become more difficult to formulate when groups are defined not by clustering, but by

using some other criteria that does not minimize the variance within groups, including the

within-group interaction variance (see theme 4).

As illustration of this difficulty, compare being asked to generate hypotheses in the

following two situations: first with data set 1c where cultivars 1 and 3 formed group A and 2 and

4 formed B, then with the same data set where cultivars 1 and 2 formed group A and 3 and 4
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formed B.  (Table 3 shows the repartitioning of variance for the second grouping, again using

model 3.) It is easy to imagine something about cultivars 1 and 3 that makes them respond more

positively to some environmental condition in location 1 than do cultivars 2 and 4.  For the

second grouping, however, factors have to be hypothesized that could be associated with

different differences between locations for the cultivar groups on average while allowing the

different differences for cultivars within both groups (see Fig. 2).  This problem becomes even

greater if researchers made no groups and tried to hypothesize about differences between

individual cultivars’ responses in a location or across a group of locations.

Table 3
DDDDaaaattttaaaa    SSSSeeeetttt    1111cccc    ddddiiiivvvviiiiddddeeeedddd    iiiinnnnttttoooo    ttttwwwwoooo    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy
ggggrrrroooouuuuppppssss EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss

VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.0 σ2
C 0.25 (11%)

Cultivar
Group cultivar l1 1 σ2

c:C 0.0625 (2.7%)
A 1 5.3,4.3 0.2,1.2 l2 -1 σ2

l 1 (43%)
A 2 3.1,2.1 2.4,1.4 CA -0.5 σ2

Cl 0.04 (1.7%)
B 3 4.9,5.9 1.6,2.6 CB 0.5 σ2

c:C,l 0.7225 (31%)
B 4 3.7,2.7 2.8,3.8 c1:A,,c3:B 0.25 σ2

ε 0.25 (11%)

c2:A, c4:B -0.25

ClA1, ClB2 0.2
h2within  cultivar group
A or B within location 1 0.83

ClA2, ClB1 -0.2
h2within  cultivar group
A or B within location 2 0.59

cli:I,j ±0.85
h2 within cultivar group
A across both locations 0.025

εk:ij +/-.5
h2 within cultivar group
B across both locations 0.037

Although hypothesis generation based on observational crop trials is enhanced by

appropriate clustering, it tends, in practice, to revolve around one or two major environmental

factors whose effect on the cultivars in a group makes sense given their shared genealogical

origins.  It discounts the possibility that behind a similar response across locations of cultivars

that cluster together may lie different conjunctions of measurable factors (theme 4).  To use data

analysis to expose more heterogeneity in measurable factors, researchers need, ironically, to

know already quite a lot about the biophysical pathways of growth and development

(developmental causes).
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If data are available on environmental factors, hypotheses can be formulated and tested

(statistically) through regression analysis.  In order to produce sufficient observations for each

model to be fitted to the data consolidation of analyses across cultivars within groups is usually

needed (see 3.4b, above).  Clustering that minimizes within-group variances makes such

consolidation seem reasonable with respect to the homogeneity assumption; arbitrary groups or

consolidation across all cultivars invites attention to heterogeneity (theme 4).  If regression

analyses are performed that consolidate heterogeneous models, their results are less likely to be

validated by experimental trials.  Statistical testing of such models become less a step towards

understanding developmental causes and more akin to AOV that identifies difference-in-effect

causes.  In this latter context, themes 2 and 3 about conditionality and control, and the concept of

rerun predictability are apt.  (Appendix 2 considers a special case in which there is one

measurable genetic factor and one measurable environmental factor.)

Sub-theme 7b. High heritability has a mixed relationship with researchers’ ability to formulate

hypotheses.

Notice that under the second grouping within-cultivar-group heritability within one

location tends to be larger (an average of .71 versus .46).   This higher heritability has come at

the expense of homogeneity within groups; the heterogeneity makes it harder for researchers  to

formulate hypotheses about what aspects of the location (or location group) elicit basically the

same response from the cultivars in a particular cultivar group.  At the same time, under the

second grouping the heritability across both locations decreases (an average  of .031 versus .25).

This decline simply reflects the sizeable amount of cultivar by location interaction that remains

within cultivar groups under the second grouping.  As noted above, any hypothesis from the

second grouping has to accommodate differences between cultivars as well as different

differences from one location to the other.

Sub-theme 7c. The results of experimental trials in which environmental factors are

systematically varied are conditional on the levels of other factors not subject to experimental

variation and on the combinations of factors varied, as well as on the combinations of cultivars

and locations in the trial.
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To invent an example, we might find that concentrating the same seasonal total of water

into short periods was better than constant moisture if the cultivars in the trial were susceptible to

rust or if the mid-season in that location is cool, but not otherwise.

Sub-theme 7d.  In the absence of experiments, estimates derived from regression analysis are not

only conditional, but are like difference-in-effects causes in that predictions made using them

assume rerun control (themes 3& 7a).

Although it is possible mathematically to extrapolate a regression equation involving

measurable environmental factors beyond the cultivar or cultivar group in which it was derived,

we would need more knowledge about the developmental causes to ascertain whether this was

justified.

Sub-theme 7e. There are important conceptual distinctions among the different quantities

referred to as “environmental variance.”   The variance of a location effect in an AOV of an

observational trial is not the same as the variance of the effect in an AOV of a trial in which an

environmental factor is systematically varied. The latter is not the same as the variance of such

an environmental factor itself.  The variance associated with an environmental factor in a

regression equation is yet another different quantity.

Recall that, in non-experimental trials a location effect has a variance even when there is

no continuous gradient running through the differences among locations (theme 1).  Yet, even if

there are such gradients, the different environmental variances do not have a clear relationship.

For example, if the factor varied were kg/ha of nitrogen in fertilizer applied to the crop, low

levels of nitrogen would be positively associated with yield, but in trials using higher levels of

nitrogen the influence would diminish or even turn negative.  In such trials the AOV may still

show a significant effect for nitrogen application, but it would be smaller than if nitrogen had

been restricted to a smaller range and the variance in nitrogen had been smaller.  It is a confusion

of categories to equate a treatment effect in a model to a measurable environmental factor.  They

may turn out to be correlated, but the expected degree of correlation is not something that can be

determined without reference to a model of the underlying biophysical processes of development

(see sect. 3.7, example 2 and appendix 2).
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Another way to visualize the conceptual difference is to recognize that the subscript j in

model 1c applied to the fertilizer trial would refer to one of the fertilizer treatments—the order is

not important—while lj refers to an amount of the measured trait, e.g., tonnes/ha of yield, not to

kg/ha of fertilizer.

Sub-theme 7f. Practical considerations place limits on experimentation that stems from

observational trials.

Some factors are more difficult than others to vary experimentally.  For example,

alterations in day length are harder to implement than additions of fertilizer. The more factors to

be varied experimentally, the more cross-combinations that should be tested, and the more

difficult it is in practice to implement the necessary crop trials and encompass mentally the many

interaction effects.  In practice, there is a tendency for hypothesis generation and experiments to

revolve around one or two measurable factors that can be readily manipulated (see theme 7a).

Sub-theme 7g.  If measurable genetic factors are identified, then the previous sub-themes also

apply to generation of hypotheses about genetic factors and to different meanings of the term

“genetic variance” (see also theme 6).

3.5 A thought experiment to illustrate the difficulty of exposing complex causes through AOV

Let me introduce a simple model and thought experiment to accentuate the difficulties of

exposing the complexity of biophysical processes of growth and development using AOV.

Consider the generic model of development in figure 1, but simplify it by not allowing the state

of the organism to induce actions by genetic and environmental factors.  That leaves the attribute

in question being produced by a sequence of gene actions, each one modulated by a

corresponding environmental factor and subject to noise.   One way this could be modeled is as

follows:

y'ijk = Πr (gir
ejr) fjrk  (8)

where g, e, f denote genetic factors, environmental factors, and random noise

respectively,

gir   =  1 or 1+γ with equal probability,
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ejr =  ±β with equal probability, and

fjrk = 1 for the 1st replicate, 1+random number in interval(-δ,δ) for the 2nd replicate

To facilitate comparison with data set 1c, I will scale any data generated from model 8 so

it has the same mean and SD:

yijk = constant1 + constant2* y'ijk (8a)

One data set generated by model 5 with the values γ = .8,  β = .5,  δ = .25, r=1,...,5,

constant1 = -0.88, and constant2 = 3.53 is given in the bottom right hand corner of Table 4.  The

AOV of these data using linear model 3 is given in Table 5 and Figure 6.

Table 4
locations

envtl
factors 1 2
1 0.5 0.5
2 0.5 -0.5
3 -0.5 0.5

genes 4 -0.5 -0.5
cultivars 1 2 3 4 5 0.5 0.5

1 1.8 1.8 1 1.8 1 3.9, 5.6 1.8, 2.6
2 1 1 1.8 1.8 1.8 1.8, 1.2 3.9, 3.6
3 1 1.8 1 1 1.8 5.5, 5.6 2.7, 2.0
4 1 1.8 1 1.8 1 2.7, 3.2 1.1, 1.0

Table 5
DDDDaaaattttaaaa    SSSSeeeetttt    2222    ddddiiiivvvviiiiddddeeeedddd    iiiinnnnttttoooo    ttttwwwwoooo    ggggrrrroooouuuuppppssss    bbbbyyyy
ssssiiiimmmmiiiillllaaaarrrriiiittttyyyy    ooooffff    rrrreeeessssppppoooonnnnsssseeee    aaaaccccrrrroooossssssss    llllooooccccaaaattttiiiioooonnnnssss EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss

VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.0 σ2
C 0.49 (21%)

Cultivar
Group cultivar l1 0.67 σ2

c:C 0.07 (3%)
A 1 3.9, 5.6 1.8, 2.6 l2 -0.67 σ2

l 0.45 (20 %)
B 2 1.8, 1.2 3.9, 3.6 CA 0.70 σ2

Cl 0.60 (26 %)
A 3 5.5, 5.6 2.7, 2.0 CB -0.70 σ2

c:C,l 0.55 (24%)
B 4 2.7, 3.2 1.1, 1.0 c1:A,,c3:A ±0.24 σ2

ε 0.16 (7 %)

C2:B, c4:B ±0.30

ClA1, ClB2 -0.77
h2within  cultivar group
A within location 1, 2 0.29, 0.029

ClA2, ClB1 0.77
h2within  cultivar group
B within location 1, 2 0.87, 0.996

cli:A,j ±0.17
h2 within cultivar group
A across both locations 0.02
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cli:B,j ±1.04
h2 within cultivar group
B across both locations 0.08

εk:ij varied

Figure 6.  Data set 2.
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The first part of the thought experiment is to consider what a comparison of the AOV of

data sets 1c and 2 would suggest to researchers about the processes that generated the data. A

comparison of figures 3 and 6 shows that, although cultivars 4 and 2 only converge in data set 1c

but cross in data set 2, the overall trends are very similar.  The similar AOVs would not suggest

that the data sets 1c and 2 were generated by radically different kinds of models.  However, this

is the case. Although I have not stated this before now, data set 1c was simply (and

unrealistically) generated by the linear model 3 using the parameter values shown in Table 3.

The second part of the thought experiment is to consider what the researchers following

the natural history approach would hypothesize about measurable factors on the basis of the

AOV in Table 5.  Suppose that their prior knowledge about the cultivar genetics and the

locations led them to suspect that genetic factors 1-5 and environmental factors 1-5 could be
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important in explaining differences between cultivar groups and between locations for any

cultivar group.  The best hypotheses they could make are given in the second column of Table 6.

Compare this with the third column, which summarizes the actual factors underlying the data in

Table 4.

Table 6  A comparison of hypotheses and actual factors
TTTToooo    bbbbeeee    eeeexxxxppppllllaaaaiiiinnnneeeedddd BBBBeeeesssstttt    nnnnaaaattttuuuurrrraaaallll    hhhhiiiissssttttoooorrrryyyy

hhhhyyyyppppooootttthhhheeeessssiiiissss
AAAAccccttttuuuuaaaallll    ffffaaaaccccttttoooorrrrssss

Factors underlying separation of
cultivar groups A and B

Uniform within each cultivar
group for all genetic factors and
different between groups on at
least some of the factors.

Heterogeneous for 3 of 5 genetic
factors within group A and for a
different 3 of 5 within group B.
There is no genetic factor for
which A and B are both uniform
within the group and different
from one group to the other.

Factors underlying different
responses of cultivar group A to
location1 vs. location 2

Environmental factors 2 and 3
differ from location 1 to 2.

Partially as hypothesized, but
some of the difference is due to
the three non-uniform genetic
factors modulated by
environmental factors 1, 4 & 5.

Factors underlying different
responses of cultivar group B to
location1 vs. 2

Same as above: Environmental
factors 2 and 3 differ from
location 1 to 2.

The factors are not the same as
above: Some of the difference is
due to two non-uniform genetic
factors modulated by
environmental factors 2 and 3;
some to the other non-uniform
genetic factor 5 modulated by
environmental factor 5.

The last part of the thought experiment is to confirm that the discrepancy between

hypotheses and actual factors would be worse if cultivars were not grouped by similarity over

locations, say, 1 and 2 in group A and 3 and 4 in group B.  I leave this as “an exercise for the

reader,” but want to note that this second grouping yields very high heritability estimates for

each cultivar group within any one location (ranging from .86 to .98).

If the actual values of the genetic and environmental factors were known, a second

thought experiment could be envisaged in which regression analyses was compared with the

actual factors.  There are, however, too few observations in data set 2 for meaningful estimation

of more than a few regression coefficients to be made.

3.6 A special case in which heritability, AOV, and measurable factors can be related
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The variability of measurable genetics factors is often assumed to be related to

heritability, although the latter concept is related to difference-in-effects causes (theme 6).  To

bring attention to the difference between the concepts, let me consider the special conditions in

which systematic relationships between heritability and measurable factors could be derived.

(This section is somewhat technical and is not essential for understanding the sections to follow;

some readers may choose to move ahead to the sections that review the plausibility of genetic

explanations of differences between group means.)

Let us imagine that genetic as well as environmental factors can be measured and vary

among replicates.  The appropriate regression model for a cultivar-location combination would

be an extension of eqn. 6:

yijk = mij + Σpbjpgikp + Σqbiqejkq + ΣpΣq bijpqgikpejkq + εk:ij (9a)

To increase the number of observations on which the regression analyses are based, the models

for separate cultivars and locations could be consolidated into one analysis for each cultivar

group -location group combination—provided that the cultivar and location groups are defined

on the basis of clustering so the homogeneity assumption is reasonable (theme 4):

yijk = mIJ + ΣpbJpgikp + ΣqbIqejkq + ΣpΣq bIJpqgikpejkq + εk:ij (9b)

Suppose that a large number of individuals take one of two values on a genetic factor, p,

and similarly for a dichotomous environmental factor, q, but otherwise are treated as identical

genetically and environmentally.  (Although this is not a standard situation in agricultural

research, I consider it because of its relevance to recent research in human behavioral genetics in

which the effect of an environmental exposure is conditional on a person’s genotype at a specific

locus; Moffitt et al. 2005.)  If we equate these values with belonging to one of two cultivars in a

cultivar group and one of two locations in a location group, we can simplify model 9b:

yijk = mIJ + bJpgikp + bIqejkq + bIJpqgikpejkq + εk:ij (10)

If each i,j (or p,q) combination is assumed to have identical numbers of observations and  the

values of the genetic and environmental factors are scaled to be ±1, the regression analysis using

model 10 produces estimates of bJp, bIq, bIJpq identical to estimates for c1, l1, cl11 derived from an
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AOV (within the IJ cultivar group-location group combination).  Heritability within one location

can be estimated from the regression estimates:

(σ2
c + σ2

cl) / (σ
2

c + σ2
cl +σ2

ε)

= (c1
2 + cl11

2) / (c1
2 + cl11

2 +σ2
ε)

= (bJp
2 + bIJpq

2) / (bJp
2 + bIJpq

2 +σ2
ε) (11a)

Heritability across both locations can be estimated by:
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2/ (c1
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2 + cl11

2 +σ2
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2 / (bJp

2 + bIq
2 + bIJpq

2 +σ2
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If bJp
2 + bIJpq

2 is negligible, the within-location and across-location heritability estimates from the

AOV will be similar.  If the coefficients are not negligible, the across-location heritability will be

smaller than the within-location estimate.

This equivalence suggests an analog of heritability for measurable factors defined by the

last terms in eqns. 11a and 11b—“mf-heritability” we might call such estimates.  The same

formulas might be extended to cases in which the genetic and environmental factors are

continuous, rather than dichotomous. The downside of the mf-heritability formulation is that the

requisite assumptions might be accepted without question, namely, the homogeneity required to

consolidate the separate regressions (from eqn. 9a to 9b) and the negligible variation in genetic

and environmental factors other than p and q.  Moreover, the mf-heritability estimates might be

used beyond the cultivar group-location group combination (IJ) in which they were

estimated—“After all,” it might be presumed, “if the same factors are measurable in a different

population and location, surely they will function in similar ways in that population too, so

heritabilities and mf-heritabilities should be similar.”  This, in turn, might predispose people to

think that heritability estimated in one location can be extended to apply across locations or used

to explain differences between means of cultivar groups grown in separate locations.  The

sections to follow will show that such extensions are not justified.

3.7  Plausibility reviewed

Based on the discussion of agricultural crop trials, it is now possible to question the two

lines of thinking presented in the introduction in which high heritability is held to bolster the
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plausibility of genetic explanations of differences between group means.  These lines of thinking

will be translated into agricultural analogs for the purposes of this review.

Common theme in both lines of thinking:  High heritability of measurements within a cultivar

group does not on its own allow us to conclude that the difference between mean measurements

for the groups grown in different locations also has a high heritability.

Review:  This theme can be understood in terms of the independence of the variance

components, σ2
c and σ2

c:C,l, which enter the formula for within-group, within-location

heritability, and the variance components, σ2
C , σ2

l and σ2
Cl , which enter the formula for the

heritability of the difference between mean measurements for the cultivar groups in different

locations. (It should be noted that the latter heritability is very close to 1 unless σ2
ε is very large.)

Line of thinking 1.  High within-group heritability suggests that it will be possible for researchers

to find direct effects on measurements of genotypes or effects of environments induced by such

genotypes.

Review:  High heritability of a measured attribute within a cultivar group in one location does

not indicate that researchers will be able to find direct effects of genotypes on the attribute or

effects of environments induced by such genotypes.  Heritability is a measure, derived from a

given data set, of predictability of outcomes if the range of cultivars and other conditions that

produced the data set were repeated or rerun. As such, heritability does not reflect underlying

causes related to the dynamics of gene-based reproduction or to the organisms’s subsequent

development responding to environmental factors (themes 5 and 6).

Consider the high within-location heritabilities for cultivar group B in Table 5 and for

both cultivar groups under the second grouping (as noted at the end of section 3.5).  In the model

producing these data (eqn. 8) the effects of genetic factors cannot be meaningfully separated

from the effects of environmental factors that modulate them, and the effects of individual

genetic or environmental factors on cultivar-group differences cannot be isolated from each

other.  It should not be surprising that heritability decreases when estimated over more than one

location—this follows from the formulas used to calculate heritability—or that heritability

changes with the mix of cultivars and locations—such conditionality is to be expected for a

measure of rerun predictability, which is derived from an AOV.
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Heritability is related to the generation of hypotheses about causes of differences in crop

trials, but not in a positive way.  The heritability within a cultivar group and within a location

group (or location) is lower if the cultivars are grouped so that the response of a cultivar group

member (or response elicited by a location group member) is similar to the average for the group

as a whole.  When groupings are made arbitrarily or are based on criteria not derived from the

data, the heritability will be higher but it will be harder for researchers to generate hypotheses

about what environmental factors present in the locations in any particular location group elicited

the responses from the cultivars in a particular cultivar group.  In any case, hypotheses

formulated after observational crop trials need to be subject to testing in experimental crop trials

and the results become one component of the larger project of unraveling the biophysical

pathways of the plant growth and development (developmental causes) and exposing the ways

these pathways are affected by the different genetic makeup of cultivars and the different

environmental factors in the locations (measurable factors).

Finally, it is only in special conditions that systematic relationships can be derived

between heritability and regression analyses in relation to measurable factors.  The cultivars and

locations need to have been grouped by clustering and the relations should be viewed as

conditional, holding within the specific combination of cultivars and locations where the

relations are derived, not across into other groups of cultivars or locations (sect. 3.6).

Line of thinking 2a. If the differences are not caused by genetic differences, then they must be

caused by environmental differences.  Yet, all environment-only explanations that have been

tested have been disproved.

Review.  There is a false dichotomy in the first sentence.  Differences in cultivar group mean

yields could be caused by a combination of genetic and environmental differences, whether we

are thinking about causes at the level of difference-in-effects (model 3), measurable factors

(model 6a), or developmental causes (model 8 and the generic model in Fig. 1).   This would, I

believe, be readily acknowledged by anyone promoting this line of thinking. There is, however, a

deeper conceptual problem: the second sentence refers to explanations in terms of measurable

factors, while heritability, which is derived from AOV of observations, relates to difference-in-

effects causes.  The AOV of observations is not very helpful in exposing causes at the level of

measurable factors (let alone in helping to stimulate models of the dynamics of development).
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After the appropriate simplification of the data set by clustering, the AOV of observations in

crop trials can contribute to the formulation of hypotheses that may be subject to experimental

trials to examine the effect of varying specific environmental (and perhaps genetic) factors.  If

data are available for measurable genetic and environmental factors, regression analysis can

provide support for models in the form of measurable factors (e.g., model 6a) or a mix of effects

and measurable factors (e.g., model 6).  Notice, however, that regression analysis of

environment-only models entails consolidation of the analyses for separate cultivars.  Recalling

theme 4, such consolidation could limit the fit of these models even if environmental factors had

a direct influence on the yields for individual cultivars.

Lines of thinking 2b & 2c. High heritability means that the fraction of variation in measurements

within a group that is associated with environmental variation is low.  Therefore, the number of

SDs of change in the environment that would be necessary to produce a 1 SD gap between the

means for the groups grown in different locations is too large to be solely due to any known

environmental causes.  Any environmental “X-factor” that explains cultivar group differences

must vary hardly at all within cultivar groups.  No known environmental factor operates in such

a fashion.

Review of 2b & 2c. High heritability of a measured attribute within a cultivar group in one

location means that the residual variance component (σ2
ε) is low in relation to within-group,

within-location cultivar variance component (σ2
c:C + σ2

c:C,l). Suppose that the size of the residual

variance component when the replications are randomly assigned (i.e., model 3) is taken as an

upper limit to the expected size of the sub-location variance component in a hypothetical trial

where replications are systematically assigned to multiple sub-locations. This sub-location

variance component is not, however, the same as the variance of the effect in an AOV of a trial

in which some environmental factor is systematically varied, which is not the same as the

variance of such an environmental factor itself (theme 7e).

Let me drive the point home perhaps further than is necessary.  Imagine that the

distinctions among different construals of “environmental variance” (theme 7e) were ignored.

Even in this thought experiment it would not be justified to extend results from within a group to

between means of groups in different locations.  This follows from noting that within-group
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variance components are independent of between-group-mean variance components in the

appropriate AOV based on model 3.  Similarly, for the “X-factor” argument.

3.8 Numerical examples to reinforce the argument against plausibility

Despite the preceding logical and methodological arguments, I can anticipate requests to

be shown a realistic case in which, in the absence of an unrealistic environmental factors, the

values of the treatment effect variances from an AOV (and heritability estimates based on them)

and variances of measurable genetic and environmental factors were disparate.  Let me provide

two numerical examples that reinforce the preceding critical review of the second line of

thinking.

1)  Consider Table 3, in which Data Set 1c is divided into two arbitrary groups.  The

within-cultivar-group by location interaction variance component (σ2
c:C,l) is comparable to the

location variance component (σ2
l) at the same time as key features for IQ test scores are found,

namely, within-cultivar-groups, within-location heritabilities are high and the difference between

the means across cultivar groups and locations is substantial in relation to the standard deviation

(SD) for the data set as a whole.  For data set 1c, the difference between means of 1.0 is 65% of

the SD for the data set as a whole; for data set 2 the difference between means is 91% of the SD.

2)  The first example does not refer to measurable environmental factors for which

variances could be calculated. Consider then following variant of model 8:

y'ijk = Πr (gir
ejrk)  (12)

where g, and e denote genetic and environmental factors (with random noise built into the

latter),

gir   =  1 or 1+γ with equal probability,

ejrk =  ±β ∗ (1+random number in interval(-δ,δ))  with ±β having equal probability

Table 7 gives an AOV using linear model 3 of one data set generated with  γ = .8, 

β = .5,  δ = 1.25, r=1,...,5, again scaled using eqn. 8a so the data the same mean and SD as data

set 1c (constant1 = -2.19, and constant2 = 3.87). Table 8 presents the variances of the genetic and

environmental factors.  The square root of the average within-group or within-location variances

isgiven to allow comparison to the corresponding gap between cultivar-group and location

means.
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Table 7
DDDDaaaattttaaaa    SSSSeeeetttt    3333    ddddiiiivvvviiiiddddeeeedddd    iiiinnnnttttoooo    ttttwwwwoooo    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy
ggggrrrroooouuuuppppssss EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss

VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.0 σ2
C 0.01 (1%)

Cultivar
Group cultivar l1 0.78 σ2

c:C 1.12 (48%)
A 1 2.1, 1.6 0.8, 2.2 l2 -0.78 σ2

l 0.61 (26 %)
A 2 6.3, 5.9 2.7, 3.4 CA 0.12 σ2

Cl 0.00 (0 %)
B 3 5.3, 3.4 1.8, 2.6 CB -0.12 σ2

c:C,l 0.29 (13%)
B 4 2.2, 3.6 2.1, 2.1 c1:A, c2:A, ±0.37 σ2

ε 0.28 (12 %)

c4:B, c3:B ±1.45

ClA1, ClB2 -0.07
h2within  cultivar group
within location 0.84

ClA2, ClB1 0.07
h2 within cultivar group
across both locations 0.49

cli:A,j ±0.34

cli:B,j -/+0.69
εk:ij varied

Table 8

Location, replication
envtl
fact-
ors 1,1 1,2 2,1 2,2

square
root of
mean
b/w

replicat-
ion var.

differ-
ence
b/w

location
means

1 0.03 0.77 0.00 0.01 0.26 0.40
2 -0.28 -0.89 -0.61 -0.37 0.23 -0.09
3 -0.73 -0.44 -0.92 -0.55 0.17 0.15

genetic factors 4 0.91 0.45 0.64 -0.12 0.29 0.38
1 2 3 4 5 0.97 0.91 0.30 0.95 0.23 0.32

cultivars        1 1 1.8 1.8 1 1.8 2.1 1.6 0.8 2.2
2 1.8 1 1 1.8 1.8 6.3 5.9 2.7 3.4
3 1.8 1.8 1 1.8 1.8 5.3 3.4 1.8 2.6
4 1.8 1 1 1 1 2.2 3.6 2.1 2.1

square root of
mean b/w

cultivar var. 0.28 0.40 0.28 0.40 0.28
difference b/w
cultivar group

means -0.40 0.00 0.40 0.00 0.40
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This example may not be typical—there is considerable variation among data sets

generated by model 12 even with the same values of the parameters. Yet, there is nothing about

model 12 that renders the example unrealistic.  This case shows that it is possible to produce high

within-cultivar group, within-location heritability values without any systematic difference

between the two cultivar groups in the values of the genetic factors (see bottom two rows on the

left in table 8).  Moreover, the between-location gap for the environmental factors is comparable

to the within-location (between replicates) standard deviation (top right two columns in table 8).

3.9 Partial data sets and their implications, I. AOV

Let me now consider a less-than-ideal scenario that will become important when

translating from the agricultural situation to human behavioral genetics.  Suppose that there can

be only two replicates of any cultivar in an observational trial.  If cultivars are measured in two

locations, there is no within-location replication and thus heritability within any one location is

always 1 (see eqn. 5).  Nothing interesting can be inferred from that.  If cultivars are measured in

one location only, say, cultivars 1 and 2 are grown in location 1 and cultivars 3 and 4 in location

2, they cannot be grouped by similarity across locations.  This limits the formulation of

hypotheses about environmental factors (themes 7a & b).

Theme 8—Limited replication: limited hypothesizing. With only two replicates, an AOV of

observations provides a limited basis for hypothesizing about measurable factors; any

conclusions made on the basis of the AOV must center on difference-in-effects causes.

What could be learned about difference-in-effects causes from AOV of the limited-

replication data set?  This question can be addressed in two ways, according to two linear

models.

a.  Nested model.

Consider linear model 13 and the effects estimated under this model (Table 9)

yijk = m + lj + ci:j + εk:ij  (13)

where i:j denotes that i is nested within j

and estimates are constrained so that Σjlj =0; for each l, Σi:lci:l =0; and for each i, Σkεik=0

Table 9

SSSSuuuubbbbsssseeeetttt    ooooffff    ddddaaaattttaaaa    SSSSeeeetttt    1111cccc    aaaannnnaaaallllyyyyzzzzeeeedddd    uuuussssiiiinnnngggg EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
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nnnneeeesssstttteeeedddd    mmmmooooddddeeeellll hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.2 σ2
l 0.25 (19%)

Cultivar
Group cultivar l1 0.5 σ2

c:l 0.785 (61%)

A 1 5.3,4.3 l2 -0.5 σ2
ε 0.25 (19%)

A 2 3.1,2.1 C1;1 1.1

B 3 1.6,2.6 C2;1 -1.1
h2within  cultivar group
A within location 1 0.83

B 4 2.8,3.8 c3:2 -0.6
h2within  cultivar group
B within location 2 0.59

c4:2 0.6
h2 within cultivar group
A across both locations not applicable

εi:j,k +/-.5
h2 within cultivar group
B across both locations not applicable

The interpretation of these effects, however, is not the same as for the effect with the

same symbol in models 1 or 3.

Theme 9—Nested effects.  The existence of a significant cultivar-nested-within-location effect

does not tell us whether the average for a cultivar is generally higher than another or whether it

is only higher when paired with the particular location. Similarly, a significant location (“l”)

effect does not tell us whether one location is superior to the other, only that the cultivars grown

in one location are different, on average, from the cultivars grown in the other location.

The superiority of the average of cultivars 1 and 2 in location 1 over the average of cultivars 3

and 4 in location 2 does not address any more general question. To put this in other words, the

model allows no estimation of effects of the cultivars in the location in which they were not

grown, or of location effects over all cultivars.

A caution about interpretation of nested analyses along the lines of theme 9 is given in

Lindman’s textbook (1992) and is illustrated with the example of assessing the dependence of

high school students’ test scores in algebra on their teacher and school.  The students within a

school were randomly assigned to a teacher in their usual school.  Lindman notes that a

significant location (school) effect “is likely to be interpreted as due to differences in physical

facilities, administration, and other factors that are independent of the teaching abilities of the

teachers themselves…  [However, d]ifferences between teachers in different schools are part of

the [location or school] effect, and the observed differences between schools could be due
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entirely to the fact that some schools have better teachers [or] some schools have smarter

children attending them” (Lindman 1992, 194).

If regression analysis is performed, equations 6 or 6a can still be used, but it should be

remembered that the regression coefficients have a different meaning, now referring to a cultivar

nested in a location.  Extrapolation to other locations is mathematically straightforward, but not

justified on the basis of underlying developmental causes or measurable factors, especially since

the groups cannot have been formed on the basis of similarity across locations (sect. 3.2).

b.  Grouped model.

A second way to analyze the partial data set is to use linear model 3.  Some of the effects

can still be estimated but in composite form (Table 10).

Table 10
SSSSuuuubbbbsssseeeetttt    ooooffff    ddddaaaattttaaaa    SSSSeeeetttt    1111cccc    ddddiiiivvvviiiiddddeeeedddd    iiiinnnnttttoooo
ttttwwwwoooo    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy    ggggrrrroooouuuuppppssss EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss

VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.2 σ2
(C+l+Cl) 0.25 (19%)

Cultivar
Group cultivar l1 + CA+ ClA1 0.5 σ2

(c:C + c:C, l) 0.785 (61%)

A 1 5.3,4.3 l2 + CB+ ClB2 -0.5 σ2
ε 0.25 (19%)

A 2 3.1,2.1 C1:A + cl1:A,1 1.1

B 3 1.6,2.6 C2:A + cl2:A,1 -1.1
h2within  cultivar group
A within location 1 0.83

B 4 2.8,3.8 c3:B + cl3:B,2 -0.6
h2within  cultivar group
B within location 2 0.59

c4:B  + cl4:B,2 0.6
h2 within cultivar group
A across both locations not estimable

εk:ij +/-.5
h2 within cultivar group
B across both locations not estimable

The values correspond directly to effects from the nested model (Table 7) and Lindman’s

caution applies equally well to these composite effects. The composite estimates are not,

however, directly translatable to the effects derived from AOV of the full data set 1c (Table 3).

  Let me make some other observations about the comparison of the analyses of the

partial and full data sets.  The partial data set is a subset of the full data set, which means that

nothing about the underlying causal structure of the world that produced full data set has

changed.  Quantitative and qualitative changes in the effects are simply further illustration of the

conditionality of effects in an AOV (theme 2).  Consider, in particular, the effects that make up
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the difference between the mean for cultivar group A in location 1 and the mean for cultivar

group B in location 2. According to the nested analysis

MeanA1- MeanB2 = l1- l2 (14a)

while in the grouped analysis (where l has a different value)

MeanA1- MeanB2 = CA- CB + l1- l2 + ClA1- ClB2 (14b)

In this case there are only two groups of cultivars and two locations, so many effects come in

equal and opposite pairs, e.g., CA = -CB, etc., which means eqns. 14a & 14b simplify to

MeanA1- MeanB2 = 2l1 (15a)

MeanA1- MeanB2 = 2CA + 2l1 + 0 (15b)

In the nested analysis, whatever difference there may be between group A cultivars and

group B cultivars is subsumed in the location effects.  Equivalently, in the grouped analysis,

there is no way that data comparing A1 and B2 can disentangle the two effects remaining in eqn.

15b – the same difference could result from a positive CA and zero lj, or from negative CA and

positive lj, and so on.

Furthermore, there is no way that data from comparing A1 and B2 can indicate the size of

ClA1, which could be very large or very small or somewhere in between.  An estimate of this

effect is needed if we wanted to predict the difference between the means of the two cultivar

groups in the same location, e.g.,

MeanA1- MeanB1 = CA- CB + l1- l1 + ClA1- ClB1 (16a)

which simplifies in the case of two locations to

MeanA1- MeanB1 = 2 CA + 0 + 2ClA1 (16b)

Equations 14-16 do not include effects related to within-group variation (i.e, ci:j and εk:ij

in the nested analysis or ci:I and cli:I,j and εk:ij in the grouped analysis), so within-group variance

components and heritability estimates can have no relationship to the quantities needed to

estimate the changes in cultivar-group mean, location, and cultivar-group-mean-by-location-

interaction effects that would be needed to shift one mean to the level of the other.

The preceding observations have further implications for the two lines of thinking in

which high heritability is held to bolster the plausibility of genetic explanations of differences

between group means.
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Theme 10—Partial data sets and inseparable effects. The within-group estimates that can be

derived from the partial data set cannot speak to the relative contribution to differences between

cultivar-group means in different locations of differences in cultivar-group effects versus

location effects versus cultivar-group-mean-by-location-interaction effects.

If some differences in cultivars and/or locations were hypothesized to explain the difference

between cultivar group means in different locations, these differences should encompass all these

differences-in-effects.  In any case, the logic of the arguments made in section 3.7 against lines

of thinking 2b & c still holds (i.e., concerning the different construals of “environmental

variance” and the independence of within-group variance components and between-group-mean

variance components). Note also that, in the case of two locations, because no estimate at all can

be made of the cultivar-group-mean-by-location-interaction effect, no answer could ever be

derived from AOV of the partial data set to the agricultural analog of Flynn’s reversal of fortunes

question (sect. 2), i.e., how would cultivar group B’s mean change if grown in location 1, not

location 2.

3.10 Partial data sets and their implications, II. Regression

The problem of inseparable effects (theme 10) cannot be overcome by regression

analyses in relation to measurable environmental factors. To show this, let me examine standard

regression analyses from the perspective of this paper, namely, one in which we envisage

multiple cultivars grown in multiple locations, but observe a nested subset in which any cultivar

is grown only in one of two locations.

When environmental factors can be measured for each location and replicate, the

standard regression analysis that allows comparison of cultivars in two cultivar groups involves a

model using a dummy variable to designate the average effect of cultivar group membership:

yijk = m + dI +  Σqbqejkq + εk:ij (17a)

where dI denotes the dummy-coefficient for group I (set to zero for the reference group)

Alternatively, separate regression analyses can be performed:

yijk = mI +  ΣqbIqejkq + εk:ij (17b)

Now consider the full observational trial, but again imagine that genetic factors can be

measured and vary among replicates, so that the appropriate regression model is eqn. 9a. or, after
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consolidation to increase the number of observations, eqn. 9b.   Eqn. 9b can be used to compare a

cultivar (i) from group A grown in location 1 with a different cultivar (i’) from group B grown in

location 2 (i.e., location groups are of size 1).  The difference is given by:

yi1k – yi’2k’ = ( mA1 – mB2) + Σpb1pgikp-b2pgi’k’p + Σq[e1kq(bAq + ΣpbA1pqgikp) – e2k’q(bBq +

ΣpbB2pqgi’k’p) ] + ε                               (18)

Clearly, genetic and environmental factors are intertwined.  Table 13 compares the difference in

eqn. 18 with those derived from regression analyses 17a and 17b, respectively, namely:

yi1k – yi’2k’ =  - dB + Σqbq(e1kq – e2k’q) + ε                             (19a)

yi1k – yi’2k’ = mA – mB +  Σq(b1qe1kq – b2qe2k’q) + ε                              (19b)

Table 13

RRRReeeeggggrrrreeeessssssssiiiioooonnnn    aaaannnnaaaallllyyyyssssiiiissss    bbbbaaaasssseeeedddd    oooonnnn

mmmmooooddddeeeellll

18 19a 19b

CCCCoooommmmppppaaaarrrriiiissssoooonnnn

mA1 – mB2 - dB mA – mB coefficient specific to cultivar group-location combinations

subsumed in a coefficient related only to cultivar group

membership

Σpb1pgikp-b2pgi’k’p part of
ε

part of
ε

location-specific coefficient related to differences in genetic

factors subsumed in the residual

bAq

ΣpbA1pqgikp

b1q bq

Similarly for cultivar group B and location 2

coefficient specific to cultivar group together with a coefficient

related to differences in genetic factors (but specific to cultivar

group-location combinations) subsumed in a coefficient related

to location only or a coefficient independent of cultivar and

location

This comparison complicates the objection that environmental factors may be, in part, surrogates

for genetic factors (see end of sect. 5.2).  From the perspective of this paper, misattribution is

more than a matter of correlations between measurable genetic and environmental factors.  It is

thoroughgoing and this is to be expected in light of the inseparability of effects in AOV of nested

and partial data sets (themes 9 & 10).  Moreover, if homogeneity is questionable, the
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consolidation from eqn. 9a to 9b cannot be justified and the coefficients in a standard regression

analysis become even harder to interpret in terms of distinct genetic and environmental factors.

Of course, the methodology of regression analysis allows us to use models 17a or 17b

without attention to nesting or partiality of the data, and in cases where there is no replication.

The results may stimulate experimental trials (sect. 3.4c), but cannot be linked to heritability

estimates within or across locations.

4.  Human behavioral genetics and differences in IQ test scores

Human behavioral genetic analysis of IQ test scores and other traits departs from the

ideal agricultural case in significant ways.  Agricultural researchers have the kind of control that

allows them in observational trials to replicate cultivars over many locations (and over time) and

to test many cultivars in the same location.  In experimental trials they can also vary specific

environmental factors. Human behavioral genetics does not have such control over the genetic

types or environmental factors.  The maximum number of replicates is two (and this figure

assumes that there are no departures from randomness when identical twins are separated and

assigned to sub-locations).

I have called into question, even for the ideal, agricultural case, the lines of thinking in

which high heritability is held to bolster the plausibility of genetic explanations of differences

between group means.  The use of partial data sets in human behavioral genetics has the further

effect of restricting heritability estimation to within-location heritability and of limiting the

formulation of hypotheses to test about measurable environmental or genetic factors.  Given

those limitations, discussion should be limited to difference-in-effects causes and as such can

shed no light on the question of how whites would score on IQ tests if raised in the environments

that blacks experience and vice versa (even if we assume that this reversal of fortunes could be

brought about without changing any other social conditions and without knowing the

developmental causes of or measurable factors associated with IQ test scores for individuals in

different racial groups).  Regression analysis cannot escape the limitations of partial data sets for

separating the contribution of measurable genetic or environmental factors.

My arguments depend on analyzing data from racial groups as if they grew up in

different locations.
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Theme 11—Racial groups as separate locations in an AOV.  The appropriate model for an AOV

when replications—the identical twins raised separately—are not assigned independently with

respect to membership in a racial group is one in which the experience of racial group

membership is modeled as a separate location.

(In any case, if identical twins were ever to be randomly assigned across racial groups, the

experience of trans-racial twins would not be simply that of the racial group in which they were

raised.)  Any AOV using a model such as 3 (or 13) means that statistics, such as heritability, that

are calculated from data in one or the other racial group can provide no insight about the causes

of the gap between the two racial groups in the averages over the genetic types within that

location.

(My case is based on the logic and methodology of AOV and regression analysis of

observational trails.  If any reader needs numerical examples to help them visualize the

arguments, they should subtract 3.0 from each data point in section 3, multiply by 15/SDy, i.e.,

9.84, and add 100—the resulting values for the genetic types or cultivars will look very much

like values for IQ test scores.  The difference between the mean for genetic types 1 and 2

grouped together and genetic types 3 and 4 grouped together would be 15 IQ points for data set

1c and 21 IQ points for data set 2.  For the same groupings, the within-cultivar-group, within-

location heritabilities are high, ranging from .59 to .83 for data set 1c and from .86 to .88 for data

set 2.)

Finally, all the arguments and themes I have introduced apply to apply to differences

between mean IQ test scores not only in different racial groups, but also in different generations.

Because separated identical twins cannot be assigned across generations, model 3 (or 13) is

appropriate for the AOV. Any AOV using that model produces statistics, such as heritability,

that are calculated from data in one or the other generation and can provide no insight about the

causes of the gap between the two generations in the averages over the genetic types within that

generation.  The coexistence of high intergenerational gains and with within-generation

heritability is not a genuine paradox, even though the Flynn effect remains intriguing and

warrants explanation (see sect. 5.3).

The psychologist and behavioral geneticist Arthur Jensen is well known for promoting

the second line of thinking identified in the introduction.  He has stated that “we are left with…

various lines of evidence, no one of which is definitive alone, but which, viewed all together,
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make it a not unreasonable hypothesis that genetic factors are strongly implicated in the average

Negro-white intelligence difference” (1969, 80).  However, according to my account there are no

grounds for the reasonableness of this hypothesis that can be found in the concept of heritability

and the statistical Analysis of Variance on which it is based.  Perhaps of more importance,

heritability and AOV cannot shed light on the changeability of differences across racial groups or

generations.

It is beyond the scope of this essay to assess the power of newer techniques in human

behavioral genetics, such as mapping Quantitative Trait Loci (Plomin et al. 2003) and Moffitt et

al’s (2005) “investigations of measured genes in measured environments.”  Such work should, I

believe, be reviewed in relation to the distinctions and themes of this essay (especially themes 9-

11) before anyone presumes that the new behavioral genetics can do better than the old in

explaining differences between group means and addressing questions about changeability.

5.  Critiques reviewed and questions reconceived

The goal of this essay has been to introduce distinctions and themes that, I hope, help

readers visualize more clearly the limited relevance of human heritability estimates for

explaining differences between means across groups or across generations.  In this section I want

to revisit three critiques related to the conventional wisdom about differences between mean IQ

test scores for racially defined groups to show how important distinctions can be unintentionally

obscured.

5.1  The Analysis of Variance and the Analysis of Causes Revisited

Lewontin (1982, 132-3) introduces two agricultural thought-experiments to help readers

visualize why heritability within groups is not relevant to explanation of differences between

groups.  In one example, two set of seeds sampled from one open-pollinated cultivar are planted

in two pots of washed sand.  Both pots are fed with plant-growth solution, but the solution in the

second pot lacks nitrogen. Reading from the diagram in Lewontin’s book and inventing arbitrary

units for height of the plants gives us Data set 4, which is analyzed using a variant of eqn.1c

(Table 11):

yjk = m + lj 
 + εk:j (20)

Table 11
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DDDDaaaattttaaaa    SSSSeeeetttt    4444 EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss
VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 m 3.15 σ2
l 1.9525 (75 %)

cultivar l1 1.35 σ2
ε 0.655 (25 %)

1 5, 4, 6, 3
2, 1.8, 2,

1.4 l2 -1.35

εjk varied
h2 within location or
across both locations 0

Lewontin observes that, because each location (pot) is uniform, variation within them

will be associated with genetic differences among the sampled seeds.  Lewontin calls this a

heritability of 1, but the correct value is 0 because a new sample of seeds grown in any one

location would have no correlation with the first sample.  Although all the within-location

variance is associated with genetic variability, this variability is error variance in the AOV.  (If

we thought of the sample of seeds as a set of different cultivars and if we could clone each seed

and replant it, then the appropriate model would be eqn. 1c and, in the absence of replications,

heritability within locations would be 1.)

Similarly, the heritability across both locations is 0.  This value seems consistent with

Lewontin’s observation that the difference between (the average measurements for) locations is

“totally environmental” (i.e., entirely associated with the environmental difference of nitrogen

vs. no nitrogen).  Consider, however, the rerun predictability when the location is constrained to

be the same in both cases—the correlation between the current data and the predicted results is

.75.  The only way to increase this correlation, that is, for the difference between the average

measurements for each location is more strongly associated with the nitrogen difference, is to

reduce the within-location or error variance that is associated with genetic differences among

those seeds.

Precision about these technical issues helps us to avoid linking heritability, which

depends on AOV of observational trials and thus difference-in-effects causes, with the idea of

measurable genetic factors that differ among individuals in association with differences among

individuals in the trait in question (theme 6; but note the special case in sect. 3.6).  As shown in

sect. 3, the partial data sets of human behavioral genetics cannot fulfill the conditions under

which the AOV of observational trials stimulates hypothesizing about measurable environmental

or genetic factors or under which it is reasonable to extrapolate regression coefficients to

locations other than those for which they were estimated.
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  When Lewontin (and many others following him) use his example to make conceptual

points, they overlook the control the example presumes over which varieties to interbreed or

plant and the ability to replicate environmental conditions.  Such control characterizes

observational and experimental crop trials (theme 3), but is not available to human behavioral

genetics.  Moreover, the example blurs the distinction between observational and experimental

crop trials (theme 7) as if human behavioral genetics could use experiments to generate

knowledge of measurable factors.  These oversights, together with the implicit linkage of

heritability with measurable genetic factors (theme 6), lend unintended plausibility to lines of

thinking in which genetic factors are separable from environmental factors and in which insight

about those factors could follow from learning that heritability estimates are high.

In Lewontin’s other example (1982, 132), one seed from each of two inbred cultivars is

planted in a series of pots of soils taken from different locations.  Again, suppose we read from

the diagram in Lewontin’s book and invent arbitrary units for height of the plants.  This can give

us Data set 5, which is analyzed (Table 12) using a different variant of eqn.1c:

yij = m + ci + lj 
 + clij (21)

Table 12

DDDDaaaattttaaaa    SSSSeeeetttt    5555 EEEEssssttttiiiimmmmaaaatttteeeessss    ooooffff    eeeeffffffffeeeeccccttttssss
VVVVaaaarrrriiiiaaaannnncccceeee    ccccoooommmmppppoooonnnneeeennnnttttssss    &&&&
hhhheeeerrrriiiittttaaaabbbbiiiilllliiiittttyyyy    eeeessssttttiiiimmmmaaaatttteeeessss

 location 1 2 3 4 m 2.75 σ2
l 2.5625 (69 %)

cultivar c1 .75 σ2
c 0.5625 (15%)

1 4 7 2 1 c2 -.75 σ2
cl 0.5625 (15%)

2 3 3 1 1 lj
.75, 2.25,
-1.25, -1.75

cl1j
-.25, 1.25,
-.25, -.75 h2within a location 0

cl2j -cl1j h2across locations .15

Lewontin observes that for each of the inbred cultivars there are no genetic differences

across the locations (pots) and all the location-to-location (pot-to-pot) variation must be

“environmental,” corresponding to differences in the soils.  At the same time, noting that cultivar

1 does better than (or as well as) cultivar 2 in each location, Lewontin asserts that this gap is

entirely “genetic” because the cultivars experienced identical sets of locations.
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The meaning of the terms “genetic” and “environmental” are ambiguous (see themes 6

and 7d) in this context.  Again, it is instructive to be precise.  First, notice that the advantage of

cultivar 1 over cultivar 2 varies from one location to the next.  In terms of AOV and difference-

in-effect causes, there is a cultivar effect (i.e, a non-zero gap between the means across all

locations of cultivar 1 and 2), and there are cultivar-by-location-interaction effects.  In terms of

measurable genetic and environmental factors, no hypotheses are obvious.  What we can infer,

however, is that the varying within-location, between-cultivar differences are associated either

with a different mix of genetic factors in different locations, or with the same genetic factors

having a different influence.  The within-cultivar differences across locations may correspond

with one or many environmental factors and these factors need not be the same from one cultivar

to the next.  In short, the best we can say about the gap between cultivars in each location and the

gap between locations for each cultivar is that they are associated with a combination of

environmental and genetic factors.

In terms of rerun predictability, the absence of replication means that within-cultivar

heritability is not a very interesting quantity in this case.  Within one location, this heritability

must be 1; across locations it must be 0—even if the cultivars are not inbred.  On the other hand,

taking both cultivars into account, the heritability across locations is .15 and the rerun

predictability when the location is constrained to be the same in both cases is .69—not 0 and 1 as

might be naively expected if these heritability and rerun predictability measures corresponded to

the terms “genetic” and “environmental” as used by Lewontin and others following him. In

summary, this example, like Lewontin’s other one, blurs distinctions in ways that lend

plausibility to lines of thinking in which measurable genetic and environmental factors are

separable and in which insight about those factors could follow from learning that heritability

estimates (and difference-in-effect causes) are high or low.

In an earlier, much-cited essay Lewontin (1974) argues, in effect, that, because any AOV

is conditional (theme 2), it cannot shed light on causes (in the terms of this paper, all three kinds

of causes) beyond the local combination of genetic types and locations observed.  He supports

this argument with diagrams of “norms of reaction” that summarize the response of a cultivar or

genetic type when some environmental factor is varied.   Norms of reaction for different cultivars

that vary in slope and position can confound any attempt to extrapolate the relative ranking of

genetic types (or cultivars) observed over part of the range of the environmental factor to the full
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range.  Some of Lewontin’s diagrams are schematic, with the measured trait plotted against an

unspecific environmental factor E; one plots real data on viability of strains of fruit flies against

temperature.  Having a single continuous environmental factor as the horizontal axis in both the

schematic and real cases reinforces the idea that location effects in an AOV can be readily

translated into environmental factors with continuous gradients (contra themes 1 and 7e).

Compared with agricultural breeders, fruit fly breeders have even greater control over genetic

types and environmental conditions (theme 3), so they can readily envisage generating such

plots.  However, using diagrams of norms of reaction to make conceptual points about the AOV

and human behavioral genetics steers us away from visualizing the difficulties in using AOV to

expose equivalent environmental factors in humans (theme 8).

5.2  Sesardic’s critique of critics of genetic determinism

Philosopher of science Neven Sesardic (2000) has argued pointedly that his colleagues

need to delve more deeply into the science on which they make their arguments.  In particular,

they should recognize that the contribution of behavioral genetics to explanation of differences

between racial group means in IQ and other test scores rests not on an invalid extension of within

group heritability, but on something like the second line of thinking I presented in the

introduction.  In this light, the validity of extending within group heritability to explanation of

differences between racial group means cannot be resolved on logical or methodological

grounds, but is an empirical issue—Are there environment-only explanations that have been

tested and not disproved?  (He thinks not, but see Fryer and Levitt 2004.)  Are there

environmental factors that show wide variation between racial groups, but narrow variation

within groups?  Unfortunately for Sesardic’s argument, although he may be justified in noting

the inattention of critics of genetic determinism to the second line of thinking, that thinking does

not stand up to scrutiny (sects. 3 and 4).  The shortcomings I describe involve matters of logic

and methodology; empirical considerations are beside the point.

Sesardic (2003, 1004) also argues against many critics of genetic determinism in

asserting that the concept of heritability, “when properly understood, actually accords well with

our common-sense etiological ascriptions.”  In his account, “heritable” and “genetic” are

synonymous, and “genetic” means differences in a trait are associated with genetic differences.

This formulation obscures the technical meaning of heritability, which refers not to differences in
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measurable genetic factors, but to difference-in-effects causes as derived from AOV of

observational data (theme 6; but note the special case in sect. 3.6).

However, for the sake of argument, let me put aside the distinction between heritability

and “genetic” in order to follow Sesardic’s rebuttal of the criticism that “genetic” is improperly

ascribed to causes that involve both measurable genetic and environmental factors. Following

Plomin (1977), Sesardic distinguishes three forms of association between genetic and

environmental factors:

Passive, in which parents contribute both genetic and complementary environmental

factors to their children;

Reactive, in which people provide environmental factors in response to the genetic

factors of the children so as to amplify the effects of the genetic factors; and

Active, in which children seek environmental factors that amplify the effects of their

genetic factors.

Sesardic notes that behavioral geneticists do not refer to the second case as genetic and can use

adoption studies to separate the contributions of genetic and complementary environmental

factors in the first case.  This leaves the third case—active association; to call this “genetic”

accords well, Sesardic contends, with our common-sense.

I see two kinds of problem with Sesardic’s treatment of associations between genetic and

environmental factors.  Although it is easy to identify processes through which people respond to

observed traits or through which children’s traits lead them to seek out certain environmental

factors, it is more difficult to envisage mechanisms through which people link environmental

factors to the genetic factors, rather than to traits that the people can observe.  What evidence is

there for assuming that such a mechanism could exist?  More importantly given the thrust of my

paper, researchers need methods of data analysis that can discriminate among competing models.

It is difficult, in the absence of knowledge about the pathways of growth and development of

traits that influence IQ test scores (developmental causes), to design a method that discriminates

between reactive and active associations between genetic and environmental factors.  This

difficulty only increases if the data are partial, i.e., genetic types are observed in different

locations (sect. 4).
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Theme 12— When alternative models based on different dynamics are proposed, a method is

needed that not only compares the models’ fit with observations but also assesses the support for

their assumptions independent of that fit.

Overall, Sesardic endorses Jensen’s conclusion (cited in sect. 4), which leads me to note

an asymmetry in their rhetoric and conceptualization of the debate over genes, race, and IQ test

scores.  Behavioral geneticists point to the failure of environment-only explanations to fully

account for the racial-mean gap, but insist that they are not wedded to gene-only explanations.

Instead, they “hypothesize” that genes are “strongly implicated” and claim that an

environmentalist orthodoxy has held social scientists from considering this possibility (e.g.,

Pinker 2002). This formulation invites a symmetrical rejoinder: Opponents could propose that

environmental factors are strongly implicated in the gap and point to the striking failure of gene-

only explanations (in the sense of significant associations of between-group-mean differences in

IQ test scores and measurable genetic factors related to degree of African ancestry; see summary

in Nisbett 1998, 89-90).  Would behavioral geneticists entertain an ideological  interpretation of

their tendency to discount the standard environmental factors of social scientists?  This seems a

fair question given that behavioral geneticists have made little headway in connecting high

heritability to measurable genetic factors within groups and no success in connecting measurable

genetic factors to differences on average between racial groups.  Why have they continued to

highlight genetic contributions to behavior and the role of environments induced by genes, which

includes their hypothesizing that sociological variables are surrogates for genetic factors (e.g.,

socioeconomic status that parents confer on their children may reflect abilities or limitations that

are influenced by genetic factors related to, say, mental illness or intellectual abilities) (Plomin

and Bergeman 1991; Plomin et al. 2003)?

A symmetrical conclusion would be that sociological regression models and accounts of

changes over time cannot show the equality on average of genetic factors across races (Flynn

2005), and the methods of behavioral genetics cannot show the inequality on average of genetic

factors across races.   It will be interesting to observe, then, which side takes up the challenge of

deriving empirical models of developmental pathways whose heterogeneous components differ

among individuals at any one time and over generations.
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5.3  Dickens and Flynn’s Reciprocal Causation Models Revisited

Dickens and Flynn’s (2001) reciprocal causation models are elaborations of a two-part

linear model that differs in many ways from the linear models used in AOV:

yit = Gi + Ei,t-1 (22a)

where

 yit denotes IQ test score at time t (measured in steps within a lifespan),

Gi an unchangeable genetic endowment, and

Ei,t the environment experienced by individual genetic type i at time step t, which

matches the observed value of the trait as follows:

Ei,t-1  = constant1 * yi,t-1 + constant2 + ε i,t-1 (22b)

Some data sets exist in which traits are measured at various steps in the lifespan (e.g.,

Medical Research Council 2004) so in theory estimating the Gi effects and the constants in this

model would be possible, even though computing their values would be more difficult than a

standard AOV.  Data analysis is not, however, the focus of Dickens and Flynn’s exposition.

Instead, their argument is that, if there were environmental factors that changed over the lifetime

in response to the trait of IQ test scores, then their model could produce results that mimicked

observed features of those scores, especially the high within-group heritability and large gains

between generations.  According to my arguments in the previous sections, the coexistence of

these observed features is not paradoxical and many other models, including eqn. 8, can produce

both the observed features.  The challenge then is to discriminate among alternative models

based on a broad array of possible dynamics.  For this, we would need to compare not only the

models’ fit with observations but also the support for their assumptions independent of that fit

(theme 12).

 Economists—Dickens is an economist by training—often take fit with a number of key

features of the observations as confirmation of a model (Friedmann 1953), but I am convinced by

philosophers of science who insist on independent support for the assumptions built into any

model (Taylor 2000).  Consider in contrast to model 22:

yit = Ei,t-1 (23a)

Ei,t-1  = constant1 * yi,t-1 + constant2 + ε i,t-1 (23b)

where yi0 = Gi
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It could be that model 22 fits certain patterns in observed data better than model 23, but model

23 does not require the assumption of something unchangeable that enters at every time step into

the development of traits that influence IQ test scores.  Following my questioning of Sesardic,

what evidence can Dickens and Flynn provide for a mechanism that links every point in current

development directly to genetic endowment?

Similarly, we could question the assumption that environmental factors can be packaged

into one continuous, measurable gradient, E.  In the context of widespread discussion referring to

“genes versus environment” or “genes interacting with the environment” there is a certain

conceptual ease in envisaging such a gradient.  However, such an assumption reinforces, as

noted in section 5.1 for Lewontin’s norms of reaction diagrams, the idea that location effects in

an AOV can be readily translated into environmental factors with continuous gradients (contra

themes 1 and 7e). It steers us away from visualizing the difficulties in using AOV to expose

environmental factors in humans (themes 8-11).  Collapsing the conceptual distinctions among

the different quantities referred to as “environmental variance” (theme 7e) (and correspondingly,

the distinction between difference-in-effect causes and measurable factors) is key to the second

line of thinking in which high heritability is held to bolster the plausibility of genetic

explanations of differences between group means.  I hope that some readers now see this line of

thinking as problematic.

In the introduction I remarked that Dickens and Flynn’s contribution has the potential to

move the debate about heritability and differences between racial-group means onto fresh

ground.   Let me now qualify this remark.  Such discussion should take into account the themes I

have introduced in this essay and distinguish between developmental causes, measurable factors,

and difference-in-effects causes, which means that there is no heritability paradox that reciprocal

causation modeling resolves.  Yet, even if human heritability estimation is put to the side, the

Flynn effect still needs explanation.  I believe that investigation of differences between means of

different generations that incorporates reciprocal causation in its models has the potential to

move the debate about differences between racial-group means onto fresh ground.

Flynn (2005) has begun to consider how heterogeneity complicates the interpretation of

data about change and difference:
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I can suggest no common metric to measure the black environment of today against the

white environment of some 50 years ago… [remainder of passage omitted until author

gives go ahead for quoting it]

Once it is recognized that the potency of social multipliers depends on different groups’ capacity

to capitalize on historical changes in society, there is no reason to assume that they apply

uniformly across individuals, given their differences in age, gender, geographical location,

culture, and so on, or even that they move different individuals in the same direction but at

different speeds.  To adapt Dickens and Flynn’s basketball analogy, TV coverage of basketball

elicited greater participation in basketball at the same time as it elicited more “couch potato”

spectatorship.

The next step is to envisage social multipliers operating heterogeneously across social

groups within any generation and heterogeneously across individuals within any social grouping.

It is beyond the scope of this paper to review research already advancing along these lines.

Woodhead’s (1988) review, however, sets the scene by summarizing studies explaining how the

IQ test score increases produced by Head Start preschool programs tend to be transient, but in

the long term, through social support systems initiated or enhanced during the Head Start years,

the children end up with significantly higher high school graduation rates, employment, and

many other socially valued measures.

If pathways of reciprocal causation are heterogeneous, this weighs against analyses that

employ gross categories, such as racial group genes and environment, but it does not rule out

quantitative analysis.  We might take the lead from the innovative attempt of Kendler et al.

(2002) to produce a comprehensive developmental model for major depression in women.  They

recognized that major depression is an etiologically complex disorder, which required

“consideration of a broad array of risk factors from multiple domains,” but their model was able

to account for 52% of the variance in liability to episodes of major depression and to characterize

different pathways to the outcome to be explained, namely, depression.  I find it plausible

likewise that various traits influence IQ test scores and people develop the combinations of traits

they have in different ways.

Kendler et al. (2002, 1133) show admirable reserve in concluding that their “results,

while plausible, should be treated with caution because of problems with causal inference,
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retrospective recall bias, and the limitations of a purely additive statistical model.”   At the same

time, they did not remark on the absence of variables that correspond to therapeutic interventions

(as if to suggest that these had no effect on the etiology of depression or its preceding risk

factors) or to social changes that have led to the rising incidence of depression.  Such omissions

would seem important to rectify in any analogous, reciprocal causation modeling of IQ test

scores.  This brings us back to the issue of causes and changeability.  In this paper I asked only

what  “local research” can learn about ways in which IQ test scores can be changed,  a question

which allowed me to show the limited relevance of human heritability estimates in developing

explanations of differences between means across groups or across generations (or in exposing

developmental causes).   Insights in this area will only be delayed by the persistence in the

thinking of researchers and other commentators of the conflation of ideas of heritability, genetic,

and unchangeable.

6. Coda: the “IQ paradox” reconceived

Suppose that researchers want to develop empirical models of developmental pathways

whose heterogeneous components differ among individuals at any given point of time.  If genetic

factors are to be included in the models, there are good methodological reasons for not

categorizing individuals according to racial group membership.  (This grouping is not based on

clustering across a range of locations [theme 7a] and no measurable genetic factor admits a clean

subdivision between whites and African-Americans.)  On the other hand, racial group

membership continues to bring disadvantages to African-American individuals and, reciprocally,

to bring benefits to white individuals (Flynn 2000, 142ff)—moderated somewhat, but in a

decreasing set of circumstances, by affirmative action for African-Americans.  Yet, exposing the

best way to ameliorate the effects of racial group membership for any individual may depend on

having empirical models of the heterogeneous pathways of development, even if all those

pathways factor in the effects of racial group membership.   The challenge for researchers is to

shift the focus from group membership to heterogeneous pathways without bolstering the fiction

that racial group membership no longer brings social/environmental benefits and costs.  Can this

be achieved?   But, conversely, can researchers continue to track average differences among

racial groups without bolstering the ubiquitous stereotyping that employs group membership
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when deciding how to treat an individual?   In short, a genuine paradox that applies to the use of

IQ test scores in U.S. society seems to be that researchers and policy-makers who want to move

beyond explanations and policies based on racial group membership cannot escape taking into

account the disadvantages and benefits individuals experience because of their group

membership.
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Appendix.  Compilation of themes introduced in this paper

Difference-in-effects causes and their relation to measurable factors and developmental causes

1. Gradient-free conditions:  Use of the AOV does not require that any gradient of a measurable

genetic factor runs through the differences among genetically defined varieties or any gradient of

a measurable environmental factor runs through the differences among locations.

2. Conditionality: All effects are conditional on the particular set of genetically defined varieties

and locations observed.



6/5/05

56

3. Rerun control:  The conditionality of effects means that any predictions made using

difference-in-effects causes entail an assumption of control over the genetically defined varieties

and locations that would allow the original combinations to be rerun and observed again.

4. Questionable homogeneity: An assumption that is always open to questioning is that similar

patterns of responses of different genetically defined varieties across locations (or environmental

factors) have been produced by similar conjunctions of underlying developmental causes or

measurable factors.

5. Heritability as rerun predictability:  In its technical meaning, heritability is a special case of

rerun predictability (a concept that encompasses a more general class of correlations) in which

the cultivar is matched in the observed data and rerun (i.e., i = i’).

6.  Heritability vs. “heritable.” Ambiguity in the term “genetic variance” invites the technical

term heritability to be misidentified with the colloquial idea that a trait is “heritable” or “genetic”

if differences in a trait are associated with differences in specific genetic factors in the gene-

based dynamics of organisms’ reproduction.

7. From Observation to Hypothesis to Experiment to Understanding of Developmental Causes:

After the appropriate simplification of the data set by clustering, the AOV of observations and

subsequent regression analysis can contribute to the formulation of hypotheses that may be

subject to experimental trials designed to examine the effect of varying specific genetic or

environmental factors.  In such trials the number of factors that can be considered simultaneously

is constrained in practice (an extension of theme 3 on control) and the effects exposed by AOV

are conditional (theme 2), but such experimental trials may contribute to a larger project of

unraveling the biophysical pathways of development.

7a. Hypothesis generation following observational trials is enhanced by simplifying the

large data set into groups for which the response of a cultivar group member (or response

elicited by a location group member) is similar to the average for the group as a whole.

Hypotheses become more difficult to formulate when groups are defined not by

clustering, but by using some other criteria that does not minimize the variance within

groups, including the within-group interaction variance (see theme 4).

7b. High heritability has a mixed relationship with researchers’ ability to formulate

hypotheses.
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7c. The results of experimental trials in which environmental factors are systematically

varied are conditional on the levels of other factors not subject to experimental variation

and on the combinations of factors varied, as well as on the combinations of cultivars and

locations in the trial.

7d.  In the absence of experiments, estimates derived from regression analysis are not

only conditional, but are like difference-in-effects causes in that predictions made using

them assume rerun control (themes 3& 7a).

7e. There are important conceptual distinctions among the different quantities referred to

as “environmental variance.”   The variance of a location effect in an AOV of an

observational trial is not the same as the variance of the effect in an AOV of a trial in

which an environmental factor is systematically varied. The latter is not the same as the

variance of such an environmental factor itself.  The variance associated with an

environmental factor in a regression equation is yet another different quantity.

7f. Practical considerations place limits on experimentation that stems from observational

trials.

7g.  If measurable genetic factors are identified, then the previous sub-themes also apply

to generation of hypotheses about genetic factors and to different meanings of the term

“genetic variance” (see also theme 6).

Limitations of analyses based on partial data sets

8. Limited replication: limited hypothesizing. With only two replicates, an AOV of observations

provides a limited basis for hypothesizing about measurable factors; any conclusions made on

the basis of the AOV must center on difference-in-effects causes.

9. Nested effects.  The existence of a significant cultivar-nested-within-location effect does not

tell us whether the average for a cultivar is generally higher than another or whether it is only

higher when paired with the particular location. Similarly, a significant location (“l”) effect does

not tell us whether one location is superior to the other, only that the cultivars grown in one

location are different, on average, from the cultivars grown in the other location.

10. Partial data sets and inseparable effects. The within-group estimates that can be derived from

the partial data set cannot speak to the relative contribution to differences between cultivar-group

means in different locations of differences in cultivar-group effects versus location effects versus

cultivar-group-mean-by-location-interaction effects.
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11. Racial groups as separate locations in an AOV.  The appropriate model for an AOV when

replications—the identical twins raised separately—are not assigned independently with respect

to membership in a racial group is one in which the experience of racial group membership is

modeled as a separate location.

Methods to discriminate among more elaborate models

12. Methods to discriminate among models.  When alternative models based on different

dynamics are proposed, a method is needed that not only compares the models’ fit with

observations but also assesses the support for their assumptions independent of that fit.


