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The independent evolution of similar morphologies has long been a subject of considerable interest to

biologists. Does phenotypic convergence reflect the primacy of natural selection, or does development

set the course of evolution by channelling variation in certain directions? Here, we examine the ontogen-

etic origins of relative limb length variation among Anolis lizard habitat specialists to address whether

convergent phenotypes have arisen through convergent developmental trajectories. Despite the numerous

developmental processes that could potentially contribute to variation in adult limb length, our analyses

reveal that, in Anolis lizards, such variation is repeatedly the result of changes occurring very early in

development, prior to formation of the cartilaginous long bone anlagen.
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1. INTRODUCTION
From some of the earliest evolutionary speculation to the

present day, developmental drivers of evolution have been

viewed as an alternative to adaptationist explanations for

evolutionary patterns (e.g. [1–3]; reviewed in [4,5]). The

basic argument has revolved around the issue of which is

more important in determining evolutionary patterns:

developmental factors that constrain the variation that is

produced, or selective factors that determine how genetic

variation is selected across generations (e.g. [6–9])?

A particular case of contention is that of convergent

evolution. The independent evolution of similar pheno-

types (morphologies) in similar environments has long

been taken as evidence of the primacy of natural selection

(reviewed in [8]). However, in recent years, workers have

argued that convergence—and, in particular, what is

sometimes called ‘parallel evolution’, in which convergent

patterns are produced through similar developmental

changes—is evident for the biasing role of development

in shaping evolutionary patterns [7,10–15]. But these

views are not necessarily mutually exclusive. On one

hand, convergence per se does not necessarily imply the

similar action of natural selection; only when convergence

occurs in similar selective environments is adaptive evol-

ution implied [8]. Even in such cases, however, the

channelling effects of shared developmental programmes

may still be important by limiting the universe of possible
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variation upon which selection can operate. In this view, a

key question is whether convergent phenotypes are

produced by convergent developmental changes.

For most of the 20th century, the fields of evolutionary

biology and developmental biology progressed in parallel,

acquiring independent research objectives and experimen-

tal techniques [5,16]. But renewed interest in the

developmental mechanisms of morphological evolution

in the late 1970s and 1980s—stimulated, in part, by the

works of Gould [17] and the discovery of pan-metazoan

Hox gene conservation [18]—galvanized the field of

evolutionary developmental biology. Recently, much

attention in evolutionary developmental biology has been

given to uncovering the molecular bases of morphological

evolution and whether changes in the action of the same

genes underlie phenotypic convergence [19–22]. But

phenotypic convergence can result from non-convergent

genotypic evolution (reviewed in [23–25]). To fully

understand the developmental bases of convergent

phenotypes, it is therefore critical that detailed analy-

ses of developmental mechanisms be placed within the

appropriate phenotypic context.

Evolutionary developmental biology has predomi-

nantly focused on studying dramatic morphological

changes where the scoring of discrete phenotypes rarely

requires detailed measurement [26,27]. By contrast,

much of the study of natural selection and evolutionary

diversification focuses on traits that vary quantitatively

rather than qualitatively, such as body size, limb length

and head shape [28–30]. While many of these qualitative

shifts in morphology have been linked to changes in early

development [19–21,31], variation in quantitative traits
This journal is q 2011 The Royal Society
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Figure 1. (a) Summary of limb and long bone development. Limb development proceeds through several stages: limb bud out-
growth and patterning, when the limb bud is only filled with undifferentiated mesenchyme; morphogenesis, where the

cartilaginous anlagen of the limb bones form; and growth, mediated from epiphyseal growth zones. FLB, forelimb bub;
HLB, hindlimb bud; and GZ, growth zone. (b) Limb development for Anolis sagrei. Asterisks denote visible condensations
in the digital plate of stage 7 embryos. The earliest samples in our study were collected during stage 9, the earliest time
when cartilage stains with Alcian blue.
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often has complex developmental origins: variation can

arise through changes in morphogenesis, differential

growth rates or both [32–37]. The most critical question

to address first when studying the developmental bases

of convergent quantitative phenotypes is whether the

morphologies arise through convergent developmental

trajectories representing the full developmental history

of a structure [38].

Caribbean Anolis lizards provide an excellent and

extensively studied group for investigating the repeated,

independent evolution of similar morphologies (reviewed

in [30]). Anoles have radiated, for the most part, inde-

pendently on each island in the Greater Antilles (Cuba,

Hispaniola, Jamaica and Puerto Rico), producing essen-

tially the same set of habitat specialists—termed

‘ecomorphs’—on each island. Of particular importance

in this repeated ecomorphological specialization is vari-

ation in relative limb length (i.e. limb length controlled

for body size), which is known to play a significant role

in adaptation to different parts of the structural habitat

(e.g. tree trunks, twigs and grass blades). Despite many

years of ecological and evolutionary research on this

genus, the developmental bases of limb length variation

have not yet been examined. Just how many different

ways has variation in relative limb length evolved in this

genus? Discovering that species converge morphologically

via similar developmental trajectories might suggest

that anoles have inherited common patterns of variation

from their ancestor, potentially biasing the response to

selection. But finding that different lineages converge

morphologically using different developmental mechan-

isms would indicate that natural selection was the

primary factor determining evolutionary trajectories. The
Proc. R. Soc. B (2012)
goal of this work was to test the hypothesis that species

possessing similar limb morphologies have converged on

these morphologies through similar alterations to their

growth trajectories.
2. METHODS
(a) Overview

Predicting potential mechanisms of divergence first requires a

general understanding of limb development (figure 1). During

embryonic development, limb buds irrupt from the flank of the

animal and are filled with an undifferentiated mesenchyme.

During patterning, mesenchymal cells aggregate and differen-

tiate to form a single cartilaginous anlagen, the precursor to

the limb long bones. This cartilaginous rod then grows and

bifurcates to form the limb skeleton. Ossification begins as a

bony collar around each anlage, which expands towards

the ends of the bone, establishing a growth zone. From this

time on, proximodistal extension occurs solely at the growth

zone, although the precise mechanism is unclear in reptiles

(T. J. Sanger & C. E. Farnum 2004, personal observation).

Variation in adult long bone length can therefore either result

from variation generated during limb bud patterning, influen-

cing the initial dimensions of the anlagen, or through

differential rates of long bone elongation via the action of

growth plates at either end of the bone.

Interpreting evolutionary and developmental changes in

relative size is best done in the context of allometry. Onto-

genetic allometry, in particular, examines the relationship

between local versus global rates of growth [39]. Several

alternative allometric hypotheses could account for the pat-

terns of limb length variation observed in adult Anolis lizards

(figure 2). Variation in limb length may be due to localized

http://rspb.royalsocietypublishing.org/
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Figure 2. Suite of alternative allometric hypotheses contrasting hypothetical species pairs. During post-embryonic allometry,
species share similar embryonic trajectories, but diverge in relative size after hatching. Continuous allometry refers to a pattern

in which species appear similar following morphogenesis, but subsequently diverge. A transposition of the allometric
regressions reflects that a change has occurred prior to the earliest developmental stages measured. During scaling, the absolute
size of the trait changes, but in proportion to body size. Circles, morphogenesis; triangles, hatching; hexagons, adulthood.
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A. evermanni
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Figure 3. Phylogeny of eight anole species used in this study
depicting independence of comparisons between island
habitat specialists. Cartoons in the margin depict habitat

specialist classification of each species (grey, trunk-ground;
black, trunk-crown). Note that habitat specialists have
evolved independently on each island.
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changes in the rate of limb growth, either from the initial stages

of morphogenesis (continuous allometry) or through stage-

specific changes that occur later in ontogeny (post-embryonic

allometry). These are both represented by a change in the slope

of the allometric regression. Variation in adult morphology

may also be the result of changes that occur during morpho-

genesis, represented by a transposition, or a shift in the

intercept of the allometric regressions. Variation in adult mor-

phology can also arise by scaling (extending or compressing)

an allometric trajectory. However, in this case, we compare

species that are roughly the same adult body size, indicating

that this explanation cannot account for differences in relative

limb length in these species. Long bone development is a com-

plex process and, as a result, limb length variation can arise

through many processes, whether by changing the patterning

of the early limb bud or through time-specific changes in

growth rate (e.g. [34,35,37,40–44]).

Detailed description of our methodology is included in

the electronic supplementary material, appendix S1. Here,

we briefly describe our study species, specimen preparation

and statistical analyses.

(b) Study species and specimen preparation

We collected growth series for eight Caribbean Anolis species

representing one trunk-ground and one trunk-crown eco-

morph from each island in the Greater Antilles (figure 3).

Trunk-ground species have relatively longer limbs than

trunk-crown species [30]. Limb patterning occurs early in

development, and establishes the initial size and shape of

the skeletal anlagen (figure 1). To extend juvenile patterns

of allometric long bone growth closer to the period of mor-

phogenesis, we also collected embryological series for four

species—the trunk-crown and trunk-ground specialists

from Cuba and Jamaica. These species were chosen because

of their relative ease of care in captivity and the rate at which

they lay eggs. Detailed methods of embryo collection have

been described elsewhere [45,46].

As is common in herpetological studies in general, and

previous studies of anoles in particular (e.g. [47,48]), we

used snout-to-vent length (SVL) as a standard measure of

body size. For embryological comparisons, we collected

one to three individuals per stage for each of the four species

examined, from the early stages of digital webbing reduction

(stage 9/10) through hatching (stage 19 [45]). Combined

with the post-hatching series, this represents nearly the

entire period of long bone skeletal development and growth

(figure 1).

We prepared post-hatching skeletons with standard clearing

and staining protocols [49–51]. Scaled digital photographs of
Proc. R. Soc. B (2012)
the limb elements were obtained using a Nikon DN100 camera

mounted on a Nikon SMZ1000 dissecting microscope. We

obtained individual long bone measurements with IMAGEJ

using a single linear measurement [52,53].

(c) Statistical analysis

Log-transformed limb data for each species were best fit using

a linear regression [54]. For each island pair, we tested for

differences in slope and intercept between the two species

with analysis of covariance (ANCOVA). To test for deviations

from isometry (slope of the log–log regression ¼ 1), we used a

t-test for differences in slope for each species [55]. Embryonic

and post-hatching data were treated independently.

To verify the results of this analysis using a second

method, we also performed an ANCOVA using all post-

hatching data, testing whether species across islands differed

in slope. Because no significant differences in slope were

found (see below), we then performed a phylogenetic

ANOVA on the mean of the residuals for each species

obtained from a single linear regression through all data.

Residuals indicate the extent to which each species’s limb

http://rspb.royalsocietypublishing.org/
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elements, relative to body size, are larger or smaller than

expected based on the data from all the species in the

study; these residuals can thus be used to determine whether

the ecomorphs differ in relative limb length. A phylogenetic

ANOVA [56] controls for the relatedness of the taxa

[57,58]. To perform the phylogenetic ANOVA, we first

obtained an unbiased estimate of the evolutionary var-

iance–covariance matrix [59]. Using multivariate Brownian

motion simulations on a phylogeny of the eight species

(figure 3) [60], we then generated 999 simulated datasets.

The probability value for this analysis is the proportion

of the simulations in which the simulated F-statistic is greater

than the empirical F-statistic. All statistical procedures were

run using SYSTAT v. 10.2 (Systat Software Inc., San Jose,

CA, USA) or C code written expressly for this study and

available from one of the authors (L.J.R.) upon request.
3. RESULTS
(a) Relative growth of post-hatching limbs

Variation in relative hindlimb length in adults is associ-

ated solely with changes that occur before hatching.

This is clearly illustrated by significant differences in

intercept, represented by a transposition in the post-

hatching allometric regression (figure 4; table 1;

electronic supplementary material, appendix S2). Both

hindlimb elements examined (femur and tibia) exhibit

the same pattern of post-hatching isometric growth.

In no instance did we find significant differences in slope

between species from the same island. Therefore, differ-

ences in relative hindlimb length cannot be attributed to

differences in post-hatching allometric growth.

Forelimb elements exhibit different patterns of

divergence on different islands. Significant differences in

slope were never found between species from the same

island. Only the forelimb elements from Cuban and

Hispaniolan species have statistically distinguishable

intercepts (figure 4; table 1; electronic supplementary

material, appendix S2). Jamaican and Puerto Rican

species vary neither in slope nor intercept, and the

allometric trajectories vary only by ontogenetic scaling.

Similar to the patterns shown by the hindlimbs, divergence

of forelimb elements for Cuban and Hispaniolan species

cannot be attributed to post-hatching allometric growth,

but rather to a process that occurs prior to hatching.

Phylogenetic ANOVAs using species residuals support

these conclusions (figure 5; electronic supplemen-

tary material, appendix S3). Trunk-ground anoles have

relatively longer hindlimb elements than trunk-crown

anoles, but the relative size of the forelimb elements

does not differ.

(b) Relative growth of embryonic limbs

By stage 10, ‘early digital web reduction’ [45] (figure 1),

the relative size of the long bones is well established.

Significant differences in intercept occur between the

Cuban species’ forelimbs and hindlimbs, and among the

hindlimbs of Jamaican species (figure 6; table 1). Fore-

limbs are indistinguishable between the two Jamaican

species, just as they are after hatching. Significant positive

allometry exists for many of the embryonic long bones in

these species (electronic supplementary material, appen-

dix S4). But despite the decreased rate of long bone

growth after hatching, these results indicate that the
Proc. R. Soc. B (2012)
differences between ecomorphs have already been deter-

mined by the earliest stage at which repeatable

measurements are possible.
4. DISCUSSION
Do properties of development affect the rate or direction

of morphological evolution, or does natural selection

simply remould variation to match current ecological con-

ditions? Phenotypic convergence provides us with the

opportunity to test this long-standing question by com-

paring the effects of natural selection and developmental

biases during morphological evolution. If development

were, in fact, channelling evolution along particular

paths, one would expect that lineages converging pheno-

typically would use the same developmental trajectories.

Our analyses of post-hatching growth trajectories for

Anolis trunk-ground and trunk-crown habitat specialists

show that adult limb length variation is consistently the

result of changes that occur prior to hatching (figures 4

and 5): differences in limb length are apparent at hatch-

ing, and limb long bones elongate in parallel relative

to body size in different species. Examination of pre-

hatching embryonic growth shows that species-specific

morphologies are the result of changes that occur very

early in limb development, prior to formation of the car-

tilaginous anlagen (figure 6). These results therefore

suggest roles for both natural selection and the generative

mechanisms regulating limb length variation during the

diversification of this genus.

Several evolutionary scenarios can explain the repeated

recruitment of early limb morphogenesis programmes for

the generation of interspecific variation in adult limb

length. Vavilov [61] and Haldane [62] observed that closely

related species tend to vary in similar directions, suggesting

commonalities in their developmental-genetic architecture.

Such common genetic architectures might predispose evol-

utionary changes to occur along similar lines, following

what has been termed ‘genetic lines of least resistance’

[63]. Under this scenario, while different developmental

trajectories are possible, development serves as a channel-

ling force by making some outcomes more easily attained

by selection than others. Within a theoretical context,

developmental constraints must align with genetic con-

straints to have a lasting evolutionary impact [64].

Although certainly possible in theory, Anolis is a very old

genus (estimated age is at least 40 million years [30]); find-

ing conserved genetic architectures over such great periods

of time might be considered surprising ([65–68] and refer-

ences therein; but see [69] for evidence of conserved

phenotypic integration over long evolutionary timescales

in anoles).

Alternatively, it may well be that, owing to the develop-

mental architecture of the limb, there are only a limited

number of ways that variation in adult morphology can

be accomplished developmentally; in other words, the

only way to modify an anole’s limb morphology might

be through changes in the size of the cartilaginous anla-

gen [44]. This would represent a form of absolute or

global constraint, whereby some possibilities cannot be

attained owing to the constraints of limb development.

However, limbs are complex structures, and processes

active during later development and growth are known

to contribute to limb length variation, both within species

http://rspb.royalsocietypublishing.org/
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Table 1. Comparisons of relative limb growth between species from the same island. We found no significant differences in

slope for any species pairs. Notice that post-hatching allometric trajectories for hindlimb elements show significant
differences in intercept on all islands, while only Cuban and Hispaniolan forelimb elements show significant differences.
Similar patterns were recovered in the embryonic analysis. Significant comparisons are highlighted in bold.

slopes intercepts

d.f. F p d.f. F p

post-hatching allometry

Cuba
A. sagrei versus A. carolinensis

femur 1,42 1.257 0.269 1,43 72.278 p < 0.0001

tibia 1,42 0.34 0.563 1,43 94.614 p < 0.001

humerus 1,42 0.361 0.551 1,43 17.427 p < 0.0001

radius 1,42 0.417 0.522 1,43 27.108 p < 0.0001

Jamaica
A. lineatopus versus A. grahami

femur 1,38 0.029 0.866 1,39 26.346 p < 0.001

tibia 1,38 0.145 0.705 1,39 19.807 p < 0.001

humerus 1,38 0.371 0.546 1,39 0.177 0.677
radius 1,38 1.685 0.202 1,39 0.449 0.507

Hispaniola
A. cybotes versus A. coelestinus

femur 1,70 1.098 0.298 1,71 248.036 p < 0.0001

tibia 1,70 1.213 0.275 1,71 203.093 p < 0.0001

humerus 1,70 2.54 0.115 1,71 158.09 p < 0.0001

radius 1,70 1.638 0.205 1,71 231.776 p < 0.0001

Puerto Rico

A. cristatellus versus A. evermanni
femur 1,57 0.178 0.675 1,58 21.87 p < 0.001

tibia 1,57 0.147 0.703 1,58 11.226 p < 0.001

humerus 1,57 0.233 0.631 1,58 0.292 0.591
radius 1,57 0.206 0.651 1,58 2.028 0.16

embryonic limb allometry

Cuba
A. sagrei versus A. carolinensis

femur 1,34 0.087 0.77 1,35 31.137 p < 0.001

tibia 1,34 1.937 0.173 1,35 39.659 p < 0.001

humerus 1,34 0.006 0.937 1,35 16.99 p < 0.001

radius 1,34 0.782 0.383 1,35 8.884 p < 0.001

Jamaica
A. lineatopus versus A. grahami

femur 1,31 0.394 0.535 1,32 5.515 0.025

tibia 1,31 0.003 0.956 1,32 5.694 0.023

humerus 1,31 0.591 0.448 1,32 0.993 0.326
radius 1,31 0.123 0.728 1,32 0.007 0.934
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(e.g. [34,35,37]) and among species (e.g. [41]; reviewed

in [69]). In addition, forelimb and hindlimb elements

appear to respond to selection independently on Jamaica

(figures 3 and 4), and other lizard species exhibit non-

isometric growth trajectories [70,71], which further

indicates that no global constraints preclude allometric

changes in limb dimensions.

A third possibility is that selection favouring differ-

ences in limb length between species in different

habitats operates throughout their life histories. This

would create strong functional and genetic correlations

between early and late developmental stages [72]. If selec-

tion favours differences in limb length among juveniles,

then it is possible that such differences might most

easily be accomplished evolutionarily through changes

in pre-hatching development, explaining why similar

patterns recur repeatedly among species. Consistent
Proc. R. Soc. B (2012)
selection throughout life would explain why there is no

positive limb allometry in juvenile lizards; but because

selection presumably does not act directly on limb

length in developing embryos, this cannot explain why

differences are repeatedly accomplished through early

changes in limb morphogenesis time and time again.

At this time, it is not possible to distinguish between

these competing evolutionary hypotheses. As mentioned

above, deeply conserved developmental constraints may

have channelled variation along certain dimensions, but

the age and history of anoles make conserved genetic con-

straints seem unlikely. In addition, limb morphogenesis is

highly variable in other vertebrate species, indicating that

the overall developmental architecture of the limb is

unlikely to channel the response to selection to particular

developmental processes. Is it possible that the radiation

of Anolis lizards used similar ‘genetic lines of least

http://rspb.royalsocietypublishing.org/
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resistance’ to rapidly diversify? Could the genetic archi-

tecture of early limb patterning actually channel the

response to selection? addressing these questions will

lead to a more thorough understanding of the relative

roles of selection and constraint in shaping the radiation

of Anolis lizards, but will require further data on the

underlying genetics of limb development among anole

species, a greater understanding of the molecular

underpinnings of limb variation within species, and

further data on the habitat preferences of hatchlings and

juvenile lizards.
Proc. R. Soc. B (2012)
Have anoles diversified in limb length through con-

vergence or in parallel? While the distinction between

these terms is contentious [8,23], a key factor often used

to distinguish parallelism from convergence is whether

the same developmental mechanisms underlie convergent

phenotypes. In this light, parallelisms are a special case

of convergence: parallelisms represent the interaction

between selection and shared developmental constraints,

while convergence is a more general phenomenon that

can arise through multiple, unrelated evolutionary mech-

anisms (reviewed in [8]). Based on our results, we cannot

http://rspb.royalsocietypublishing.org/
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rule out the possibility that anoles have evolved in parallel,

by selection acting on a common set of developmental

parameters controlling the size of the long bone anlagen.

However, it is also possible that anoles have converged

both morphologically and developmentally for reasons

other than developmental constraint, as discussed above.

The ultimate test of the parallel evolution hypothesis will

be finding similarities in the genomic signature of natural

selection to determine whether changes to the same loci

have been independently selected on each island. Exploita-

tion of the soon-to-be-published Anolis carolinensis genome,

along with more detailed studies of natural history and

development, should provide greater clarity regarding the

relative importance of natural selection versus developmen-

tal constraint in guiding the evolutionary trajectory

of Anolis.

Biologists are only just starting to bridge the divide

between studies of natural selection and molecular genetics,

providing a more detailed mechanistic understanding of the

adaptive process [73]. But many of the best-studied

examples of developmental evolution—where the specific

genetic loci involved have been identified—have focused

on discrete traits such as the presence or absence of specific

characters (e.g. pelvic spines [19,74], wing spots [21] or

vertebrate limbs [31]). Most studies of adaptation and

divergence, however, focus on subtler, quantitative changes

[75,76]. Thus, to connect studies of developmental evol-

ution with the vast majority of studies of selection in

nature, we need to shift our focus to quantitatively varying

traits, the genetic basis of which is probably considerably

more complicated than that in many of the model systems

currently studied in evolutionary developmental biology.
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