<u>Supplementary material for:</u> "Non-linear selection and the evolution of variances and covariances for continuous characters in an anole."

Appendix S1: Methods and Results for canonical analyses of multivariate selection

To canonically analyses our estimated multivariate selection surface we use the approach described in Blows & Brooks (2003; also see references therein). We first computed Λ and \mathbf{M} such that $\Lambda = \mathbf{M}' \gamma \mathbf{M}$. Here \mathbf{M} and Λ contain the normalized eigenvectors (in columns) and eigenvalues of γ , respectively. Now the eigenvectors of \mathbf{M} are independent dimensions of maximum curvature on the selection surface, and the eigenvalues of Λ are standardized coefficients of quadratic selection on each independent dimension given by \mathbf{M} . These coefficients ($\lambda_1, \lambda_2, \ldots, \lambda_m$ for *m* traits) can be interpreted in the same way as standard quadratic coefficients (i.e., $\lambda_i < 0$ indicates disruptive selection on the trait axis given by the *i*th column of \mathbf{M} , henceforward \mathbf{m}_i ; and vice versa).

We evaluated the type I error probability of each diagonal coefficient in Λ by first rotating the data for each individual (z) into the eigenspace defined by **M**, using $\mathbf{y} = \mathbf{Mz}$. We then permuted the fitness values for individuals randomly 9,999 times. For each permutation we fit the model $w = \alpha + \mathbf{\theta}\mathbf{y} + \frac{1}{2}\mathbf{y}'\Lambda\mathbf{y} + \varepsilon$ using least-squares. We computed the type I error probability (i.e., significance) by counting the fraction of λ_{ii} (diagonal of the permutation estimate of Λ) in the randomization distribution that had an absolute value larger than our estimated value for λ_{ii} obtained from the original data.

Alternatively, we used the selection differential method. In this case, to obtain P-values we also rotated our size-corrected morphological measures into the space defined by **M**, i.e., for

1

each individual we computed $\mathbf{y} = \mathbf{Mz}$. We then randomized fitnesses among individuals 9,999 times, and each time computed rotated variance covariance matrices \mathbf{P}_{rot} (from all individuals) and \mathbf{P}_{rot}^* (calculated from only individuals with fitness values of 1.0 in the permutation). We then estimated the selection differential for \mathbf{P} , $\mathbf{C} = \mathbf{P}_{rot}^* - \mathbf{P}_{rot} + \mathbf{ss'}$. Finally, we estimated the rotated curvature matrix using $\mathbf{\Lambda} = \mathbf{P}_{rot}^{-1}\mathbf{CP}_{rot}^{-1}$ (Lande & Arnold, 1983). As before, we estimated the type I error as the fraction of the diagonal elements of $\mathbf{\Lambda}$ in the permutation distribution with larger absolute values than their analogs in the original data.

Tables S1.1 to S1.4 give the eigenvectors (**M**) and eigenvalues of the γ matrices reported in the main text, as well as the type I error probabilities (P values) for each eigenvalue of γ , in which we estimated the P values using the permutation procedure described in the preceding paragraphs. In general we found relatively few independent multidimensional trait axes with significant stabilizing or disruptive selection. For example, in the regression analysis of external measurements with fitness assessed from mark-recapture information, we found no significant independent dimensions of disruptive or stabilizing selection. By contrast, in the regression model based on body condition and internal measures, we found significant disruptive selection on eigenvector \mathbf{m}_1 . In this analysis the trait axis \mathbf{m}_1 represents positive changes in jaw length and head width (or vice versa), associated with negative changes in forelimb length and pelvis width (or vice versa). This analysis also revealed marginally non-significant stabilizing selection on eigenvector \mathbf{m}_5 (Table S1.2).

The canonical analysis of the selection differential method results was similarly ambiguous. The selection differential analysis performed with the external measures yield no significant axes of quadratic selection, although eigenvector \mathbf{m}_1 (mostly head width) was marginally non-significant for weak disruptive selection. There was one significant independent axis of quadratic selection in the differential analysis based on internal measures, this one (\mathbf{m}_2 : positive changes on hindlimb associated with negative changes on all other characters, or vice versa) indicated significant disruptive selection.

Table S1.1 Canonical analysis of γ from the quadratic regression selection analysis on external data. \mathbf{m}_i is the *i*th column of \mathbf{M} , the matrix of eigenvectors in the canonical analysis of the curvature of the selection surface, γ (Table S2.3). The values for λ are the diagonal elements the eigenvalue matrix $\mathbf{\Lambda}$. P values were computed as described in the supplementary Appendix S1 text.

Eigenvector \ Trait	\mathbf{m}_1	\mathbf{m}_2	m ₃	\mathbf{m}_4
hindlimb	0.3403	0.7705	-0.1292	0.5234
forelimb	-0.5997	0.5028	-0.4246	-0.4552
jaw length	-0.2248	-0.3857	-0.7154	0.5374
head width	-0.6885	0.0687	0.5396	0.4797
λ	0.3994	0.0148	-0.0896	-0.4169
P(permutation)	0.2182	0.8863	0.8911	0.1450

Table S1.2 Canonical analysis of γ from the quadratic regression selection analysis on internal (x-ray) data. The quadratic selection matrix, γ , for this analysis is given in Table 3 of the main text. \mathbf{m}_i and λ are as in Table S1.1.

Eigenvector \ Trait	\mathbf{m}_1	\mathbf{m}_2	m ₃	\mathbf{m}_4	m ₅
hindlimb	0.0277	0.4948	-0.8600	-0.1009	-0.0683
forelimb	0.1933	-0.7150	-0.4720	0.3491	0.3266
jaw length	-0.5675	-0.4532	-0.1932	-0.3550	-0.5561
head width	-0.6836	0.1963	0.0018	0.6969	0.0921
pelvis width	0.4154	0.0037	0.0161	0.5062	-0.7556
λ	0.2172	0.0097	-0.0030	-0.1664	-0.2249
P(permutation)	0.0283	0.8787	0.7308	0.1090	0.0903

Table S1.3 Canonical analysis of γ from the selection differential analysis on external data. The quadratic selection matrix, γ , for this analysis is given in Table 4 of the main text. \mathbf{m}_i and λ are

Eigenvector \ Trait	\mathbf{m}_1	\mathbf{m}_2	m ₃	\mathbf{m}_4
hindlimb	0.1436	-0.0224	0.6757	0.7227
forelimb	-0.0801	-0.0465	0.7345	-0.6722
jaw length	0.3202	-0.9447	-0.0592	-0.0375
head width	0.9330	0.3237	-0.0206	-0.1561
λ	0.9685	0.1554	-0.0176	-0.1167
P(permutation)	0.0908	1.0000	0.9644	0.4875

Table S1.4 Canonical analysis of γ from the selection differential analysis on internal data. The quadratic selection matrix, γ , for this analysis is given in Table 5 of the main text. \mathbf{m}_i and λ are

Eigenvector \ Trait	\mathbf{m}_1	m ₂	m ₃	\mathbf{m}_4	m ₅
hindlimb	0.2443	-0.2379	0.2478	0.8830	-0.2067
forelimb	-0.8237	0.3576	-0.2238	0.3577	-0.1251
jaw length	0.4006	0.4741	-0.5393	0.2837	0.4933
head width	0.0669	0.6687	0.7317	-0.0173	0.1130
pelvis width	0.3113	0.3790	-0.2495	-0.1078	-0.8280
λ	3.7093	0.9927	0.8039	-0.0133	-0.8863
P(permutation)	0.4225	0.0013	0.3879	0.3984	0.5555

as in Tables S1.1, S1.2, and S1.3.

as in Tables S1.1 and S1.2.

Appendix S2: Supplementary tables

Table S2.1 Eigenvectors (\mathbf{p}_i) and eigenvalues (λ_i) of \mathbf{P}_{ex} , the phenotypic variance covariance

	Eigenvectors of \mathbf{P}_{ex}						
Traits	\mathbf{p}_{max}	p ₂	p ₃	\mathbf{p}_4			
hindlimb	0.8729	0.3888	0.2939	0.0201			
forelimb	0.4854	-0.7291	-0.4694	-0.1119			
jaw length	0.0199	0.5584	-0.7786	-0.2857			
head width	0.0446	0.0737	-0.2952	0.9516			
λ_i	3.3410	0.6234	0.4369	0.1482			
% variance	73.44	13.70	9.60	3.26			

matrix calculated from external measurements.

Table S2.2 Eigenvectors (\mathbf{p}_i) and eigenvalues (λ_i) of \mathbf{P}_{in} , the phenotypic variance covariance

matrix calculated from internal x-ray measurements.

		Eig	genvectors of	\mathbf{P}_{ex}	
Traits	\mathbf{p}_{max}	p ₂	p ₃	\mathbf{p}_4	p ₅
hindlimb	0.8805	-0.2835	0.3768	0.0469	0.0139
forelimb	0.4477	0.2414	-0.8533	-0.0614	-0.0967
jaw length	0.1206	0.7942	0.2481	0.5414	0.0080
head width	0.0786	0.4454	0.2613	-0.7856	-0.3317
pelvis width	0.0599	0.1798	-0.0033	-0.2893	0.9383
λ_i	1.8068	0.2762	0.1488	0.1038	0.0629
% variance	75.33	11.51	6.20	4.33	2.62

 Table S2.3 Quadratic regression selection analysis; external data.

γ- matrix	hindlimb	forelimb	jaw length	head width	β- vector
hindlimb	-0.0607	0.0186	-0.1605	-0.1912	-0.0617
forelimb		0.0448	0.1258	0.2770	0.0437
jaw length			-0.1439	-0.0115	-0.3418*
head width				0.0674	0.3196

*<0.05

Table S2.4 Eigenvectors and eigenvalues of $-\gamma^{-1}$ and γ . Left-right rank order of the

eigenvectors is based on $-\gamma^{-1}$. ω_i is the *i*th eigenvector of $-\gamma^{-1}$ due to $\omega \approx -\gamma^{-1}$ under weak stabilizing selection (Lande, 1979). External data; least-squares regression selection analysis.

	E	Eigenvectors of $-\gamma^{-1}$ and γ					
Traits	$\omega_{\rm max}/\gamma_3$	$\omega_2^{}/\gamma_4^{}$	ω_3 / γ_{max}	ω_4 / γ_2			
hindlimb	-0.1292	0.5234	0.3403	0.7705			
forelimb	-0.4246	-0.4552	-0.5997	0.5028			
jaw length	-0.7154	0.5374	-0.2248	-0.3857			
head width	0.5396	0.4797	-0.6885	0.0687			
$\lambda_i(-\gamma^{-1})$	11.158	2.3984	-2.5039	-67.724			
$\lambda_i(\mathbf{\gamma})$	-0.0896	-0.4169	0.3994	0.0148			

Table S2.5 Eigenvectors and eigenvalues of $-\gamma^{-1}$ and γ . Rank order of the eigenvectors is

based on $-\gamma^{-1}$. Internal data; least-squares regression selection analysis.

	Eigenvectors of $-\gamma^{-1}$ and γ					
Traits	$\omega_{\rm max}/\gamma_3$	ω_2 / γ_4	ω_3/γ_5	ω_4 / γ_{max}	ω_5/γ_2	
hindlimb	-0.8600	0.1009	0.0683	-0.0277	-0.4948	
forelimb	-0.4720	-0.3491	-0.3266	-0.1933	0.7150	
jaw length	-0.1932	0.3550	0.5561	0.5675	0.4532	
head width	0.0018	-0.6969	-0.0921	0.6836	-0.1963	
pelvis width	0.0161	-0.5062	0.7556	-0.4154	-0.0037	
$\lambda_i(-\gamma^{-1})$	331.79	6.0083	4.4468	-4.6048	-103.45	
$\lambda_i(\mathbf{\gamma})$	-0.0030	-0.1664	-0.2249	0.2172	0.0097	

-0.0176

 $\lambda_i(\mathbf{\gamma})$

based on $-\gamma^{-1}$. External d	ata; selectior	n differential	analysis.		
	F	Eigenvectors of $-\gamma^{-1}$ and γ				
Traits	$\omega_{\rm max}/\gamma_3$	ω_2 / γ_4	ω_3 / γ_{max}	ω_4 / γ_2		
hindlimb	-0.6757	-0.7227	-0.1436	-0.0224		
forelimb	-0.7345	0.6722	0.0801	-0.0465		
jaw length	0.0592	0.0375	-0.3202	-0.9447		
head width	0.0206	0.1561	-0.9330	0.3237		
$\lambda_i(-\gamma^{-1})$	56.889	8.5713	-1.0325	-6.4358		

-0.1167

Table S2.7 Eigenvectors and eigenvalues of $-\gamma^{-1}$ and γ . Rank order of the eigenvectors is

0.9685

0.1554

Table S2.6 Eigenvectors and eigenvalues of $-\gamma^{-1}$ and γ . Rank order of the eigenvectors is

based on $-\gamma^{-1}$. Internal data; selection differential analysis.

		Eigenvectors of $-\gamma^{-1}$ and γ					
Traits	ω_{max}/γ_4	ω_2/γ_5	ω_3 / γ_{max}	ω_4/γ_2	ω_{5}/γ_{3}		
hindlimb	-0.8830	-0.2067	-0.2443	-0.2379	0.2478		
forelimb	-0.3577	-0.1251	0.8237	0.3576	-0.2238		
jaw length	-0.2837	0.4933	-0.4006	0.4741	-0.5393		
head width	0.0173	0.1130	-0.0669	0.6687	0.7317		
pelvis width	0.1078	-0.8280	-0.3113	0.3790	-0.2495		
$\lambda_i(-\gamma^{-1})$	74.986	1.1282	-0.2696	-1.0074	-1.2440		
$\lambda_i(\mathbf{\gamma})$	-0.0133	-0.8863	3.7093	0.9927	0.8039		

Eigenvectors of P	Eigenvalues of $\mathbf{P}(\lambda_i)$	Selection on eigenvector $(\mathbf{p}'_i \mathbf{\gamma} \mathbf{p}_i)$		
		Least-squares	Differential	
p _{max}	3.3410	-0.0259	-0.0081	
p ₂	0.6234	-0.2542	0.0971	
p ₃	0.4369	0.1881	0.2158	
\mathbf{p}_4	0.1482	-0.0005	0.6849	

Table S2.8 Analysis using the method of Hunt *et al.* (2007); external data.

Table S2.9 Analysis using the method of Hunt et al. (2007); internal (x-ray) data.

Eigenvectors of P	Eigenvalues of P (λ_i)	Selection on eigenvector $(\mathbf{p}'_i \gamma \mathbf{p}_i)$	
		Least-squares	Differential
p _{max}	1.8068	-0.0049	-0.0162
p ₂	0.2762	0.0405	0.8334
p ₃	0.1488	0.0055	3.1517
\mathbf{p}_4	0.1038	-0.1425	0.5587
p ₅	0.0629	-0.0661	0.0785

Table S2.10 Variability of **P** evaluated over the eigenvectors of γ ; external data.

Eigenvectors of γ	Least-squares		Selection differential	
	$\gamma\left(\lambda_{i} ight)$	$\mathbf{\gamma}_i' \mathbf{P} \mathbf{\gamma}_i$	$\gamma\left(\lambda_{i} ight)$	$\mathbf{\gamma}_i' \mathbf{P} \mathbf{\gamma}_i$
$\gamma_{\rm max}$	0.3994	0.3911	0.9685	0.3253
γ_2	0.0148	2.8616	0.1554	0.3878
γ_3	-0.0896	0.5481	-0.0176	3.0423
γ_4	-0.4169	0.7487	-0.1167	0.7941

Eigenvectors $_{\rm of \gamma}$	Least-squares		Selection differential	
	$\gamma(\lambda_i)$	$\mathbf{\gamma}_i' \mathbf{P} \mathbf{\gamma}_i$	$\gamma(\lambda_i)$	$\mathbf{\gamma}_i' \mathbf{P} \mathbf{\gamma}_i$
$\gamma_{\rm max}$	0.2172	0.1708	3.7093	0.1504
γ_2	0.0097	0.1970	0.9927	0.2541
γ_3	-0.0030	1.7754	0.8039	0.1288
γ_4	-0.1664	0.1345	-0.0133	1.6864
γ_5	-0.2249	0.1206	-0.8863	0.1787

Table S2.11 Variability of **P** evaluated over the eigenvectors of γ ; internal (x-ray) data.