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Abstract: The possibility of interaction among multiverses is studied assuming that in

the first instants of the big-bang, many disjoint regions were created producing many in-

dependent universes (multiverses). Many of these mini-universes were unstable and they

decayed, but other remained as topological remnant (like domain walls or baby universes)

or possibly as mini-black-holes. In this paper, we study the quantum statistical mechanics

of multiverses assuming that in the first instants of the big-bang, the relativistic symmetry

was only an approximate symmetry and the interaction among multiverses was produced

by non-local communication. As a warm-up, in the first part of this paper we study the

statistical quantum mechanics of generally covariant systems (particles, strings and mem-

branes) living on noncommutative spaces. In the second part, the non-local communication

is implemented by noncommutativity in the fields space and the possible physical impli-

cations in cosmology are considered. As the Lorentz symmetry is broken, technically the

problem is solved assuming a privileged reference frame containing the multiverses, i.e. a

kind of ideal quantum gas in a reservoir. If the reservoir is very large, then one can consider

a uniform multiverses distribution and approximate each multiverse as tensionless p-brane.

The breaking of the relativistic symmetry induces on each multiverse a tiny harmonic in-

teraction. The oscillation frequency for each multiverse is proportional to 1/B, where B

is the noncommutativity parameter. We argue that B can identified as the primordial

magnetic field, i.e. ∼ 10−16 GeV2. In this model of multiverses, each multiverse interacts

with other neighbour multiverses in a similar way as atoms do in the Einstein model for the

specific heat of a solid. In this case, the analogous of the phonon is played by quantums

with energy equal to B. Each neighbour multiverse should have a pulsation frequency

Ω ∼ 10−63 s−1. This tiny frequency could suggest that the relativistics invariance –from

the cosmological point of view– is almost exact and the multiverses could be not detected

using the presently astronomical observations.

Keywords: Space-Time Symmetries, Cosmology.
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1. Introduction

1.1 Motivation and Physical Implications

Presently there is a strong observational evidence in favor of the big-bang theory [1]. How-

ever, there still remain many open problems that could reinforce this evidence if we are

able to find simple explanations for baryogenesis, leptogenesis, primordial magnetic fields

and so on.

Several years ago, people suggested, as a consequence of the big-bang theory, that ob-

jects like monopoles, cosmic strings and domain walls could remain in the present universe

as topological remnants [2]. In this context, monopoles and cosmic strings were studied

extensively in the eighties and several possible observational procedures were proposed [3].

However, domain walls are still not well understood because these objects produce

causally disconnected spacetime regions and the physical possibility of detecting these

domain walls, using the presently relativistic standard cosmology, is impossible.

A variant of this problem and -apparently an unrelated problem- is the multiverse

picture advocated by Linde [4] where the possibility of new many universes is allowed.

In some sense, however, these two perspectives, namely domain walls and multiverses,

could be just two different semantic aspects of the same problem if the relativistic invariance

in the first instants of the universe is assumed to be exactly. However, if this fact is true,

then the microcausality principle would make impossible to detect signals coming from

different causally disconnected regions.

One should emphasize, however, that the concepts of domain wall, multiverses, baby

universes and so on, could be, indeed, a physical manifestation of the first instants of the

universe. In the chaotic inflation scenario, many big-bangs could have taken place during

the first period of the creation and, as consequence, disconnected spacetime regions should

have emerged. So,in a semantic sense, many independent universes were created.

In this paper, the concept of “many universes” (or multiverse) is understood in this

sense.

An important question is if multiverses are only a theoretical construction or if they

could be physically detected?

In this paper, we propose the possibility of detecting interactions among multiverses

assuming that, during the first instants of the universe, the relativistic symmetry was only

approximate. As a consequence, causally disconnected regions of spacetime exchanged

information after this tiny relativistic invariance violation took place.
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In this approach, there are many points that should be answered and, of course, one

of them is, how this relativistic invariance violation occurs? If in the first instants of the

universe the relativistic invariance was not an exact symmetry then, which are the relics

in the present universe?.

Recently, the possibility of having a violation of the Lorentz invariance has been dis-

cussed extensively in different particle processes as, for example, adding small not Lorentz

invariance terms to the lagrangian [6], modifying the dispersion relations [7] 1 or using

general arguments coming from noncommutative geometry.

In our opinion, the violation of the relativistic symmetry can be a real possibility

because -after all- the presently relativistic quantum field theories are only effective de-

scriptions of nature. They could be valid only up to energies θ ∼ 1/Mp, where the cutoff

Mp is the Planck mass.

In a couple of previous papers [10], we have discussed a different alternative possibility,

namely a noncommutative realization in the field space where violation of the Lorentz

invariance appears because the microcausality principle is no longer valid.

This assumption allows to find a geometric explanation for purely phenomenologi-

cal dispersion relations and it also provides a natural explanation for the different non-

relativistics terms that one could add to the lagrangean.

1.2 Technicalities and quantum field theory

The idea of noncommutative fields is interesting because it might imply important con-

sequences for our explanations of the physical world. Although noncommutativity in the

field space induces a violation of the microcausality principle, it also provides an explicit

mechanism for non-local communication at the quantum field theory level.

As is well known, in quantum field theory [11] the cluster decomposition principle

states that if two events are sufficiently separated, then the hamiltonian density satisfies

[H(x),H(y)] = 0,

if the separation (x − y)2 < 0 is spacelike.

The hamiltonian density H is a local functional of the fields φ1, φ2, ... and, therefore,

the microcausality principle, namely

[

φi(x, t), φj(x
′

, t)
]

= 0, (1.1)

is simply a consequence of the cluster decomposition principle.

From the mathematical point of view, the cluster property assures causality and

Lorentz invariance. Otherwise (1.1) they cannot be realized [11] .

If one takes a different point of view, namely, relaxing the cluster property, then an

experiment in a given point x could affect -in principle in a severe way- another experiment

in another point y.

1The earlier papers on double special relativity appeared in [8].
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This last fact is known as non-local communication. Let us consider physical systems

such that they can interact via a non-local communication mechanism. Technically this

interaction is implemented assuming mutatis mutandis that (1.1) can be deformed as

[

φi(x), φj(x
′

)
]

= iθij δ(x − x
′

), (1.2)

where θij is a constant antisymmetric matrix that measures the causality violation.

In analogy with many body theory, and by simplicity, we can assume that the non-local

communication is paired. So we can replace the general antisymmetric matrix θij by ǫijθ.

In this description, if the energy scale is , say, Λ, then the dimensionless quantity Λθ << 1
2 is very small, being a measure of a tiny causality violation.

The deformation of the canonical algebra of fields yields to very interesting phenomeno-

logical consequences such as: a) non-trivial dispersion relations [10] that could explain

cosmic ray physics and the violation of the GZK cutoff [12], b) a possible explanation of

the matter-antimatter asymmetry [13], c) a new approach to phenomenological relics of

quantum gravity [7].

This non-local communication induces a violation of relativistic invariance and, as it

was discussed above, this point of view could be useful for discussing several open cosmo-

logical problems such as:

a) Communication among causally disconnected spacetime regions, e.g. domain walls

b) Interaction between multiverses. This point has been extensively discussed by Linde

where he finds a global interaction between two universes, retaining relativistic invariance.

In our case, we will find a non-local interaction that, eventually, could produce a very small

gravitational radiation.

c) Using dimensional arguments we could also discuss another elusive problem, namely,

the primordial magnetic field.

The equation (1.2) is the definition of the noncommutative fields as an extension of

[x, y] = i θ,

in noncommutative field theory.

The equation (1.2) means that two regions that are causally disconnected, could ex-

change information if we allow a small noncommutativity in the phase space of fields. This

fact means that, eventually, non- interacting systems could in fact interact due to the non-

commutative structure of the phase space of field. Thus, noncommutativity provides a very

natural way for introducing interactions.

1.3 Physical Discussion

Although this last fact might be a problem in a relativistic theory, in our case the Lorentz

invariance is explicitly broken once (1.2) is assumed and, therefore, it is interesting to

consider physical realizations of such possibility.

A realization of this last fact occurs -as was discussed above- in cosmology and in this

subsection we will motivate the problem explicitly.

2we are assuming, for simplicity, scalar fields in a four-dimensional spacetime.
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Indeed, since the gravitational field is given by the metric, the microcausality principle

would imply
[

gij(x), gkl(x
′

)
]

= 0. (1.3)

Thus, one concludes that the conventional gravity theory cannot have non-local com-

munication unless one breaks the explicitly the relativistic invariance (1.3). Possibles in-

teractions among causally disconnected regions of the spacetime by relativistic invariance

is, of course, forbidden.

If we admit that relativistic invariance is broken in the sense of (1.2), then our universe

is only one of the many possible universes contained in a sort of reservoir, i.e. a gas of

universes. In this reservoir one can define an evolution parameter s which may coincide

with the conventional time and, therefore, would allow to define an evolution operator as

in quantum mechanics.

From this point of view, let us assume that the universe i is described by a metric g

and has a field Ψi(g), then, the condition for non-local communication among universes is

[

Ψi(g),Ψj(g
′

)
]

= iθijδ(g, g
′

), (1.4)

with i, j = 1, 2, 3, . . ..

The possibility θij 6= 0 could give information about the existence of other universes

and it would provide an evidence for the violation of the causality principle at very high

energies.

The purpose of this paper is, firstly, to construct noncommutative versions of generally

covariant systems and, secondly, to elaborate the approach sketched above for cosmology,

exploring the consequences of a weak violation of the causality principle.

The paper is organized as follow: in section II we consider relativistic particles in a

noncommutative space analizing several quantum statistical mechanics considerations. In

section III, the non-commutative p-dimensional membrane in the strong coupling limit and

the quantum statistical mechanics of these systems is studied. In section IV, we propose a

non-local communication mechanism for particles in quantum mechanics. In section V, we

apply our previous considerations to cosmology and, finally in section VI we present our

conclusions and outlook.

2. Noncommutative relativistic quantum mechanics

In this section we will construct noncommutative versions of generally covariant systems.

We will start considering, firstly, the relativistic particle on a D-dimensional spacetime and

later– in the next section – we will extend our results to tensionless strings and membranes.

2.1 Relativistic free particle and the proper-time gauge

There are many approaches to discuss relativistic quantum mechanics of a free particle.

One of them is the so called proper-time method, which was used in the early 50th in

connection with quantum electrodynamics [14]. The idea is to consider a particle in a

D + 1- dimensional Euclidean spacetime.
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The diffusion equation for such system is

−1

2
�ϕ(x, s) =

∂ϕ

∂s
, (2.1)

where � is the D-dimensional Laplacian.

Then, using the ansatz

ϕ(x, s) = e−
m2

2
sφ(x), (2.2)

one finds that φ(x) satisfies the Klein-Gordon equation if m is the mass of the particle.

In this approach, the propagation amplitude is given by the Laplace transform

G[x, x
′

;m2] =

∫ ∞

0
dse−s m2

2 G[x, x
′

; s], (2.3)

where

G[x, x
′

; s] =

∫

Dx e−
∫ 1
0 dτ ẋ2

2s ,

= s−D/2 e−
(∆x)2

2s . (2.4)

From this one obtains the partition function for a gas of N free relativistic particles 3

Zs =

(

Tr

[

e−
m2

2
sG[x, x′; s]

])N

, (2.5)

or equivalently

lnZ = N

[

−m2

2
s − D

2
ln s + lnV

]

, (2.6)

where V = V ×const. is the D-dimensional spacetime, V is the D−1-dimensional ordinary

spatial volume and s plays the role of β = 1/kT .

2.2 The relativistic particle in a noncommutative space

Equation (2.1) suggests a simple way to extent the problem to a gas of relativistic particles

on a noncommutative space.

Indeed, from (2.1) we see that the Hamiltonian for a relativistic particle is

Ĥ =
1

2
p2

µ. (2.7)

Once (2.7) is given, noncommutativity is implemented through the deformed algebra

[xµ, xν ] = iθµν , [pµ, pν ] = iBµν , (2.8)

[xµ, pν ] = iδµν , (2.9)

where θµν and Bµν are the deformation parameters in the phase space.

3In this paper we will ignore the Gibbs factor 1/N !. The reader should note also that we are assuming

the Maxwell-Boltzmann statistics.
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By convenience we choose the gauge

θi0 = 0 θij = ǫijθ, (2.10)

Bi0 = 0, Bij = ǫijB. (2.11)

Therefore, the equation of motion for this particle is

ẋµ = pµ,

ṗi = ǫijBpj. (2.12)

These equations can be integrated directly by using (2.10) and (2.11). Indeed, one

of the equations is trivial, namely, the energy conservation condition (ṗ0 = 0). Note that

the symmetric gauge we have chosen, implies that non-commutativity is realized only for

the first two momenta and coordinates components. The other components are treated as

usual. In principle, we could extend this hypotesis taking also other pairs of momenta and

coordinates components, but this is not essential for our discussion.

Keeping this in mind, the remaining equations have the solution

p1 =
1

2

(

α e−iBt + α† eiBt
)

,

p2 =
1

2i

(

α e−iBt − α† eiBt
)

, (2.13)

where α’s are constant operators.

The coordinates x1,2 are obtained in a similar way using (2.12), i.e.

x1 =
1

2iB

(

α† eiBt − α e−iBt
)

+ x01,

x2 =
1

2B

(

α e−iBt + α† eiBt
)

+ x02. (2.14)

From the commutation relation of p’s, we see that it is possible to define operators a

and a† satisfying the algebra

[a, a] = 0 =
[

a†, a†
]

,
[

a, a†
]

= 1, (2.15)

where

α →
√

Ba, α† →
√

Ba†.

The equations of motion –as a second order equation system– are

ẍµ = Bµν ẋν ,

which can be solved by the Ansatz xµ = aµ eiωs.

The last equation is

(iωδµν − Bµν)aν = 0.
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Therefore, the dispersion relation for this system is

ω± =

{

±B

0
, (2.16)

and –since one of the eigenvalues vanishes– the Hamiltonian spectrum is degenerated

Thus, the hamiltonian for a relativistic particle living on a noncommutative space is

H =
B

2

(

a†a +
1

2

)

+
1

2

D−3
∑

n=1

(p2
µ)n. (2.17)

Finally, the statistical mechanics for a gas of N relativistic particles on a noncommu-

tative space, in the symmetric gauge, is obtained from the partition function

Zs =

(

s−
D−3

2 e−
m2

2
s

∞
∑

n=0

G0e
−s B

2
(n+ 1

2
)

)N

,

=





G0e
−m2

2
ss−

D−3
2

sinh (B
2 s)





N

, (2.18)

where G0 is the degeneracy factor due to the zero eigenvalue of the Hamiltonian 4.

The thermodynamic properties of this system can be computed directly from (2.18).

3. The strong coupling regime for membranes in noncommutative spaces

In this section we will discuss the extension of the previous problem to membranes moving

on a noncommutative space in the strong coupling regime.

A relativistic membrane is a p-dimensional object embedded on a D-dimensional flat

spacetime and described by the lagrangean density

L =
1

2

√

g(p+1)
[

gαβGµν∂αxµ∂βxν − (p − 1)
]

,

where g
(p+1)
αβ (α, β = 0, 1, 2, ...p) is metric tensor on the world-volume and Gµν is the metric

tensor where the p-brane is embedded with µ, ν = 0, 1, 2, ...,D.

The hamiltonian analysis yields to the following constraints

H⊥ =
1

2
(p2 + T 2g(p)), (3.1)

Hi = pµ∂ix
µ, (3.2)

where g(p) is the spatial metric determinant and T is the superficial tension.

The strong coupling regime corresponds to T → 0 and, in this limit the constraints are

H⊥ =
1

2
p2, (3.3)

Hi = pµ∂ix
µ, (3.4)

4Although this factor can be computed by using a regularization prescription, here this factor is absorbed

as a normalization constant.
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and the membrane becomes an infinite set of free massless relativistic particles moving

perpendicularly to the p-dimensional surface.

In the special case of the tensionless string (p = 1), each point of the string is associated

with a massless relativistic particle and, as a consequence, all the points of the string are

causally disconnected.

In this tensionless string approach the field xµ(σ, τ) is replaced by xµ
i (τ), where i =

1, 2, ..., is an infinite countable set labeling each point of the tensionless string.

Using this philosophy, we will start constructing tensionless strings.

3.1 Tensionless strings from particles

Let us start by noticing that a tensionless string [15] is made up of infinite massless rela-

tivistic particles causally disconnected and, therefore, instead of (2.1) one have

−1

2
�ϕ1(x, s1) =

∂ϕ1

∂s1
,

−1

2
�ϕ2(x, s2) =

∂ϕ2

∂s2
,

...

−1

2
�ϕk(x, sk) =

∂ϕk

∂sk
. (3.5)

These equations can be solved by generalizing the Ansatz (2.2), i.e

ϕ(x1, . . . , xk, . . . ; s1 . . . , sk, . . .) =
∞
∏

i=1

e−
m2

2
siφ(xi), (3.6)

where m2 is an infrared regulator that will vanish at the end of the calculation.

The limit of an infinite number of particles is delicated but here –formally– one can

take this limit, simply, assuming that in the continuous limit one can replace the set {i}
by an integral in σ and, as a consequence, the propagation amplitude can be written as:

G [x(σ), x′(σ)] =

=

∫ ∞

0
Ds(σ) e−

m2

2

∫

dσs(σ)G[x(σ), x′(σ); s(σ)], (3.7)

where G[x(σ), x′(σ); s(σ)] is given by

G[x(σ), x′(σ); s(σ)] = s−D/2(σ)e
−
∫

dσ [∆x(σ)]2

2s(σ) . (3.8)

The formula (3.7) generalizes the proper-time method to the tensionless string case.

Probably this approach to string theory was first used by Eguchi in [15].

Using (3.7) and (3.8), the partition function of an N tensionless string gas is

Z[s(σ)] =

[
∫

Dx(σ)G[x(σ), x(σ); s(σ)]

]N

=

(

s−D/2 e−
∫

dσ m2

2
s(σ)

)N

. (3.9)

– 8 –



This partition function reproduces correctly the results for the thermodynamics of a

tensionless string gas [16].

Indeed, from (3.9), the Helmholtz free energy is

F [s] =
N

s(σ)

[

D

2
ln(s(σ)) +

m2

2

∫

dσs(σ) + ln(V)

]

.

As 1/s is the temperature, then from the limit m2 → 0 we see that F/T ∼ ln(T ), again

in agreement with other null string calculations [16, 17].

From the last equation one obtain that

P [s(σ)]V =
N

s(σ)
, (3.10)

is the state equation for an ideal tensionless string gas.

3.2 Tensionless membranes from tensionless strings

In order to construct tensionless membranes, we begin by considering a membrane as an

infinite collection of tensionless strings. Thus, if the membrane is a p-dimensional object,

with local coordinates (σ1, . . . , σp), then the propagation amplitude, formally, corresponds

to (3.7), with the substitution

σ → (σ1, . . . , σp).

Therefore, the partition function for a gas of N tensionless membranes is

Z[s(σ)] =

[

lim
n→∞

(

[s(σ)]−D/2 e−
m2

2

∫

dpσs(σ)V
)n]N

,

(3.11)

where n is the number of tensionless strings.

One should note here that the expression
(

[s(σ)]−D/2 e−
m2

2

∫

dpσs(σ)

)n

,

formally emphasizes that a tensionless p-branes is made-up of n tensionless strings.

However, this last expression was computed in (3.8) and in our case is

p
∏

i=1

[s(σi)]
−D/2 e−

m2
i

2

∫

dσis(σi),

then, the total partition function for an ideal gas of N tensionless p-branes is given by

Z =

p
∏

i=1

(

[s(σi)]
−D/2 e−

1
2
m2

i

∫

dσis(σi)
)N

.

In order to compute the state equation we proceed as follow: firstly one chooses s(σ1) =

s(σ2)... = s(σ) and one put also m1 = m2 = ... = m, then

P [s(σ)] V =
N

s(σ)
. (3.12)

– 9 –



The Helmholtz free energy, compared to the tensionless string case, has a different

behavior. Indeed, the Helmholtz free energy becomes

F [s] =
pN

s(σ)

[

D

2
ln(p s(σ)) +

m2

2

∫

dσs(σ) + ln(V).

]

.

and for s → ∞, one has that the quantity sF ∼ D
2 ln[p s] is similar to the string case but,

in this case p could smooth out the behaviour of sF .

3.3 Including noncommutativity in Tensionless p-branes

Using the previous results, we can generalize our arguments in order to include noncom-

mutativity in tensionless p-branes. In order to do that, one start considering a tensionless

p-brane described by the field xµ
i (τ) with i labeling the dependence in (σ1, σ2, ..σp). This

field transforms as a scalar on the world-volume but as a vector in the space where the

p-brane is embedded.

Let us suppose that the components –we say xD−1
i and xD

i – do not commute, then -in

such case- the Green function can be written as

G[x(σ), x′(σ); s(σ)] =

=

∫ ∞

0
ds e−

m2

2
s

D−3
∏

k=0

[
∫

Dxk
i e−

∫ 1
0 dτ 1

2s
(ẋk

i )2
]

×
∫

Dxi
(D−2)Dxi

(D−1) e
−
∫ 1
0

dτ 1
2s

(

(ẋ
(D−2)
i

)2+(ẋ
(D−1)
i

)2
)

.

(3.13)

The integral in the second line in the RHS, corresponds formally to a non-relativistic

particle with mass (s−1) moving in plane in the pressence of a constant perpendicular

magnetic field B. In the first line in the RHS, however, the integral formally correspond to

the Green function for a set of p free relativistic particles moving in (D − 3)-dimensional

spacetime.

Thus, the calculation of these integral is straightforward. Indeed,
∫ ∞

0
ds[s(σ)]−

D−3
2 s(σ) e−

1
2s

(∆xk
i )2− p

2
m2

∫

dσs(σ)

× H. O.,

where H. O means the harmonic oscillator calculation for the two-dimensional relativistic

Landau problem.

Thus, the partition function for this gas of N -tensionless p branes

Z[s(σ)] = Tr
[

G[x(σ), x′(σ); s(σ)]
]

=

(

[s(σ)]−
D−3

2 e−
pm2

2

∫

dσs(σ)
∞
∑

n=0

G0e
−B

2
(n+ 1

2

∫

dpσs(σ))

)N

=





G0[s(σ)]−
D−3

2

sinh
(

p B
2

∫

dσs(σ)
)





N

. (3.14)
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Therefore, if we assume pairing interaction, then noncommutativity induces a motion

for a tensionless p-branes confined via a harmonic potential oscillator.

4. Interactions via noncommutativity in the phase space

In the previous section we argued how to construct noncommutative extended objects. In

this section we would like to give an insight in a different physical context and to investigate

the possibility of non-local communication.

Physically speaking, this is a delicate point in the context of a relativistic quantum

field theory because –as was discussed in the introduction– the cluster property prohibits

non-local communication and, as a consequence, the microcausality principle is no longer

valid.

From the non-relativistic point of view, apparently there is no problem with non-local

communication [21]. Indeed, let us suppose two non-relativistic particles in one dimension,

labeled by coordinates x1 and y1 and canonical momenta p1 and p2 respectively. Note

thate the index refers now to the particles involved.

The Hamiltonian for this system is

H =
1

2
p2
1 +

1

2
p2
2. (4.1)

Although naively the particles in (4.1) are free, they can interact if we posit the com-

mutator

[p1, p2] = iB, (4.2)

where B measures the strength of this interaction which can play –or not–the role of a

magnetic field.

Therefore, if (4.2) is fulfilled, then the two-particle system (4.1) is equivalent to an

effective one particle living in a two-dimensional noncommutative space. The exact

equivalence between this system and the Landau problem is a subtle point because by

considering only a noncommutative phase space with noncommutative parameters θ and B,

one can show that noncommutative quantum mechanics and the Landau problem coincide

if the relation θ = 1/B is fulfilled, i.e. if we have just the magnetic lenght [22]. From

this example, one extract as conclusion that the equivalence between a physical system

such as the Landau problem and noncommutative quantum mechanics only occurs for the

critical point θB = 1, but for differents values of θB, noncommutative quantum mechanics

decribes a physics completely different from the Landau problem. What kind of physics?,

presently we do not know the answer to this question.

The above example can be generalized for more particles; for instance, let us consider

two free particles moving in a commutative plane.

The Hamiltonian is

H =
1

2
(p2

1x + p2
1y) +

1

2
(p2

2x + p2
2y). (4.3)
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Then, let us assume that the interaction is given by 5

[p1x, p2x] = iB, [p1y, p2y] = iB, (4.4)

then, as in the previous case, the Hamiltonian is

H =
1

2
(p2

1x + p2
2x) +

1

2
(p2

1y + p2
2y), (4.5)

in other words, the previous system can be understood as an effective two particles system

living on a noncommutative plane.

Thus, the commutator (4.4) and the hamiltonian (4.5) describe a couple of particles

living on a plane and interacting formally with a magnetic field perpendicular to the plane.

In the general case for N particles moving on a D dimensional commutative space, the

generalization is straightforward.

Indeed, the Hamiltonian is

H =
1

2
(p2

1x + p2
1y + ...) +

1

2
(p2

2x + p2
2y + ...) + ..., (4.6)

then the interaction can be written as

[pa
i , p

b
j] = iδijǫ

abB, (4.7)

where a, b run on 1, ...,D labelling the different species of particles and the indices i, j, ...

select the vectorial component of x 6.

If we rewrite the Hamiltonian as

H =
1

2
(p2

1x + p2
1x + ...) +

1

2
(p2

1y + p2
1y + ...) + ..., (4.8)

then, (4.8) is equivalent to D particles moving on a N -dimensional noncommutative space.

In the critical point, this generalized system corresponds to the quantum Hall effect

as has been proposed using a different argument by [18].

Thus, in a general context, one could conclude that if two particles interact via non-

local communication, then the phase space is necessarily noncommutative.

5. Cosmological implications

The goal of this section is to use the previous results in order to understand several cos-

mological issues mentioned in the introduction.

The first issue to be discussed is how to detect –if this is possible– causally discon-

nected spacetime regions. Let us suppose two spacetime regions –say S and S ′

– where two

experiments take place. As we know, the cluster decomposition principle states that if the

5Of course this a simplification because we are assuming that the noncommutative parameters are the

same.
6The component of the antisymmetric density tensor ǫab are defined as +1 if a > b.
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physics for these experiments is described by the hamiltonian densities H and H′

defined

on S and S ′

, respectively, then the commutator

[

H,H′

]

= 0,

implies that the regions S and S ′

are independent and causally disconnected.

In the context of standard relativistic quantum field theory, this property assures

relativistic invariance and, in the special case where the vector x − y is spacelike, the

microcausality principle emerges as a consequence of this cluster property.

Following standard arguments [4, 19], in the first stages of the universes probably many

big-bang processes took place and, as a consequence, many baby universes or multiverses

were created. These multiverses produced many causally disconnected regions in spacetime.

Thus, an important question is, are really these regions causally disconnected or some tiny

interactions could had been possible?.

Presently, we do not have a definitive answer for this question, but there are some

phenomenological clues supporting this possibility.

Indeed, in the present epoch of our universe, the relativistic invariance seems be an

exact symmetry but, in the initial stages –at Planckian energies– a tiny violation could have

been possible. If we consider the physics of cosmic rays, for example, this tiny violation of

the relativistic symmetry could explain the modifications to the GZK bound observed in

several recent events [20].

Many people have tried to explain these events using nonconventional physics [6, 7, 10].

Another problem –insoluble problem using the standard cosmological model– is the

existence of strong magnetic fields in galaxies, (this problem, probably is related to the

baryon-antibaryon asymmetry) where, apparently, explanations based on considerations

beyond the relativistic physics are also necessary.

Thus, assuming that a tiny violation of the cluster principle is allowed, if the multiverses

exchange information, a tiny non-local communication among multiverses is also allowed.

The cosmological principle implies that –at very large scales– the universe is homoge-

neous and isotropic and, as a consequence, one could think that each multiverse is a bubble

that –independently– obeys the cosmological principle, in other words, one can assume that

each constituent universe is a tensionless p-brane.

Relaxing the cluster decomposition principle, the multiverses interact via non-local

communication, i.e. noncommutatively and, as consequence, the interaction among multi-

verses will be possible only if relativistic invariance is explicitly violated.

In order to produce interaction among different tensionless p-branes, one breaks rela-

tivistic invariance assuming nontrivial commutators –like (4.7)– for the infinite-dimensional

case. As the multiverses are approximated as tensionless p-brane, then only possible

interaction between two different tensionless p-branes is (4.7) with a, b, c... = 1, 2, ...N

((N < D)) labeling the different species of tensionless p-branes being µ, ν, ... vectorial

indices running on 1, 2, ...,D, i.e.

[

pa
µ, pb

ν

]

= iδµνǫabB, (5.1)
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Using this interpretation and (3.14) , one can compute the interaction between N

multiverses obtaining

Z =





G0[s(σ)]−
D−3

2

sinh
(

p B
2

∫

dσs(σ)
)





N

, (5.2)

and, therefore, each pair of multiverses interact harmonically with frequency like ∼ B.

This last fact could have interesting observational consequences. Indeed, the harmonic

interaction among multiverses involves infared-ultraviolet shifts. This interaction should

produce a periodic deformation of each multiverse with period – according to (5.2) – pro-

portional to 1/pB, where p is the dimension of the tensionless p-brane.

However, it remains to clarify the physical meaning of B. According to the interaction

procedure sketched above, B should correspond –due to dimensional reasons– to a tiny

magnetic field. The coefficient
∫

dσs(σ) is dimensionless and, therefore, one could conjec-

ture that the only tiny magnetic field one could use as a noncommutative paremeter is the

primordial magnetic field (or seed field) [23] which would be the origin of the relativistic

symmetry violation.

The numerical value for this primordial magnetic field is not presently known, but

phenomenological estimations suggest that could be

B ∼ 10−16GeV2,

and, therefore, the oscillation frequency of a multiverse is

Ω ∼ 10−63 s−1. (5.3)

if the mass of the universe ∼ 1077 GeV.

The mechanism presented here is -in many senses- similar to the Einstein model for

the heat capacity of a solid. In our case, we are taking into account only the interaction

between neighbour multiverses, neglecting other interactions. Thus, the analogous to the

phonon in our case is a quantum with energy B = 10−8GeV.

Thus, an harmonic pulsation effect among multiverses could be of a new source of

gravitational radiation and the relativistic invariance violation could be an explanation for

the seed field puzzle [23].

6. Conclusions

In conclusion, we have constructed the statistical mechanics of generally covariant systems

moving in a noncommutative space and, from these results, we have studied the quantum

statistical mechanics of tensionless membranes gas.

We have also shown that one can introduce no-local interactions by means of noncom-

mutativity, which implies measurable cosmological consequences for multiverses.

Our main results are summarized as follows:

• Each null membrane is considered as a multiverse that satisfies the cosmological

principle during its evolution. If the RHS of (1.4) is zero, then the universes are

causally disconnected.
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• If (1.4) is different from zero, then the multiverses interact harmonically implying

infrared-ultraviolet shifts. The periodic fluctuations of a multiverse could be also a

source of anisotropy, maybe, they could explain the presently observed anisotropy.

• The periodic motion among multiverses is a source of gravitational waves with ex-

tremely tiny frequences.

• The noncommutativity is an effect that could be attributed to a primordial magnetic

field.

Although the effects discussed in this paper are very small, in our opinion are qualita-

tively interesting and they can provide a different point of view to the standard cosmological

discussions.

Finally, we would like to note that the extremely smallness value estimated in this paper

for the oscillation frequency for the multiverses, suggests that the relativistic symmetry

principle is a good approximation for the present epoch of the universe. However, even so

one cannot discard the multiverses picture in the early universe.
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