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CHAOS THEORY AND STRATEGY: THEORY,
APPLICATION. AND MANAGERIAL IMPLICATIONS
DAVID LEVY
Department of Management, lJniversity of Massachusetfs - Boston
Boston, Massachusetts, U.S.A.

This paper argues that chaos theory provides a useful theorectical framework for
understanding the dynamic evolution of industries and the complex interactions among
industry actors. It is argued that industries can be conceptualized and modeled as complex,
dynamic systems, which exhibit both unpredictability and underlying order. The relevance
of chaos theory for strategy is discussed, and a number of managerial implications are
suggested. To illustrate the application of chaos theory, a simulation model is presented
that depicts the interactions between a manufacturer of computers, its suppliers, and its
market. The resuhs of the simulation demonstrate how managers might underestimate the
costs of international production. The paper concludes that, by understanding industries as
complex systems, managers con improve decision making and search for innovative
solutions.

INTRODUCTION

One of the enduring problems facing the field
of strategic managment is the lack of theoretical
tools available to describe and predict the
behavior of firms and industries. For example,
even if we know that oligopolistic industries are
likely to experience periods of stability alternating
with periods of intense competition, we do not
know when they will occur or what will be the
outcome. Similarly, it is almost impossible to
predict the impact of the advent of a new
competitor or technology in an industry. The
fundamental problem is that industries evolve in
a dynamic way over time as a result of complex
interactions among firms, government, labor,
consumers, financial institutions, and other
elements of the environment. Not only does
industry structure influence firm behavior, but
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firm behavior in turn can alter the structure of
an industry and the contours of competition.
Existing theoretical models, however, tend to
assume relatively simple linear relationships
without feedback. Indeed, many strategic theories
attempt to classify firms and industries and to
describe appropriate strategies for each class;
examples include the Boston Consulting Group
matrix for resource allocation and Bartlett's
classification of international strategies (Bartlett
and Ghoshal, 1989). Although these models are
based on recurrent patterns that we recognize in
the real world, there are usually far too many
exceptions for the models to have much predictive
value.

Chaos theory, which is the study of nonlinear
dynamic systems, promises to be a useful
conceptual framework that reconciles the essen-
tial unpredictability of industries with the emer-
gence of distinctive patterns(Cartwright, 1991).
Although chaos theory was originally developed
in the context of the physical sciences, Radzicki
(1990) and Butler (1990) amongst others have
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noted that social, ecological, and economic
systems also tend to be characterized by nonlinear
relationships and complex interactions that evolve
dynamically over time. This recognition has led
to a surge of interest in applying chaos theory to
a number of fields, including ecology (Kauffman,
l99l), medicine (Goldberger, Rigney and West,
1990) international relations (Mayer-Kress and
Grossman, 1989), and economics (Baumol and
Benhabib, 1989; Kelsey, 1988).t Despite the
apparent applicability of chaos theory to the field
of business strategy', there has been surprisingly
little work in this area.

This paper introduces readers to chaos theory,
and discusses its relevance to the social sciences
in general and to aspects of strategy in particular,
including planning and forecasting, and the
impact of change on firms and industries. The
application of chaos theory to a business situation
is illustrated using a simulation model of an
international supply chain. The model, which is
based on the author's research into the supply
chain of a California-based computer company,
depicts the complex interactions between the
firm, its suppliers, and its markets. The simulation
results illustrate the managerial implications of
applying chaos theory to strategic management.
The model demonstrates how small disruptions
to the supply chain interact to make the chain
highly volatile, imposing significant costs on the
organization. Although forecasting is very difficult
in the supply chain, distinct patterns emerge
which are useful for managers. The simulation
also shows that by understanding the supply
chain as a complex dynamic system, it is possible
to identify managerial approaches that lower the
cost of operating the supply chain.

AN INTRODUCTION TO CHAOS
THEORY

Chaos theory is the study of complex, nonlinear,
dynamic systems. The field was pioneered by
Lorenz (1963), who was studying the dynamics
of turbulent flow in fluids. Although we all
recognize the swirls and vortices that characterize
turbulent flow, the complexities of turbulent flow

t See also special issues of. Journal of Economic Theory,
40(1), 1986, and Journal of Economic Behavior and Organiza-
t ion,8(3) ,  1987.

have confounded mathematicians for years. A
similar problem afflicts someone who is trying
to calculate the path of an object in the
gravitational pull of two or more bodies. While
we can use simple Newtonian equations to predict
the orbits of planets around the sun with a high
degree of accuracy, the mathematics involved in
the case of two or more 'suns' become intractable.
The problem can be illustrated on a terrestrial
level by observing the motion of a simple toy, a
metal ball suspended over two or more magnets.
The ball will trace a series of patterns that never
exactly repeat themselves, and yet aie not totally
random.

The paradox here is that the motion of the
metal ball is driven by the same Newtonian
equations as the well understood case of a single
gravitational attractor. If we knew precisely the
original location, speed, and direction of the
ball, we ought to be able to predict its path with
a reasonable degree of accuracy. How is it
that deterministic systems can give rise to
unpredictability? The explanation is that tiny
variations in the motion of the ball are magnified
every time it swings by one of the magnets. It
is a combination of this divergence and the
repeated interactions that give rise to 'chaotic'

behavior. Mathematically, chaotic systems are
represented by differential equations that cannot
be solved, so that we are unable to calculate the
state of the system at a specific future time 't'.

At the limit, chaotic systems can become truly
random. A toss of a coin or the roll of a die
are, in theory, deterministic systems, but yield
more or less random outcomes. Not only is it
impossible to toss a coin twice in exactly the
same way, but on each toss the coin is subject
to slightly different air currents, themselves a
result of turbulent air flow (Ford, 1983).

To overcome the problem of intractable differ-
ential equations, researchers usually model sys-
tems as discrete difference equations, which
specify what the state of the system will be at
time 't* 1' given the state of the system at time
't.' Computer simulations can then be used to
see how the system evolves over time.

One of the major achievements of chaos theory
is its ability to demonstrate how a simple set of
deterministic relationships can produce patterned
yet unpredictable outcomes. Chaotic systems
never return to the same exact state, yet the
outcomes are bounded and create patterns that



embody mathematical constants (Feigenbaum,
1983). It is the promise of finding a fundamental
order and structure behind complex events that
probably explains the great interest chaos theory
has generated in so many fields.

Chaos theory and the social sciences

Proponents of chaos theory enthusiastically see
signs of it everywhere, pointing to the ubiquity
of complex, dynamic systems in the social world
and the resemblance between patterns generated
by simulated nonlinear systems and real time
series of stock exchange or commodity prices.
From a theoretical perspective, chaos theory is
congruous with the postmodern paradigm, which
questions deterministic positivism as it acknowl-
edges the complexity and diversity of experience.
While postmodernism has had a profound influ-
ence on many areas of social science and the
humanities, it has been neglected by organization
theorists until very recently (Hassard and Parker,
1ee3).

Despite its attractions, the application of chaos
theory to the social sciences is still in its infancy,
and there are those who think that expectations
are too high (Baumol and Benhabib, 1989).
Although real life phenomena may resemble the
patterns generated by simple nonlinear systems,
that does not mean that we can easily model
and forecast these phenomena; it is almost
impossible to take a set of data and determine
the system of relationships that generates it
(Butler, 1990). In fact, there is considerable
debate in the economics and finance literature
about how one tests a data series to determine
if it is chaotic or simply subject to random
influences (Brock and Malliaris, 1989; Hsieh,
1991). Moreover, it is important to recognize
that many systems are not chaotic, and that
systems can transition between chaotic and
nonchaotic states. Chaos theory is perhaps better
seen as an extension of systems theory (Katz
and Kahn , 1966; Thompson,1967) into the realm
of nonlinear dynamics rather than as a total
paradigm shift.

It is possible that the application of chaos
theory to social science has been constrained by
the fact that it has developed in relation to
physical systems, without taking into account
fundamental differences between physical and
social science. In the social world, outcomes often
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reflect very complex underlying relationships that
include the interaction of several potentially
chaotic systems; crop prices, for example, are
influenced by the interaction of economic and
weather systems. The search for a simple set of
equations to explain complex phenomena may
be a futile attempt to construct grand 'meta-

theory,' a project that is rejected in the postmod-
ern paradigm. The application presented here
uses a different approach; field study research is
used to derive a set of relationships among
variables and the influence of external systems
is modeled probabilistically, a method suggested
by Kelsey (1988).

Social and physical systems also differ in the
source of unpredictability. In the physical
world, unpredictability arises due to many
iterations, nonlinearity, and our inability to
define starting conditions with infinite precision.
In the social world, far less accuracy is
possible in defining starting conditions, and the
specification of the system structure itself is
much less precise.

A final difference is that physical systems
are shaped by unchanging natural laws, whereas
social systems are subject to intervention by
individuals and organizations. Investigations of
economic time series by chaos theorists have
usually assumed that relationships among eco-
nomic actors are fixed over time. In reality,
methods of stabilizing the economy have
changed from the use of the gold standard
and balanced budgets to Keynesian demand
management and, later, to monetarist contols.
Human agency can alter the parameters and
very structures of social systems, and it is
perhaps unrealistically ambitious to think that
the effects of such intervention can be endo-
genized in chaotic models.2 Nevertheless,
chaotic models can be used to suggest ways
that people might intervene to achieve certain
goals. The application presented here, for
example, shows how management can reduce
the volatility of the supply chain to improve
performance.

2 To some extent, the distinction between endogenous and
exogenous variables in a model is one of convenience; a
factor that is exogenous in a simple model might become
endogenous in a more complex and comprehensive one.
Exogenous factors can be included as random variables in
chaotic systems for modeling purposes (Kelsey. 1988).
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RELEVANCE OF CHAOS THBORY TO
STRATEGY

To understand the relevance of chaos theory to
strategy, we need to conceptualize industries as
complex, dynamic, nonlinear systems. Firms
interact with each other and with other actors in
their environment, such as consumers, labor, the
government, and financial institutions. These
interactions are strategic in the sense that
decisions by one actor take into account antici-
pated reactions by others, and thus reflect
a recognition of interdependence. Although
interfirm behavior has been modeled formally in
economics and business strategy using game
theory (Camerer, I99L), these models tend to
presume the emergence of equilibrium and do
not adequately reflect industry dynamics. As
Porter (1990) emphasizes, the evolution of
industries is dynamic and path dependent: corpor-
ate (and country-level) capabilities acquired
during previous competitive episodes shape the
context for future competitive battles. Moreover,
the accumulation of competitive advantage can
be self-reinforcing, suggesting at least one way
in which industries are nonlinear. If industries
do behave as chaotic systems, a number of
implications for strategy can be drawn.

Long-term planning is very difficult

In chaotic systems, small disturbances multiply
over time because of nonlinear relationships and
the dynamic, repetitive nature of chaotic systems.
As a result, such systems are extremely sensitive
to initial conditions, which makes forecasting
very difficult. This is a problem that has
confronted meteorologists trying to model the
weather: the fundamental problem is trying to
use finite measurements in an infinite world.
A related problem is that as systems evolve
dynamically, they are subject to myriad small
random (or perhas chaotic) influences that cannot
be incorporated into the model.

Formulating a long-term plan is clearly a key
strategic task facing any organization. People
involved in planning, whether in business, eco-
nomics, or some other area, have always known
that models are always just models, that forecasts
are uncertain, and that uncertainty grows over
time. Nevertheless. our conventional understand-
ing of linear models and the influence of random

errors would lead us to think that better models
and a more accurate specification of starting
conditions would yield better forecasts, useful
for perhaps months if not years into the future.
Chaos theory suggests otherwise; the payoff in
terms of better forecasts of building more
complex and more accurate models may be small.
Similarly, we cannot learn too much about the
future by studying the past: if history is the sum
of complex and nonlinear interactions among
people and nations, then history does not repeat
itself. Concerning urban planning, Cartwright
(1991) has noted that we have to acknowledge
that 'a complete understanding of some of the
things we plan may be beyond all possibility.'

The notion that long-term planning for chaotic
systems is not only difficult but essentially
impossible has profound implications for organi-
zations trying to set strategy based on their
anticipation of the future. Rather than expend
large amounts of resources on forecasting, stra-
tegic planning needs to take into account a
number of possible scenarios. Moreover, too
narrow a focus on a firm's core products
and markets might reduce the ability of the
organization to adapt and be flexible in the face
of change. The proliferation of joint-ventures
and the acquisition by large firms of stakes
in entrepreneurial enterprises can perhaps be
understood as attempts to keep a foothold in a
number of potential scenarios in the face of
uncertainty and accelerating change.

Industries do not reach a stable equilibrium

The traditional approach to understanding the
influence of industry structure on firm behavior
and competitive outcomes has been derived
from microeconomics, with its emphasis on
comparative statics and equilibrium. More recent
applications of game theory have attempted to
account for interactions among small numbers of
firms (usually two), yielding predictions about,
for example, investments in R&D or plant
capacity to seize first-mover advantages. Even
the most complex game theoretic models, how-
ever, are only considered useful if they predict
an equilibrium outcome. By contrast, chaotic
systems do not reach a stable equilibrium; indeed,
they can never pass through the same exact state
more than once. If they did, they would cycle
endlessly through the same path because they



are driven by deterministic relationships. The
implication is that industries do not 'settle down'
and any apparent stability, for example in pricing
or investment patterns, is likely to be short lived.

Chaos theory also suggests that changes in
industry structures can be endogenous. Corporate
decisions to enter or exit the market, or to
develop new technologies, alter the very structure
of the industry, which in turn influences future
firm behavior. One of the most provocative and
controversial elements of chaos theory is that
chaotic systems can spontaneously self-organize
into more complex structures (Allen, 1988). The
notion has been applied to biological evolution
(Laszlo, 1987) as well as to economic systems
(Mosekilde and Rasmussen, 1986). In the context
of business strategy, the concept could potentially
be applied to the evolution of complex organiza-
tional relationships such as long-term contracts
and technical cooperation with suppliers, and
hybrid forms of organizational control such as
joint ventures. Chaos theory suggests that new,
more complex organizational forms will appear
more frequently than if they were simply the
result of random mutations.

Dramatic change can occur unexpectedly

Traditional paradigms of economics and strategy,
which are generally based upon assumptions of
linear relationships and the use of comparative
static analysis, lead to the conclusion that
small changes in parameters should lead to
correspondingly small changes in the equilibrium
outcome. Chaos theory forces us to reconsider this
conclusion. Large fluctuations can be generated
internally by deterministic chaotic systems. Mod-
els of population growth based on the logistic
difference equation illustrate how sudden, large
changes in population levels can arise from the
dynamics of the system rather than from the
influence of external shocks (Radzicki, 1990).3
Similarly, if economic systems are chaotic then
we do not need to search for wars or natural

3 The logistic difference equation has the form:
P,* t  :  P,  *  R*  (1-P, )
P, a fraction between 0 and 1, represents the population
level as a proportion of the maximum carrying capacity of
the environment. R is the growth rate from one cycle to the
next. Population growth is constrained by the factor 1-P,,
which can be understood as a resource constraint.
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disasters to account for economic depressions or
a crash in the stock market.

The size of fluctuations from one period to
the next in chaotic systems have a characteristic
probability distribution (Bak and Chen, 1991).
Under this distribution, large fluctuations occur
more frequently than under the normal distri-
bution, suggesting that managers might underesti-
mate the potential for large changes in industry
conditions or competitors' behavior.

Small exogenous disturbances to chaotic sys-
tems can also cause unexpectedly large changes.
The implication for business strategy is that the
entry of one new competitor or the development
of a seemingly minor technology can have a
substantial impact on competition in an industry.
An example that comes to mind is the way Dell's
mail order strategy in the personal computer
industry forced other companies to reduce their
prices and reexamine their traditional high-cost
sales and service channels.

Short-term forecasts and predictions of patterns
can be made

Although the unpredictability and instability of
chaotic systems has been emphasized, there is
also a surprising degree of order in chaotic
systems. Short-term forecasting is possible
because in a deterministic system, given the
conditions at time 't,' we can calculate the
conditions at time 't+1.' A carefully constructed
simulation model of a complex system with
accurately specified starting conditions can yield
useful forecasts at least for several time periods.
Weather forecasts based on sophisticated com-
puter models using measurements from thousands
of points around the globe do provide useful
forecasts for a few days, which is usually sufficient
for purposes such as hurricane warnings. If we
imagine that strategic decisions in companies are
made on a monthly or even annual cycle, then
industry simulation models might be able to
make useful predictions over a time horizon of
several months or possibly years.

Another feature of chaotic systems that lends
them a degree of order is that they are bounded;
outcome variables such pricing or investments in
new capacity fluctuate within certain bounds that
are determined by the structure of the system
and its parameters but not its initial conditions.
In the context of busines strategy these bounds
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might be set by feedback loops such as the
entrance of new firms or antitrust action by
the government in response to monopolistic
conditions.

Although we cannot forecast the precise state
of a chaotic system in the longer term, chaotic
systems trace repetitive patterns which often
provide useful information. According to Rad-
zicki (1990), deterministic chaos 'is characterized
by self-sustained oscillations whose period and
amplitude are nonrepetitive and unpredictable,
yet generated by a system devoid of randomness.'
For example, while we do not know exactly
where or when tornadoes and hurricanes will
strike, we do know what conditions lead to their
occurrence, when and where they are most
frequent, and their likely paths. In a similar way,
we know that oligopolistic industries tend to
alternate between periods of intense competition
and periods of more cooperative behavior, though
we do not know when an industry will make the
transition from one state to another. To give a
third example, we know that the economy cycles
through recessions and booms, though we cannot
predict very well the depth or duration of a
particular recession (Butler, 199). Observing
patterns is especially useful if we can associate
different phases of the system with other charac-
teristics; for example, there is a strong relationship
between business cycles and other variables such
as demand, interest rates, the availability of
credit, vendor lead times, and the tightness of
the labor market.

An intriguing aspect of the patterns traced by
chaotic systems is that they are independent of
scale; in other words, similar patterns are traced
by a system whatever horizon is used to view it.
Economic time series often appear to display
this property. Stock prices, for example, display a
remarkably similar pattern whether one observes
daily changes over 1 year or minute-by-minute
changes over a day. These images of patterns
within patterns are termed fractals when they
are generated by chaotic systems. In the natural
world, fractals can be found in many phenomena,
from the shape of coastlines to ice crystals. The
implications for business strategy are not entirely
clear. One interpretation is that previous experi-
ences in an industry are likely to recur on a
much larger scale. A second interpretation is
that similar patterns of behavior might be
expected whether one examines competition

between countries, between firms in an industry,
or even between departments in a firm.

Guidelines are needed to cope with complexity
and uncertainty
'Strategy' can refer to a set of guidelines that
influence decisions and behavior. It is the
complexity of strategic interactions, whether in
chess, soccer, or in business, that makes it
essential to adopt simplifying strategies to guide
decisions; even the most powerful computers are
unable to track all possible moves and counter-
moves in a chess game. General Electric's well
known strategy of being number one or number
two in every industry in which it participates is
a simple example of a guideline which may be
generally useful but is not always optimal in
every situation. We need general guidelines
because it is impossible to specify the optimal
course of action for every possible scenario.

It is important to distinguish the guidelines
and patterns of behavior that constitute strategy
from the underlying rules of the game. In a
game of chess, for example, knowing the rules
for playing the game does not necessarily give
one insights into strategies for successful play.
One can only learn these strategies after experi-
encing the complexities of interactions on the
chess board. Indeed, because of the complexity
of strategic interactions, one does not always
know why a particular strategy is successful.

While the complexity of industry systems
dictates the need for broad strategies, the dynamic
nature of chaotic systems mandates that strategies
adapt. As industry structures evolve and competi-
tors change their strategies, a firm clearly needs
to change its own guidelines and decision rules.
The problem here is that there is no simple way
of deriving optimal strategies for a given system.
Indeed, in a complex system the best strategies
might achieve goals indirectly and even appear
counter-intuitive. The best way to improve quality
is not necessarily to check every product several
times: it may be to improve labor relations and
thus gain labor's cooperation in finding ways to
reduce defects. IBM's decision in 1981 to
let other 'clone' manufacturers use the DOS
operating system for personal computers helped
competitors but also indirectly helped IBM to
build market share by creating the industry
standard.
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In order to understand indirect or counter-
intuitive means to an end, a system needs to be I 
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INI|ENSORY VS. TARGBT INV. !
The simulation of an international supply chain
demonstrates how chaos theory can be applied
to the understanding of a real managerial issue.
The example is drawn from the author's research
into the costs of coordinating the international
supply chain of a personal computer company
called California Computer Technology (CCT).4
Following Eisenhardt (1989), a case approach
was used to build and test theory in an iterative
manner.

The research led to a conceptualization of the
supply chain as a complex, dynamic, nonlinear
system. The system is subject to external disrup-
tions, and the stages of the chain are linked by
flows of goods and information, with time lags
and feedback mechanisms. The complexity of
interactions along the supply chain is such that
one cannot easily predict how the system will
operate under various conditions, but a computer
model of these processes can simulate the
outcome (Lant and Mezias, 1990; Morecroft
1984). Figure 1 is a simplified representation of
CCT's supply chain, showing in schematic form
the flows of goods and information within the
model. Solid lines represent flows of goods,
dotted lines flows of information.

In reality, supply chains are often much more
complex than this. CCT, for example, has
hundreds of vendors, three production sites, and
distributors and warehouses in many countries.
Corporate headquarter functions interact with
vendors, the field sales organization, and the
production sites. Nevertheless, the diagram does

a The name of the company has been disguised
proprietary information.
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Figure 1. A Model of CCT's supply chain

capture the essence of the supply chain. Materials
move along the chain in one direction, gaining
value at each stage. Information is exchanged in
both directions among the organizations along
the chain. This simple representation is very
useful in analyzing the potential sources of
coordination costs in a supply chain and the
impact of geographically separating stages of the
chain. It is also valuable as a tool for designing
strategies that improve the performance of a
supply chain.

There are two important dimensions to this
system, uncertainty and time relationships.
Rather than performing as a stable, ready state
system, each stage of the chain is potentially
subject to disruptions, or 'shocks.' Demand
fluctuates in an unpredictable way, production
problems can affect output, and suppliers do not
always deliver on time. When demand and
production are rising, delivery and production
problems are more likely. As a result of the
uncertainty at each stage, flows of materials
and finished systems fluctuate in volume, and
inventories need to be adjusted to cope with the

to prorecr uncertainty, The linkages themselves are also
subject to disruption. Shipments and communi-
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cation can be delayed, and information can be
misunderstood.

A second important dimension of the supply
chain system is the time relationship among
the stages. As a result of the time lags in
communication, production, and distribution, a
disruption to one element generates a sequence
of changes in other parts of the system. For
example, demand fluctuations cause changes in
sales forecasts, production schedules, and order
to vendors. Disruptions originating in any one
part of the system, in effect, propagate forwards
and backwards along the chain. Disruptions can
interact; for example, a production problem
could occur in a month when demand was
unexpectedly high, causing some demand to go
unmet.

A number of researchers investigating aspects
of the supply chain have recently turned to
simulation models, most of which attempt to find
cost-minimizing solutions using linear or nonlinear
programming (e.g., Breitman and Lucas, 1987;
Cohen and Lee, 1989; Hodder and Jucker, 1985;
Hodder and Dincer, 1986). These models do
not, however, deal adequately with uncertainty
in a dynamic, multiperiod setting.

The simulation model developed for this study
is described in more detail in the Appendix and
in Levy (1992). The model assumes a set of
decision rules and linkages among the stages of
the supply chain, which are used to determine
the production plan and other variables each
month. Each stage of the supply chain is subject
to random fluctuations, and the chain evolves in
a dynamic fashion from month to month.

Results and implications

Figure 2 shows simulated inventory levels over
a period of lffi months based on a version of
the model representing production in Singapore
for the U.S. market, which entails 30 days
shipping time. Inventory levels are expressed as
a proportion of monthly demand, and negative
values indicate that demand cannot be met from
inventory that month.

The most obvious feature of the graph is
the volatility of inventory levels. These large
fluctuations illustrate well how relatively small
disruptions to the supply chain can interact with
organizational decision processes and lead times
in the system to produce large and unpredictable
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Figure 2. Simulated inventory levels, product shipped
from Singapore to U.S.

outcomes. CCT's managers did not expect this
volatility, because the strategic decision to source
from Singapore was taken using cost estimates
that assumed a stable supply chain. In fact, the
instability of the chain imposed substantial
unexpected costs on CCT, primarily related to
the expense of using air-freight to expedite
shipments, the opportunity cost of lost sales, and
the cost of holding excess inventories. In addition,
CCT incurred expenses relating to the communi-
cation and managerial time needed to manage
the unstable supply chain. These costs were
all underestimated because managers did not
appreciate the impact of complex interactions
along the supply chain, and tended to treat each
disruption as a one-time event.

The simulation does reveal some patterns
within the fluctuating inventory levels. Peak
inventory levels are reached, on average, every
5 months, though the number of months between
peaks varies from 21 months; the system is
clearly aperiodic. Moreover, there is a relation-
ship between the average time between peak
inventory levels and shipping time: when pro-
duction is available for sale the same month
(representing production in the U.S. for the U.S.
market), average time between peak inventory
levels falls to around 4 months. Note also that
inventory levels are less volatile and that peaks
are lower, as would be expected when delivery
times are shorter.

As well as illustrating the volatility of the
supply chain and its associated costs, the model
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Figure 3. Simulated inventory levels, product made
and sold in U.S.

can be used to guide decisions concerning
production location, sourcing, and optimum
inventory levels. Used for this purpose, the
simulation model demonstrates how complex
systems need to be understood as a whole, and
how goals can be achieved through indirect and
nonobvious means. For example, the simulation
model enables the cost of offshore sourcing to
be estimated in terms of the incremental inventory
needed to maintain demand fulfillment at some
specified level. It was estimated that in order to
maintain an average level of 95 percent demand
fulfillment when sourcing from Singapore rather
than California for the U.S. market, average
system inventory levels would have to increase
by more than 2 months of sales.

The underlying order in the supply chain
system can be glimpsed in Figure 4. The X-axis
shows the value of a parameter representing the
standard deviation of the monthly percentage
change in demand, a measure of demand
instability. The range of values was chosen to
reflect the instability observed for CCT's pro-
ducts. The Y-axis shows the average proportion
of demand that could not be fulfilled over 100
iterations of a 36-month period.

There appears to be a threshold beneath which
demand instability does not have a significant
effect; in this region, the system does not exhibit
chaos. Once the instability parameter approaches
0.1, the proportion of demand unfulfilled begins
to rise rapidly but smoothly and exceeds 10
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Figure 4. Impact of demand stability on unfulfilled
demands

percent of demand for products with the most
unstable demand.

While the simulation model illustrates the costs
and difficulties of an unstable supply chain, it
also suggests approaches to solving these prob-
lems. The simulation model could be used to
determine optimal inventory levels for different
products and components, and to identify those
which need to be manufactured locally, based
on the level of volatility associated with them.
Although CCT's managers had always been
aware that unstable products should be produced
locally, they tended to underestimate these costs.
The simulation provided a tool to analyze more
precisely which products were stable enough for
offshore manufacture.

Another approach, using the insight gained
from Figure 4 above, would be for managers
to attempt to improve the accuracy of sales
forecasting in order to reduce the cost of offshore
manufacture. Similarly, managers could try to
reduce disruptions to the supply chain from other
sources, by working with suppliers to improve
quality and reduce lead times, and by reducing
the occurrence of internal production problems.
Volatility can also be reduced by intervening at
the boundaries of the system to change its
structure. CCT, for example, has participated in
the widely observed trend toward fewer suppliers.
Using these techniques, management could sim-
plify and stabilize the system, possibly making it
nonchaotic.

It should be noted that the approaches to
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managing complex systems described above con-
stitute key elements of lean production (Womack,
Jones, and Roos, 1990). Lean production can
thus be conceptualized as a way to simplify and
reduce the variance of complex dynamic supply
chain systems, making their behavior more
predictable. Indeed, this research suggests that,
contrary to the prevailing notion that lean
production methods constrain international pro-
duction (Hoffman and Kaplinsky, 1988; Jones
and Womack, 1985), lean production could
actually facilitate international operations by
reducing volatility along the supply chain.

CONCLUSIONS

Chaos theory is a promising framework that
accounts for the dynamic evolution of industries
and the complex interactions among industry
actors. By conceptualizing industries as chaotic
systems, a number of managerial implications
can be developed. Long-term forecasting is
almost impossible for chaotic systems, and
dramatic change can occur unexpectedly; as a
result, flexibility and adaptiveness are essential
for organizations to survive. Nevertheless, chaotic
systems exhibit a degree of order, enabling short-
term forecasting to be undertaken and underlying
patterns can be discerned. Chaos theory also
points to the importance of developing guidelines
and decision rules to cope with complexity, and
of searching for nonobvious and indirect means
to achieving goals.

The simulation model presented here demon-
strates that chaos theory has practical application
to issues of business strategy. The simulation
illustrates how management can underestimate
the impact of disruptions to an international
supply chain, generating substantial unanticipated
costs. It also demonstrates how management
might intervene to reduce the volatility of the
supply chain and improve its performance, by
reducing the extent of disruptions and changing
the structure of the supply chain system.

APPENDIX

The supply chain was simulated using a spread-
sheet model, with columns representing the
variables in the system, and rows representing

successive months. In order to model the
stochastic nature of the supply chain, a simulation
package called 'RISK'was used, which allows a
variety of probability distributions to be assigned
to each cell of the spreadsheet. Actual data
and decision criteria from CCT were used to
determine the structure of the model and the
range of values to be used for various parameters.
For example, monthly bookings data revealed
that the level of bookings each month could be
modeled by taking the previous month's demand
plus a percentage change that was a normally
distributed random variable with mean zero.

Three sets of input parameters were used for
the model. The first set represents the level of
disruptions affecting demand, supplier deliveries,
and production. The second set represents the
target levels of system and component inven-
tories. The standard values for these were set at
half a month's sales for systems, excluding any
inventory in transit, and 1 week's production for
components. The third group of input parameters
represents the impact of distance on shipping
time for finished goods, and of different vendor
lead times. The main output variables of the
system were the levels of system and component
inventories and the level of demand fulfillment.
Using these parameters, the model simulates a
36-month time period. The model begins at time
zero with a nominal level of demand and
production of 100 units, but these values evolve
over time. The simulation package enables the
spreadsheet to be recalculated a specified number
of times. On each iteration, the entire 36-month
spreadsheet is recalculated with a new set of
random numbers. A large number of iterations
can thus be used to build up a probability
distribution for these output variables and to
calculate a mean (expected) value. The results
presented here were obtained using one hundred
iterations for each simulation. Each simulation
of lffi iterations was run using a different set of
input parameters. A list of variables recalculated
on a monthly basis is given in the Appendix.

Three main performance measures were cap-
tured as output variables. Average system and
average component inventory levels over 100
iterations of the 36-month period were expressed
in terms of months' sales. Demand fulfillment
was measured by summing the total number of
units of demand which could not be met due to
inadequate inventory, and dividing this total by



total demand to give a ratio indicating unfulfilled
demand.

The effect of distance on shipping times and ENDING
of different vendor lead times was modeled by SYSTEM INV:
using different versions of the basic model. The
simulations used for this paper used a version in
which production in Singapore is available for
sale in the U.S. the following month (i.e., 30
days to ship and clear customs) and vendor lead
times are 60 days. TARGET

SYSTEM INV:
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depending on the version,
less a random percentage.
System inventory at the end
of each month was equal to
the inventory the previous
month less sales plus pro-
duction the same or the
previous month, depending
on the model version.
The target level of system
inventory was adjusted each
month to equal a proportion
of the current sales forecast.
The production plan for the
following month was based
on the sales forecast,
adjusted for the difference
between actual and planned
system inventory.
System production each
month was equal to the
production plan of the pre-
vious month, less a random
percentage, and constrained
by the availability of material
inventory.
Unfulfilled demand equalled
monthly demand less
monthlv sales.

VARIABLES RECALCULATED ON
MONTHLY BASIS FOR SIMULATION
MODEL

ACTUAL
DEMAND:

ENDING
COMP. INV.:

TARGET The target level of compo-
COMP. INV.: nent inventory was adjusted

each month to equal a pro-
portion of the current sales
forecast.

ORDERS Orders to vendors were
TO VENDORS: based on the sales forecast,

the production schedule for
the following month, and a
comparison of actual with
target component inventory
levels.

PRODUCTION
PLAN:

ACTUAL
SALES:

SALES
FORECAST:

DEL. FROM
VENDORS:

Demand for systems each
month was equal to the
previous month's demand
plus a random percentage ACTUAL
change. PRODUCTION:
Sales of systems each month
were equal to demand unless
constrained by lack of inven-
tory.
The best sales forecast for
the next month was the UNFUL.
previous month's demand, DEMAND:
as no trend was built into
demand fluctuations.
The level of component (or
material) inventory each REFERENCES
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