Raster Representations and Calculations

- The raster concept:
 - A 2-D array of attributes
 - Each represented by **mathematical values**
 - Locations on the cells on the ground are implicitly encoded based on their row-column positions

Spatially Straightfoward, But What About Value Encoding?

?	?		
		?	
?	?	?	?

Water/Veg dominates

Winner takes all

Edges separate

Coding Strategies for Cell Values

- We are building a **model of reality** here:
 - We can make model **design decisions** based on what the **intended application** is
- All models selectively throw information away:
 - Whether presence/absence, or ordinal / interval / ratio categories or counts, any particular approach will be selectively useful

Systematic coding strategies for determining cell values:

- 1. Use the value from the cell center (centroid)
- 2. Use majority weighting within each cell
- 3. Calculate weighted values

(+ **non-systematic** most important type)

Systematic Coding Strategies for Cell Values

1. Use the value from the cell center (centroid)

CENTER OF CELL

- The value at the **centroid** is assigned to the cell
- This is a simple approach, but it can **overrepresent** the values from small areas

Systematic Coding Strategies for Cell Values

2. Use majority weighting within each cell

MAJORITY OF CELL

- The value covering the **majority** of the area is assigned to a cell
- This is a "fairer" representation than cell centers

David Tenenbaum - EEOS 465 / 627 - UMass Boston

Systematic Coding Strategies for Cell Values

3. Calculate weighted values

WEIGHTED CELL VALUES

- Priority weights are based upon the **importance** of different values
 - The "most important" value present is assigned to a cell
- This ensures the representation of **crucial** geographic phenomena

Dealing With Crossing Linear Objects

- What happens when **more than one linear object** occurs in a single cell?
 - If each theme were **separate**, there is **no problem**
 - i.e. roads = one theme, rail = another
 - Use presence/absence coding
 - Otherwise...
 - Use most important type method
 - Requires you to **decide** which is **most important**

Crossing Linear Features

Separating The Objects into Individual Themes

Using Extended Raster Model with Crossing Linear Objects

Cell Coincidence

- The raster concept:
 - Each grid cell location for each theme explicitly coincides with its other thematic counterparts
 - The efficiency of raster GIS modeling depends on this

26 = 20 + 6 |

Matrix Algebra

$$\begin{pmatrix} 5 & 4 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 2 & 1 \\ 1 & 4 & 5 \\ 2 & 7 & 3 \end{pmatrix} = \begin{pmatrix} 8 & 6 & 2 \\ 3 & 5 & 7 \\ 6 & 9 & 4 \end{pmatrix}$$

Map Algebra

Arithmetic operations: the same for -, but not *, /, mod

Matrix Algebra

$$\left(\begin{array}{ccc} 5 & 4 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{array} \right) * \left(\begin{array}{ccc} 3 & 2 & 1 \\ 1 & 4 & 5 \\ 2 & 7 & 3 \end{array} \right) = \left(\begin{array}{ccc} 21 & 33 & 28 \\ ? & ? & ? \\ \end{array} \right)$$

Map Algebra

5	4	1		3	2	1		15	8	1
2	1	2	*	1	4	5	=	2	4	10
4	2	1		2	7	3		8	14	3

Arithmetic operations: the different for *, /, mod

Introduction to Map Algebra

- Language components
- Syntax and rules
- Objects
- Operators
- Commands

Language Components

- A data manipulation language for raster
 - Math-like expressions
 - AgSuit = (SoilSuit * 0.75) + (SlpSuit * 0.25)
- **Parts** of the language
 - Objects: Raster, numbers, constants, and so on
 - Operators: "+", "/", "GT", "LE", "AND", "OR", and so on
 - Functions: Slope, FocalMean, Sin, and so on
 - **Rules**: For building expressions and using functions
- Most operators & functions implemented as **tools**

Map Algebra operators

Relational

==, EQ Equal ^=, <>, NE Not equal

<, LT Less than

>, GT Greater than

<=, LE Less than or equal

>=, GE Greater than or equal

Boolean

- ^, NOT Logical complement
 - &, AND Logical And
 - , OR Logical Or
 - !, XOR Logical Xor

CombinatorialCANDCombinatorial AndCORCombinatorial OrCXORCombinatorial Xor

Logical

- DIFF Logical difference
- IN {list} Contained in list
 - OVER Replace

These work with **two objects**, like: **Slope GE 10**

Relational Operators in Map Algebra

• Relational Operators (<,>,==,>=, <=)

Α

Β

>=

3	7	8	1
5	9	4	0
2	3	7	8
7	2	7	0

$$(A >= B) = C$$

Boolean Operators in Map Algebra

•The AND operation requires that the value of cells in **both** input layers be **equal to 1** for the output to have a value of 1:

•The OR operation requires that the value of a cells in **either** input layer be **equal to 1** for the output to have a value of 1:

Arithmetic Operators in Map Algebra

- •We can **extend** this concept from Boolean logic to **algebra**
- •Map algebra:
 - Treats input layers as numeric inputs to mathematical operations (each layer is a separate numeric input)
 The result of the operation on the inputs is calculated on a cell-by-cell basis
- •This allows for **complex overlay analyses** that can use as many input layers and operations as necessary

•A common application of this approach is **suitability analysis** where multiple input layers determine suitable sites for a desired purpose by **scoring cells** in the input layers according to their effect on suitability and combining them, often **weighting layers** based on their importance

Simple Arithmetic Operations

0

1

1

Summation

X

=

0	1	1
1	1	2
1	0	2

Multiplication

0	0	0	
1	1	1	
0	0	1	

0	0	0
0	0	1
0	0	1

Summation of more than two layers

Raster (Image) Difference

The difference between two layers

- •An application of taking the differences between layers is **change detection**:
 - •Suppose we have **two raster layers** that each show a map of the **same phenomenon** at a particular location, and each was generated at a **different point in time**
 - •By taking the **difference** between the layers, we can **detect changes** in that phenomenon over that interval of time
- •Question: How can the locations where changes have occurred be identified using the difference layer?

Raster (Image) Division

Question: **Can we** perform the following operation? Are there any **circumstances** where we **cannot** perform this operation? Why or why not?

More Complex Operations

Linear Transformation

•We can multiply layers by **constants** (such as a, b, and c in the example above) before summation

•This could applied in the context of computing the results of a **regression model** (e.g. output y = a*x1 + b*x2 + c*x3) using raster layers

•Another application is **suitability analysis**, where individual **input layers** might be **various criteria**, and the **constants** a, b, and c determine the **weights** associated with those criteria

Seven Interfaces for Spatial Analyst

The Raster Calculator

- Use to enter map algebra expressions:
 - Build with **buttons or type** into expression box

Expression Syntax Rules

• **Delimit** operators and objects with **blanks**:

Wrong: Layer+Layer2+Layer3

Right: Layer1 + Layer2 + Layer3

• Operators evaluated by **precedence** level:

• Override operator precedence with parentheses:

• Nested parenthetical expressions evaluate first:

Expression Results

- Expressions return grids, vector data, tables, etc.
 - Depends on functions used
 - Most return GRIDs
- Temporary or permanent?
 - For returned grids only
 - Temporary GRID if unnamed
 - Permanent GRID if named
- Layers **added** to ArcMap:
 - Table of Contents

Cell coincidence

.

TOTCOST(4,2) = COST1(4,2) + COST2(4,2)

26 = 20 + 6

Resampling

Automatically applied when combining rasters

Expression Evaluation (when Resampling)

• Expressions are processed as follows:

- 1. Define empty output GRID based on the analysis environment.
- 2. Position to the next output cell (start at row 0, column 0).
- **3. Resample input raster(s)** to determine corresponding cell values.
- 4. Evaluate the expression and write the result to the output cell.
- 5. Repeat steps 2 4 for all output cells.

User attributes in expressions

- You may use numeric VAT fields in expressions
- Reference with [Layer].field notation

Vegeta	tion.VA	Г	
Value	Count	Desc	Suit
101	2450	Grass	1
201	65780	Mixed	3
301	32187	Pine	2
401	5433	Oak	5

Soil.VAT

Value	Count	Desc	Suit
23	2450	Sand	2
46	65780	Loam	1
87	32187	Clay	6
99	5433	Rock	9

[Vegetation].Suit + [Soil].Suit

- [Layer] alone is assumed to be [Layer].Value
- You may join tables to grids VAT file
 - Use joined fields for symbology, selection
 - Cannot use in Map Algebra expressions

Special cell values in Map Algebra

Logical: Non-zero values are True, zero is False

As logical 0,1

NoData: If any input is NoData, the output is NoData

Examples of Operators

Seven Interfaces for Spatial Analyst

Multi Output Map Algebra Tool

Single Output Map Algebra Tool

Map Algebra vs. ModelBuilder

David Tenenbaum - EEOS 465 / 627 - UMass Boston

Exercise 3: Building a Raster Database

- EXERCISE 3A: BUILD A RASTER DATABASE
- EXERCISE 3B: GEOREFERENCE A RASTER

Building a Raster Database

- **Designing** a raster database
 - Poor design \rightarrow consequences, costs in the future
- Need to **evaluate needs and plan accordingly**, before building a GIS database
- **Decisions** on the type of data to store, how to use the data, and on going maintenance
 - Considering these issues beforehand will help improve your design decisions

ESRI Data Models

- Data models = schema **templates**
- Templates for **implementing** GIS projects
- Speed up development time
- Available for many industries
- Provided as **templates** to create
- Personal or file geodatabases

David Tenenbaum - EEOS 465 / 627 - UMass Boston

Rasters in ArcCatalog

- Edit spatial reference
- Create metadata
- Build pyramids and statistics

Property	Value	
🗉 Data Source		
E Baster Information		
Columns and Rows	2008. 2755	
Number of Blands	1	
Celsize (X, Y)		
Uncompressed Size	View	
Format	reator dataget	
Source Type	raster uataset	
Pixel Type	properties	
Pixel Depth		
NoB at a Yalue	D	
Colormap	absent	
Pyramids	present	
Complession	Run-Length Encoding (E	
E Extent		
Тар	4334786.72346	
Left	738570.006	
Right	759338.971205	
Battom	4306291.45497	
Spatial Reference	NAD_1927_UTM_Zone_10	
Linear Unit	Meter (1.000000)	
Angular Unit	Degree 0.01745329251994	
False_Easting	500000	
False Northing	0	

Geoprocessing: Raster Management Tools

- General raster database management tools
 - Copy, paste, delete, calculate statistics, set spatial reference
- Data organization/preparation
 - Mosaicking
 - Raster catalogs
- Raster data storage
 - Pyramids
 - GDB technology

Geodatabase Raster Datasets

- A single raster in a geodatabase
 - May load many rasters into one raster dataset (mosaic)
 - Good for analysis and mapping
 - Seamless
 - Fast display at any scale
- Personal geodatabase format
 - Rasters converted to IMG format, stored in hidden .idb folder
- File geodatabase format
 - Rasters converted to FGDBR format, stored in the GDB folder
- ArcSDE geodatabase format
 - Rasters converted to ArcSDE raster format, stored in RDBMS
- All formats preserve GRID attribute fields

Geodatabase Raster Catalogs

- A collection of raster datasets
 - Behave as one, but are **stored separately** (rows in a table)
 - May overlap, have gaps, different cell sizes, bit depths
 - Must have same spatial reference
 - Good for archives, display, and mapping
- Personal geodatabase format
 - Managed: Converted, stored in .idb folder
 - Unmanaged: Referenced by path name
- File geodatabase format
 - Can be managed or unmanaged
- ArcSDE geodatabase format
 - Necessarily managed

Merging Rasters

- Combine multiple rasters into one
 - Six methods to handle overlapping areas:

General Raster Properties: Pyramids

- Reduced resolution copies of original raster
 - Pixel size **doubles** at each level
- Improves query/display **performanc**
 - Returns best resolution for screen display
 - Returns about same number of pixels as scale changes
- Personal GDB
 - Stores pyramids in **RRD file**
- File GDB
 - Stores pyramids in GDB folder
- ArcSDE GDB
 - Stores pyramids in tables

Rasters in a Personal Geodatabase

- Stores a reference to external, filebased rasters
 - Microsoft Access MDB file is **limited** to 2 GB total size
 - Provides centralized access to rasters
- Stores raster datasets
 - A single raster
 - Best for data
 - Can use in analysis
- Stores raster catalogs
 - A collection of rasters
 - Best for imagery archives
 - Cannot use in analysis

Rasters in a File Geodatabase

- Stores raster catalogs and raster datasets
 - Up to **one terabyte** for each raster dataset or raster catalog
 - Provides centralized access to rasters
- Useful for:
 - A single user and small work groups
 - Some readers and one writer

Rasters in an ArcSDE Geodatabase

ROW NBR

- ArcSDE subdivides a raster into lacksquare**blocks** for storage
 - Size set by user
 - Automatic and required
 - Invisible to end users
- The raster is a table; a block is a row in the table
- Provides faster access to data •
 - ArcSDE returns blocks for visible area
 - Improves display performance

Next Topic:

Raster Analysis and Functions

David Tenenbaum - EEOS 465 / 627 - UMass Boston