Chapter 2. Mapping GIS Data

Objectives:

• Understanding **map scales** and GIS data scaling issues
• Knowing **types of attribute data** and the maps created from each
• Understanding how to **classify** numeric data
• **Displaying** raster images
• Understanding how **map documents** save and represent data
What is a Map?

Definition of Maps:
• A graphic depiction on a flat medium of all or part of a geographic realm in which real world features have been replaced with symbols in their correct spatial location at a reduced scale.
• To map is to transform information from one form to another --- Mathematics

• Earth surface map Paper --- Geography
Scale

• Scale is a way to *quantify* the *size relationship* between the real world and the map

• But the notion of scale goes beyond simply the issue of the size at which features are portrayed, and is one of the most important concepts in geography because of its *effects on analysis*

 – It affects nearly *all aspects* of geographic data and GIS

 – A GIS is *scaleless* in the sense that maps can be *enlarged and reduced* and plotted at many scales other than that of the original data.

 – To *compare* maps in a GIS, *both maps MUST* be at the *same scale* and have the *same extent.*
USGS Topo Map Title and Scale

REISTERSTOWN QUADRANGLE
MARYLAND
7.5 MINUTE SERIES (TOPOGRAPHIC)

SCALE 1:24000

CONTOUR INTERVAL 20 FEET
NATIONAL GEODETIC VERTICAL DATUM OF 1929
Representing Scale on Maps

Definition:

The scale of a map is ratio between distances on the map and the corresponding distances in the real world.

Scale representation on the map:

• Representative fraction (RF): 1:100,000, 1 to 100,000, or 1/100,000
• Verbal: 1 inch is equal to 50 miles
• Graphic: Scale bar 10 miles

Purpose (or a kind of question that scale can answer):

• Scale information allows us to answer questions like: 1 inch on a 1:24000 map represents what distance on the surface of the Earth? (2000 feet)
General Classification of Scale

• Remember that the notions of small and large are reversed from our conventional thinking when we talk about scale → large scale refers to looking at a smaller area in detail, and this makes sense because the representative fractions are larger:
 – Large scale → 1:400 to 1:50,000
 – Intermediate scale → 1:50,000 to 1:250,000
 – Small scale → 1:250,000 and beyond

• Even these are just guidelines … we might refer to large or small scale in a given context (the categories given above are for the full range of mapping, from local to global), or we might use these terms in a relative sense
Map Scale and GIS

• GIS is scaleless, in the sense that the onscreen representation of a GIS is far less limited by the considerations associated with map representations (i.e. you can resize your View to any scale you’d like, although there are resolution limitations imposed by the minimum unit of display, a pixel)

• Thus, data captured at a certain scale can be scaled (multiplied up or reduced down) freely in a GIS, potentially not respecting the limitations associated with the scale at which the data was created
Map Scale and GIS

• When we **freely scale data** captured at a certain scale in a GIS, we can run into **problems** if we go **too far in either direction**:

• If we **reduce** a map’s scale too much, the map becomes **too information-dense** to be useful, because the detail can no longer be displayed

• If we **enlarge** a map produced at a small scale too much, we can see the **lack of detail** as a result of the data’s **scale of production**

• Representation of data at an **appropriate scale** is one the most important goals of cartography
Maps and GIS - Scaling Up

The river network shown here on a national scale was produced at a much larger scale, and it contains a great deal of detail that cannot be seen here … zooming in …
Maps and GIS - Scaling Up

All the detail that is encoded in this river network data is really only visible and useful when operating at more local scales.

This level of detail is not necessary or useful at the national scale. GIS does not modify the level of detail in the representation of features when scaling up or down.
Maps and GIS - Scaling Down

• Scale affects both the precision and accuracy of geographic information’s representation of reality
• The scale at which data is collected / produced at affects the amount of generalization inherent in vector data objects’ representation
• Large-scale data contains more detail than small-scale data
• When using small-scale data at an extent or for a purpose that is larger-scale than it was intended for can reveal a different kind of problem …
Maps and GIS - Scaling Down

• Here we can see a national scale coastline (shown in red) superimposed over local scale data, we can clearly see the generalization and lack of detail
Choosing a Map Type

• Cartographers have designed hundreds of map types: methods of cartographic representation.

• Not all GISs allow all types.

• Most have a set of basic types

• Depends heavily on the dimension of the data to be shown in the map figure.
Choosing Map Types

• **Check** the data
 – Continuous vs. Discrete
 – Accuracy & Precision
 – Reliability

• **Dimension** (Point, Line, Area, Volume)

• **Scale of Measurement** (Nominal etc.)

• What types is your GIS capable of creating

• May need to **supplement** GIS software
Scales of Measurement

- **Thematic data** can be divided into four types
 1. The Categorical Scale
 2. The Ordinal Scale
 3. The Interval Scale
 4. The Ratio Scale

As we progress through these scales, the types of data they describe have increasing information content.
The Categorical Scale

- **Categorical data** - information that is simply grouped into categories on the basis of qualitative considerations
 - Example: Place names
The Ordinal Scale

- **Ordinal data** - grouped by rank on the basis of some quantitative measure
 - Example: Small, medium and large towns
The Interval Scale

- **Interval data** - information that can be arranged using a standard scale along which operations of addition and subtraction have meaning
 - Example: Temperature is an interval measure

- Interval data is one type of continuous data
The Ratio Scale

• **Ratio data** - other type of continuous data that can be arranged along a scale but, in addition, the scale begins at a non-arbitrary zero point
 – At the zero point, no features are present
 – Multiplication and division can be employed with ratio data to consider proportions and magnitudes
 – Examples: Elevation above sea level, precipitation, population
The Ratio Scale

• Ratio data
Data Symbolization

• There are a number of characteristics of symbols that we can use of to make **visual distinctions in thematic information** (Jacques Bertin’s Visual Variables):

 • Size

 • Shape

 • Color Hue (color)

 • Color Value (intensity)

 • (Texture)

 • (Orientation)

 • (Arrangement)
Data Symbolization

Size → Graduated & proportional symbol maps
- difference in dimensions of symbols
- useful for ordinal, interval, & ratio data; bad for categorical
- convention: larger size = greater quantity

Shape
- differences in forms of symbols can be abstract and "geometric", or iconographic
- useful for categorical data; bad for ordinal, interval, & ratio
- too many shapes = cluttered & difficult for map reader to discriminate
Graduated Symbol Maps
Data Symbolization

Color Hue (color) → Area-class Maps
- differences in wavelengths of light reflected (or emitted, in the case of computer monitors)
- useful for categorical data, can be used for ordinal & interval/ratio data but is tricky
- perceptual difficulties for some map readers is a problem (e.g. 6-8% males color-blind)

Color Value (intensity) → Choropleth Maps
- relative lightness or darkness of symbols
- useful for ordinal, interval, & ratio data
- convention: darker = higher numerical values
- difficult for map readers to perceive more than four or five values
Area-class Maps

- Represent continuous areas of attribute data

Some examples of such data include:

- landuse
- vegetation
- climate zones

- Boundaries determined by variation of the attribute being mapped
Area-class Maps

- Represent continuous areas of attribute data

Some examples of such data include:

- landuse
- vegetation
- climate zones

-Boundaries determined by variation of the attribute being mapped
Choropleth Maps

- Use of reporting zones (areal units)
- Zones are independent of data
- Types of attributes:
 - population density
 - mortality rates
 - average income

*** Absolute counts are not suitable (i.e. total population)
Choropleth Maps

• Greek: choros (place) + plethos (filled)
• These are used to map categorical and quantitative data over defined areas
 – polygonal enumeration units
e.g. census tract, counties, watersheds, etc.
• Data values are generally classified into ranges
 – allow map reader to readily interpret the map
• Polygons can produce misleading impressions
 – area/size of polygon vs. quantity of thematic data value
Dot Density Maps

- Data is **represented as dots**
- Dots usually **represent a certain quantity** of something (1 dot = 100 persons)
- Dots **do not necessarily represent exact locations** of the data being represented
Dot Density Maps
Classifying Thematic Data

• Data values are classified into ranges for many thematic maps (especially choropleth)
 – This aids the reader’s interpretation of map
• Trade-off:
 – presenting the underlying data accurately VS.
 – generalizing data using classes
• Goal is to meaningfully classify the data
 – group features with similar values
 – assign them the same symbol
• But how to meaningfully classify the data?
Creating Classes

• **How many** classes should we use?
 – too few - *obscures* patterns
 – too many - *confuses* map reader
 • difficult to recognize more than *seven* classes

• **How do we create** the classes?
 – assign classes *manually*: create meaningful classes, such as population above / below poverty level
 – *equal intervals*: This ignores the data distribution, which can be misleading too!
Creating Classes

• How do we create the classes (cont.)

 – “natural” breaks based on data distribution: minimize within-class variation and maximize between-class variation

 – quartiles: top 25%, 25% above middle, 25% below middle, bottom 25% (quintiles uses 20%)

 – standard deviation: mean+1s, mean-1s, mean+2s, mean-2s, …
The Effect of Classification

• **Four common ways** to display continuous data in ArcGIS (i.e. these are options in Symbolization):

 – Equal Interval
 – Quantiles
 – Natural Breaks
 – Standard Deviation
The Effect of Classification

• Equal Interval
 – Splits data into user-specified number of classes of equal width
 – Each class has a different number of observations
The Effect of Classification

- **Quantiles**
 - Data divided so that there are an equal number of observations are in each class
 - Some classes can have quite narrow intervals
The Effect of Classification

- **Natural Breaks**
 - Splits data into classes based on natural breaks represented in the data histogram
The Effect of Classification

• **Standard Deviation**
 – Splits data into classes that represent values close to the mean and **increments of standard deviations** above and below the mean
Natural Breaks

Quantiles

Equal Interval

Standard Deviation
Displaying Rasters

- **Two types** of raster data sets:
 - **Thematic rasters** → represent **quantities** like land use or rainfall, can be further subdivided into:
 - **Discrete thematic rasters** → coded values (cf. categorical data, area-class maps, displayed ideally using unique values)
 - **Continuous thematic rasters** → values that change **continuously** (cf. interval or ratio data, choropleth maps, displayed using either classified methods or stretched)
 - **Image rasters** → from aerial photography and satellite imagery, pixels represent **brightness** (displayed using a stretched or RGB composite method)
Image Raster Display - Stretched

- Assume that the In and Out brightness values are equal
- For a single band, the resultant color will be grayscale

- All three colors display the same value, so the colors are shades of gray
Image Raster Display - Stretched

Band 1 - Blue

Band 2 - Green

Band 3 - Red

Band 4 - NIR
Image Raster Display - Stretched

Band 5 - IR

Band 6 - TIR

Band 7 - FIR
Image Raster Display - Stretched

- Contrast Enhancement - “stretching” all or part of the input BVs from the image data to the full 0-255 screen output range for better visual performance (i.e. we maximize the contrast so we can see the differences better)
A linear stretch is one of the most common types of contrast enhancement.

- The minimum BV is remapped to 0.
- The maximum BV is remapped to 255.
- E.g. given a certain band histogram:
Two types of linear stretches:

- The basic **linear contrast** stretch
- A **piecewise linear** stretch
Image Raster Display – RGB Composite

- For a multi-band image, the resultant color will depend on which bands are assigned to which color guns

True Color Composite

(321)

Near Infrared (4) Red (3) Green (2) Blue (1)

False Color Composite

(432)

Near Infrared (4) Red (3) Green (2)
Image Raster Display – RGB Composite

1. We put the digital numbers into the color guns of computer display so that the level of intensity for the color corresponds to the size of the number (i.e. brightness values are equal).

2. If we put the same digital numbers into all three color guns on a computer, we will get a black and white picture. We call this an image.

3. If we put the digital number for red light in red gun, and the digital numbers for blue light in blue gun, and the digital numbers for green light in green gun, we will have a true color image. Otherwise mappings we call false color images (all are RGB composites).
Color Arithmetic

red + green = yellow
green + blue = cyan
red + blue = magenta
Image Raster Display – RGB Composite
True-Color 321 Image
No stretch applied

True-Color 321 Image
Linear Contrast Stretch
Next Topic:
Coordinate Systems